55. Complements to the Furuta Inequality ${ }^{\dagger)}$

By Masatoshi FUJII*), Takayuki FURUTA**), and Eizaburo Kamei***)
(Communicated by Kiyosi ITÔ, M. J. A., Sept. 12, 1994)

Abstract

Complementary results to the Furuta inequality are given in cases of positive invertible operators.

§1. Introduction. In what follows, a capital letter means a bounded linear operator on a complex Hilbert space H. An operator T is said to be positive (in symbol: $T \geq 0$) if ($T x, x) \geq 0$ for all $x \in H$. Also an operator T is strictly positive (in symbol: $T>0$) if T is positive and invertible.

As an extension of the Löwner-Heinz theorem [12][10], we established the following Furuta inequality [4].

Theorem \mathbf{A} (Furuta inequality). If $A \geq B \geq 0$, then for each $r \geq 0$,

$$
\begin{equation*}
\left(B^{r} A^{p} B^{r}\right)^{1 / q} \geq\left(B^{r} B^{p} B^{r}\right)^{1 / q} \tag{i}
\end{equation*}
$$

and
(ii)

$$
\left(A^{\gamma} A^{\triangleright} A^{\imath}\right)^{1 / q} \geq\left(A^{\gamma} B^{\downarrow} A^{\nu}\right)^{1 / q}
$$

hold for p and q such that $p \geq 0$ and $q \geq 1$ with $(1+2 r) q \geq p+2 r$.
Alternative proofs of Theorem A are given in [1][5] and [11] and also one page proof is shown in [6]. Recently it turns out that Theorem A has a lot of applications, in fact [2][3][7][8] and [9] are some of them.

We remark that the Furuta inequality yields the following famous Löwner-Heinz inequality when we put $r=0$ in (i) or (ii) of Theorem A;

Theorem B (Löwner-Heinz inequality).
(*) $\quad A \geq B \geq 0$ ensures $A^{\alpha} \geq B^{\alpha}$ for any $\alpha \in[0,1]$.
§2. Statement of results. Theorem 1. If $A \geq B>0$, then $\left(B^{\gamma} A^{\alpha} B^{\gamma}\right)^{\beta} \geq\left(B^{\gamma} B^{\alpha} B^{\gamma}\right)^{\beta}$
holds under any one of the following conditions;

$$
\begin{equation*}
\frac{1}{\beta} \leq \alpha, 0<\beta<1, \text { and } \gamma=\frac{\alpha \beta-1}{2(1-\beta)} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{\beta} \leq \alpha \leq 1,1<\beta \leq 2, \text { and } \gamma=\frac{\alpha \beta-1}{2(1-\beta)} \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{2} \leq \alpha \leq 1,2 \leq \beta, \text { and } \gamma=\frac{\alpha \beta-1}{2(1-\beta)} . \tag{iii}
\end{equation*}
$$

Remark 1. (i) and (ii) are announced in [13, p. 61], but in the proof of Theorem 1 under below we remark that (i) is nothing but exchange of parameters p, q and r in Theorem A and a simple proof of (ii) can be obtained along a method of [6] by using polar decomposition. In this paper we shall

[^0]show (iii). We have to assume invertibility of A and B in the cases (ii) and (iii) since $\gamma \leq 0$.

We cite the following known result to give a proof of Theorem 1.
Lemma A [7]. Let A and B be positive invertible operators. For any real number r,

$$
(B A B)^{r}=B A^{1 / 2}\left(A^{1 / 2} B^{2} A^{1 / 2}\right)^{r-1} A^{1 / 2} B
$$

Lemma 1. Let $\frac{1}{2} \leq \alpha \leq 1,2 n \leq \beta \leq 2 n+1$ for some natural number n and $\gamma=\frac{\alpha \beta-1}{2(1-\beta)}$. Then the following (1) and (2) hold;
(1) $x_{j}=(\alpha+2 \gamma)(\beta-2 n)+2 \gamma+(2 \alpha+4 \gamma) j \in[-1,0]$ for $j=0,1,2$, $\ldots, n-1$.
(2) $y_{j}=(\alpha+2 \gamma)(\beta-2 n)+2 \gamma+(2 \alpha+4 \gamma) j+2 \alpha \in[0,1]$ for $j=0,1,2$, $\ldots, n-1$.

