53. On the Generalized Wieferich Criteria

By Jiro SUZUKI
School of Allied Medical Sciences, Shinshu University
(Communicated by Shokichi Iyanaga, M. J. A., Sept. 12, 1994)

> Abstract: If $x^{p}+y^{p}+z^{p}=0,(p, x y z)=1$ has a solution, then a^{p-1} $\equiv 1\left(\bmod p^{2}\right)$ for $a \leq 113$
0. Introduction. Let p be an odd prime. Throughout this paper we assume that there exists a solution of Fermat's equation $x^{p}+y^{p}+z^{p}=0$ such that $(p, x y z)=1$. Then $a^{p-1} \equiv 1\left(\bmod p^{2}\right)$ holds for $a=2$. This is known as the Wieferich criterion. This criterion has been extended for $a \leq 31$ [5], $a \leq 89$ [2]. In this paper, we shall extend it up to $a \leq 113$, which implies: if we have a solution (x, y, z) such that $(p, x y z)=1$, then we can get $p>8.858 \times 10^{20}$ [1].

Let $A=\left\{-\frac{x}{y},-\frac{y}{x},-\frac{y}{z},-\frac{z}{y},-\frac{z}{x},-\frac{x}{z}(\bmod p)\right\}$ for a solution of $x^{p}+y^{p}+z^{p}=0,(p, x y z)=1$. Let t be any element of A. Then

$$
A=\left\{t, \frac{1}{t}, 1-t, \frac{1}{1-t}, \frac{t-1}{t}, \frac{t}{t-1}(\bmod p)\right\} .
$$

There are two possibilities:
(a) $A=\{-1,2,1 / 2(\bmod p)\}$
(b) A has six elements.

When $(m, h)=1$, then for any n, there exists a unique solution u for $h u \equiv$ $n(\bmod m)$ such that $0<u \leq m$. Let $g_{h}^{m, n}(X)=X^{u-1}$ and $G_{h}(X)$ be the $2 \varphi(h) \times \varphi(h)$ matrix $\left(g_{h}^{m, n}(X)\right)_{1 \leq m<2 h, 1 \leq n<h,(m, h)=(n, h)=1}$. Let I be a $\varphi(h)$-ple $\left(m_{1}, m_{2}, \ldots, m_{\varphi(h)}\right)$ such that $1 \leq m_{i}<2 h,\left(m_{i}, h\right)=1, m_{i} \neq m_{j}(i \neq j)$ and $G_{h}^{I}(X)$ be the submatrix of $G_{h}(X)$ by choosing $m_{1}, m_{2}, \ldots, m_{\varphi(h)}$ as m. Then Pollaczek [5] proved the following theorem:

Theorem. Suppose there exists $t \in A$ such that $t^{a-1} \not \equiv 1(\bmod p)$. For any h with $3 \leq h \leq(a-1) / 2$ if it is possible to find a $\varphi(h)$-ple I (depending on t and $h)$ such that $G_{h}^{I}(t) \not \equiv 0(\bmod p)$ then we have $a^{p-1} \equiv 1\left(\bmod p^{2}\right)$.

We could verify the existence of t and I for every $h, 3 \leq h \leq(a-1) / 2$ as referred above for all $a \leq 113$ by computation. We shall describe our method of computation in two stages. We first treat the case $|A|=3$ in $\S 1$. Secondly, we treat the case $|A|=6$ in $\S 2$. The case $|A|=6$ needs large amount of computation.