Lemma 2. Let $\frac{1}{2} \leq \alpha \leq 1,2 n+1 \leq \beta \leq 2(n+1)$ for some natural number n and $\gamma=\frac{\alpha \beta-1}{2(1-\beta)}$. Then the following (3) and (4) hold;
(3) $x_{j}=(\alpha+2 \gamma)(\beta-2 n-1)+\alpha+(2 \alpha+4 \gamma) j \in[0,1]$ for $j=0,1,2$, $\ldots, n-1, n$.
(4) $y_{j}=(\alpha+2 \gamma)(\beta-2 n-1)+\alpha+(2 \alpha+4 \gamma) j+4 \gamma \in[-1,0]$ for $j=$ $0,1,2, \ldots, n-1$.

Proof of Lemma 1. (1) It turns out that $x_{0} \leq x_{1} \leq \cdots \leq x_{n-1}$ by the definition of x_{j} and $\alpha+2 \gamma \geq 0$. On the other hand $x_{n-1}=1-2 \alpha \leq 0$ since $\frac{1}{2} \leq \alpha$ and $x_{0}=(\alpha+2 \gamma)(\beta-2 n)+2 \gamma+1-1=\frac{2(1-\alpha)(\beta-n)}{\beta-1}$ $-1 \geq-1$. Hence $x_{j} \in[-1,0]$ for $j=0,1,2, \ldots, n-1$.
(2) $y_{0} \leq y_{1} \leq \cdots \leq y_{n-2} \leq y_{n-1}$ since $y_{j}=x_{j}+2 \alpha$ and $x_{0} \leq x_{1} \leq \cdots$ $\leq x_{n-2} \leq x_{n-1}$ stated in the proof of (1). $y_{j}=x_{j}+2 \alpha \geq-1+2 \alpha \geq 0$ since $x_{j} \geq-1$ by (1) and $y_{n-1}=1$ since $y_{n-1}=x_{n-1}+2 \alpha=1-2 \alpha+2 \alpha$ $=1$. Hence $y_{j} \in[0,1]$ for $j=0,1,2, \ldots, n-1$.

Proof of Lemma 2. (3) $x_{0} \leq x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ by the definition of x_{j} and $\alpha+2 \gamma \geq 0$. On the other hand $x_{0}=(\alpha+2 \gamma)(\beta-2 n-1)+\alpha \geq \alpha$ $\geq \frac{1}{2}$ and $x_{n}=1$. Hence $x_{j} \in[\alpha, 1] \subseteq[0,1]$ for $j=0,1,2, \ldots, n-1, n$.
(4) $y_{0} \leq y_{1} \leq \cdots \leq y_{n-2} \leq y_{n-1}$ since $y_{j}=x_{j}+4 \gamma$ and $x_{0} \leq x_{1} \leq \cdots$ $\leq x_{n-1} \leq x_{n}$ stated in the proof of (3). $y_{0}=(\alpha+2 \gamma)(\beta-2 n-1)+\alpha+$ $4 \gamma \geq \alpha+4 \gamma \geq-1$ since $\alpha+4 \gamma+1=\frac{(1-\alpha)(1+\beta)}{\beta-1} \geq 0$ and $y_{n-1}=$ $1-2 \alpha \leq 0$. Hence $y_{j-1} \in[-1,0]$ for $j=0,1,2, \ldots, n-1$.

Proof of Theorem 1. (i) Put $(1+2 r) q=p+2 r$ for $r \geq 0, p \geq 1$ and $q \geq 1$ in Theorem A, then we easily obtain $p \geq q \geq 1$ and we have only to replace p by α, r by γ and $1 / q$ by β.
(ii) First of all, we easily obtain the following (5), (6) and (7):

$$
\begin{equation*}
2 \gamma \in[-1,0] \tag{5}
\end{equation*}
$$

$$
\begin{gather*}
\beta-1 \in[0,1], \tag{6}\\
\alpha+(\alpha+2 \gamma)(\beta-1)=1 . \tag{7}
\end{gather*}
$$

Then we have

$$
\begin{aligned}
& \left(B^{\gamma} A^{\alpha} B^{\gamma}\right)^{\beta}=B^{\gamma} A^{\alpha / 2}\left(A^{\alpha / 2} B^{2 \gamma} A^{\alpha / 2}\right)^{\beta-1} A^{\alpha / 2} B^{\gamma} \text { by Lemma } A \\
& \quad \geq B^{\gamma} A^{\alpha / 2}\left(A^{\alpha / 2} A^{2 \gamma} A^{\alpha / 2}\right)^{\beta-1} A^{\alpha / 2} B^{\gamma} \text { by (5), (6) and (*) } \\
& \quad=B^{\gamma} A^{\alpha+(\alpha+2 \gamma)(\beta-1)} B^{r} \\
& \quad=B^{r} A^{1} B^{\gamma} \text { by }(7) \\
& \quad \geq B^{1+2 \gamma}=B^{(\alpha+2 \gamma) \beta} \text { by (7). }
\end{aligned}
$$

(iii) (a) In the first case $2 n \leq \beta \leq 2 n+1$ for some natural number n.

$$
\left(B^{\gamma} A^{\alpha} B^{\gamma}\right)^{\beta}=\left(B^{\gamma} A^{\alpha} B^{\gamma}\right)^{n}\left(B^{\gamma} A^{\alpha} B^{\gamma}\right)^{\beta-2 n}\left(B^{\gamma} A^{\alpha} B^{\gamma}\right)^{n}
$$

$$
\geq\left(B^{\gamma} A^{\alpha} B^{\gamma}\right)^{n}\left(B^{\gamma} B^{\alpha} B^{\gamma}\right)^{\beta-2 n}\left(B^{\gamma} A^{\alpha} B^{\gamma}\right)^{n} \text { by } \alpha \in\left[\frac{1}{2}, 1\right] \text { and }\left({ }^{*}\right)
$$

$$
=\left(B^{\gamma} A^{\alpha} B^{\gamma}\right)^{n-1} B^{\gamma} A^{\alpha} B^{\gamma} B^{(\alpha+2 r)(\beta-2 n)} B^{\gamma} A^{\alpha} B^{\gamma}\left(B^{\gamma} A^{\alpha} B^{\gamma}\right)^{n-1}
$$

$$
=\left(B^{r} A^{\alpha} B^{r}\right)^{n-1} B^{r} A^{\alpha} B^{2 r+(\alpha+2 r)(\beta-2 n)} A^{\alpha} B^{r}\left(B^{r} A^{\alpha} B^{r}\right)^{n-1}
$$

$$
\geq\left(B^{\gamma} A^{\alpha} B^{\gamma}\right)^{n-1} B^{\gamma} A^{\alpha} A^{2 \gamma+(\alpha+2 r)(\beta-2 n)} A^{\alpha} B^{\gamma}\left(B^{\gamma} A^{\alpha} B^{\gamma}\right)^{n-1} \text { by (1) }
$$

$$
=\left(B^{\gamma} A^{\alpha} B^{\gamma}\right)^{n-1} B^{\gamma} A^{2 \alpha+2 \gamma+(\alpha+2 \gamma)(\beta-2 n)} B^{\gamma}\left(B^{\gamma} A^{\alpha} B^{\gamma}\right)^{n-1}
$$

$$
\geq\left(B^{r} A^{\alpha} B^{r}\right)^{n-1} B^{r} B^{2 \alpha+2 \gamma+(\alpha+2 \gamma)(\beta-2 n)} B^{r}\left(B^{\gamma} A^{\alpha} B^{r}\right)^{n-1} \text { by (2) }
$$

$$
=\left(B^{\gamma} A^{\alpha} B^{r}\right)^{n-2} B^{r} A^{\alpha} B^{(4 \gamma+2 \alpha) 1+2 \gamma+(\alpha+2 r)(\beta-2 n)} A^{\alpha} B^{\gamma}\left(B^{r} A^{\alpha} B^{r}\right)^{n-2}
$$

$$
=\left(B^{r} A^{\alpha} B^{r}\right)^{n-2} B^{r} A^{\alpha} A^{(4 \gamma+2 \alpha) 1+2 r+(\alpha+2 r)(\beta-2 n)} A^{\alpha} B^{\gamma}\left(B^{r} A^{\alpha} B^{\gamma}\right)^{n-2} \text { by (1) }
$$

$\geq\left(B^{\gamma} A^{\alpha} B^{\gamma}\right)^{n-j} B^{\gamma} A^{(4 \gamma+2 \alpha)(j-1)+2 \gamma+2 \alpha+(\alpha+2 \gamma)(\beta-2 n)} B^{\gamma}\left(B^{\gamma} A^{\alpha} B^{\gamma}\right)^{n-j}$ by (1) and (2)
$\geq\left(B^{\gamma} A^{\alpha} B^{\gamma}\right)^{n-k} B^{\gamma} A^{\alpha} B^{(4 \gamma+2 \alpha)(k-1)+2 \gamma+(\alpha+2 \gamma)(\beta-2 n)} A^{\alpha} B^{\gamma}\left(B^{\gamma} A^{\alpha} B^{\gamma}\right)^{n-k}$ by (1) and (2)

$$
\begin{aligned}
& \geq B^{r} A^{(4 r+2 \alpha)(n-1)+2 \alpha+2 r+(\alpha+2 r)(\beta-2 n)} B^{r} \text { by (1) and (2) } \\
& =B^{r} A^{1} B^{r} \geq B^{1+2 r}=B^{(\alpha+2 r) \beta} \text { by } y_{n-1}=1 \text { in (2). }
\end{aligned}
$$

Thus the proof of the first case (a) is complete.
(b) In the second case $2 n+1 \leq \beta \leq 2(n+1)$ for some natural number n.
$\left(B^{\gamma} A^{\alpha} B^{\gamma}\right)^{\beta}=\left(B^{\gamma} A^{\alpha} B^{\gamma}\right)^{n}\left(B^{\gamma} A^{\alpha} B^{\gamma}\right)^{\beta-2 n}\left(B^{\gamma} A^{\alpha} B^{\gamma}\right)^{n}$
$=\left(B^{\gamma} A^{\alpha} B^{\gamma}\right)^{n} B^{\gamma} A^{\alpha / 2}\left(A^{\alpha / 2} B^{2 \gamma} A^{\alpha / 2}\right)^{\beta-2 n-1} A^{\alpha / 2} B^{\gamma}\left(B^{\gamma} A^{\alpha} B^{\gamma}\right)^{n}$ by Lemma A
$\geq\left(B^{\gamma} A^{\alpha} B^{\gamma}\right)^{n} B^{\gamma} A^{\alpha / 2}\left(A^{\alpha / 2} A^{2 \gamma} A^{\alpha / 2}\right)^{\beta-2 n-1} A^{\alpha / 2} B^{\gamma}\left(B^{\gamma} A^{\alpha} B^{\gamma}\right)^{n} \quad$ by $\quad 2 \gamma \in[-1,0]$ and (*)
$=\left(B^{\gamma} A^{\alpha} B^{\gamma}\right)^{n} B^{\gamma} A^{\alpha+(\alpha+2 \gamma)(\beta-2 n-1)} B^{\gamma}\left(B^{\gamma} A^{\alpha} B^{\gamma}\right)^{n}$
$\geq\left(B^{\gamma} A^{\alpha} B^{\gamma}\right)^{n} B^{\gamma} B^{\alpha+(\alpha+2 \gamma)(\beta-2 n-1)} B^{\gamma}\left(B^{\gamma} A^{\alpha} B^{\gamma}\right)^{n}$ by (3)
$=\left(B^{\gamma} A^{\alpha} B^{\gamma}\right)^{n-1} B^{\gamma} A^{\alpha} B^{4 \gamma+\alpha+(\alpha+2 \gamma)(\beta-2 n-1)} A^{\alpha} B^{\gamma}\left(B^{\gamma} A^{\alpha} B^{\gamma}\right)^{n-1}$
$\geqq\left(B^{\gamma} A^{\alpha} B^{\gamma}\right)^{n-1} B^{\gamma} A^{\alpha} A^{4 \gamma+\alpha+(\alpha+2 r)(\beta-2 n-1)} A^{\alpha} B^{\gamma}\left(B^{r} A^{\alpha} B^{\gamma}\right)^{n-1}$ by (4)
$=\left(B^{\gamma} A^{\alpha} B^{\gamma}\right)^{n-1} B^{\gamma} A^{2 \alpha+4 \gamma+\alpha+(\alpha+2 \gamma)(\beta-2 n-1)} B^{\gamma}\left(B^{\gamma} A^{\alpha} B^{\gamma}\right)^{n-1}$
$\geq\left(B^{\gamma} A^{\alpha} B^{\gamma}\right)^{n-1} B^{\gamma} B^{2 \alpha+4 \gamma+\alpha+(\alpha+2 \gamma)(\beta-2 n-1)} B^{\gamma}\left(B^{\gamma} A^{\alpha} B^{\gamma}\right)^{n-1}$ by (3)
$=\left(B^{\gamma} A^{\alpha} B^{\gamma}\right)^{n-2} B^{\gamma} A^{\alpha} B^{4 \gamma+(2 \alpha+4 \gamma) 1+\alpha+(\alpha+2 \gamma)(\beta-2 n-1)} A^{\alpha} B^{\gamma}\left(B^{\gamma} A^{\alpha} B^{\gamma}\right)^{n-2}$
$\geq\left(B^{\gamma} A^{\alpha} B^{\gamma}\right)^{n-2} B^{\gamma} A^{\alpha} A^{4 \gamma+(2 \alpha+4 r) 1+\alpha+(\alpha+2 r)(\beta-2 n-1)} A^{\alpha} B^{\gamma}\left(B^{\gamma} A^{\alpha} B^{\gamma}\right)^{n-2}$ by (4)
$=\left(B^{\gamma} A^{\alpha} B^{\gamma}\right)^{n-2} B^{\gamma} A^{(2 \alpha+4 \gamma) 2+\alpha+(\alpha+2 \gamma)(\beta-2 n-1)} B^{\gamma}\left(B^{\gamma} A^{\alpha} B^{\gamma}\right)^{n-2}$
$\geq\left(B^{\gamma} A^{\alpha} B^{\gamma}\right)^{n-j} B^{\gamma} A^{(2 \alpha+4 \gamma) j+\alpha+(\alpha+2 \gamma)(\beta-2 n-1)} B^{\gamma}\left(B^{\gamma} A^{\alpha} B^{\gamma}\right)^{n-j}$ by (3) and (4)

```
\(=\left(B^{\gamma} A^{\alpha} B^{\gamma}\right)^{n-k} B^{\gamma} A^{\alpha} A^{(2 \alpha+4 \gamma)(k-1)+4 \gamma+\alpha+(\alpha+2 \gamma)(\beta-2 n-1)} A^{\alpha} B^{\gamma}\left(B^{\gamma} A^{\alpha} B^{\gamma}\right)^{n-k}\)
\(\geq B^{\gamma} A^{(2 \alpha+4 r) n+\alpha+(\alpha+2 r)(\beta-2 n-1)} B^{\gamma}\) by (3) and (4)
\(=B^{\gamma} A^{1} B^{\gamma}=B^{(\alpha+2 \gamma) \beta}\) by \(x_{n}=1\) of (3).
Thus the proof of case (b) is complete.
```

Finally the proof of (iii) in Theorem 1 is complete together with case (a) and case (b).

References

[1] M. Fujii: Furuta's inequality and its mean theoretic approach. J. Operator Theory, 23, 67-72 (1990).
[2] M. Fujii, T. Furuta and E. Kamei: Operator functions associated with Furuta's inequality. Linear Alg. and Its Appl., 149, 91-96 (1991).
[3] -: Furuta's inequality and its application to Ando's theorem. ibid., 179, 161-169 (1993).
[4] T. Furuta: $A \geq B \geq 0$ assures $\left(B^{r} A^{p} B^{r}\right)^{1 / q} \geq B^{(p+2 r) / q}$ for $r \geq 0, p \geq 0, q \geq 1$ with ($1+2 r$) $q \geq p+2 r$. Proc. Amer. Math. Soc., 101, 85-88 (1987).
[5] -: A proof via operator means of an order preserving inequality. Linear Alg. and Its Appl., 113, 129-130 (1989).
[6] -: Elementary proof of an order preserving inequality. Proc. Japan Acad., 65A, 126 (1989).
[7] -: Two operator functions with monotone property. Proc. Amer. Math. Soc., 111, 511-516 (1991).
[8] -: Applications of order preserving operator inequalities. Operator Theory; Advances and Applications, 59, 180-190 (1992).
[9] -: Extension of the Furuta inequality and log-majorization by Ando-Hiai. Linear Alg. and Its Appl. (1994).
[10] E. Heinz: Beitrăge zur Störungstheorie der Spektralzerlegung. Math. Ann., 123, 415-438 (1951).
[11] E. Kamei: A satellite to Furuta's inequality. Math. Japon., 33, 883-886 (1988).
[12] K. Lơwner: Über monotone Matrixfunktionen. Math. Z., 38, 177-216 (1934).
[13] T. Yoshino: Introduction to Operator Theory. Pitman Research Notes in Mathematics Series 300, Longman Scientific and Technical (1993).

[^0]: ${ }^{\dagger}$) Dedicated to Professor Masahiro Nakamura for his 75 th birthday.
 *) Department of Mathematics, Osaka Kyoiku University.
 **) Department of Applied Mathematics, Science University of Tokyo.
 Momodani Senior High School, Osaka.