1. The case $|A|=3$. When $A=\{-1,2,1 / 2(\bmod p)\}$, we choose 2 as t. Let $1=m_{1}<m_{2}<\cdots<m_{\varphi(h)}=h-1, I_{1}=\left(m_{1}, m_{2}, \ldots, m_{\varphi(h)}\right)$ and $I_{2}=\left(m_{1}, m_{2}, \ldots, m_{\varphi(h)-1}, h+1\right)$. For example, in the case $h=53$, we get the following result:
$\operatorname{gcd}\left(\operatorname{det} G_{53}^{I_{1}}(2), \operatorname{det} G_{53}^{I_{2}}(2)\right)=(168$ digits number $)=$
$3^{58} \cdot 5^{12} \cdot 7^{17} \cdot 11^{4} \cdot 13^{3} \cdot 17^{5} \cdot 19 \cdot 23^{3} \cdot 31^{9} \cdot 41 \cdot 43^{2} \cdot 47 \cdot 73^{4} \cdot 89^{3} \cdot 127^{6}$.
$151^{2} \cdot 241 \cdot 257^{2} \cdot 337 \cdot 601 \cdot 683 \cdot 1801 \cdot 8191^{2} \cdot 131071^{2} \cdot 178481 \cdot 524287$.
Likewise we factorize $\operatorname{gcd}\left(\operatorname{det} G_{h}^{I_{1}}(2), \operatorname{det} G_{h}^{I_{2}}(2)\right)$ for all $3 \leq h \leq 56$ $=(113-1) / 2$, and list the prime factors $3,5,7, \ldots$, for any one q of which we verify $2^{q-1} \not \equiv 1\left(\bmod q^{2}\right)$. This means that $x^{q}+y^{q}+z^{q}=0,(x y z, q)=1$ has no solution, and thus $\operatorname{det} G_{h}^{I_{1}}(2)$ or $\operatorname{det} G_{h}^{I_{2}}(2) \not \equiv 0(\bmod p)$. If $2^{a-1}=1$ $+k p$ for some $k \in \boldsymbol{Z}$, then using the Wieferich criterion we have $1 \equiv$ $\left(2^{a-1}\right)^{p-1} \equiv 1+(p-1) k p\left(\bmod p^{2}\right)$. So we have $2^{a-1} \equiv 1\left(\bmod p^{2}\right)$. How ever it is easily shown that this never happens for, say, any $a \leq 200$, by using Lehmer's computation [4]. Therefore we have $2^{a-1} \not \equiv 1(\bmod p)$. Now we can use the theorem and we get $a^{p-1} \equiv 1\left(\bmod p^{2}\right)$.
2. The case $|A|=6$. When A has six elements, Pollaczek [5] and Gunderson [3] proved
(1) $t(t-1)(t+1)\left(t^{2}+t+1\right)\left(t^{2}+1\right)\left(t^{2}-t+1\right) \not \equiv 0(\bmod p)$.

Before computing $\operatorname{det} G_{h}^{I}(X)$ we can obtain some factors of $\operatorname{det} G_{h}^{I}(X)$. For example, when $h=53, X^{26}-1$ divides $g_{53}^{52, n}(X)-g_{53}^{26, n}(X)$. This fact is explained by the following lemma [2, Lemma 28]:

Lemma. Let $l \mid m$. Then $X^{l}-1$ divides
(2)

$$
g_{h}^{m, n}(X)-g_{h}^{l, n}(X)
$$

Let $k|m, l| m$ and $e \equiv l(\bmod k)$. Then $\left(X^{k}-1\right)\left(X^{l}-1\right)$ divides
(3) $\quad\left(X^{e}-1\right) g_{h}^{m, n}(X)-\left(X^{l}-1\right) g_{h}^{k, n}(X)+\left(X^{l}-X^{e}\right) g_{h}^{l, n}(X)$
and

$$
\begin{equation*}
\left(1-X^{k-e}\right) g_{h}^{m, n}(X)-\left(X^{l+k-e}-X^{k-e}\right) g_{h}^{k, n}(X)+\left(X^{l+k-e}-1\right) g_{h}^{l, n}(X) . \tag{4}
\end{equation*}
$$

Let $m=\prod_{i=1}^{r} p_{i}^{e_{1}}$ be the prime factorization of m such that $p_{1}<p_{2}<$ $\cdots<p_{r}$. When $r=1$, we use (2) as $l=m / p_{1}$. When $r>1$, we use (3) or (4) as $l=m / p_{1}, k=m / p_{2}, 0<e<k$. Namely we define $f_{h}^{m, n}(X)$ as follows:

$$
f_{h}^{m, n}(X)= \begin{cases}1 & \text { if } m=1, \\ (2) /\left(X^{l}-1\right) & \text { if } r=1, \\ (3) /\left(X^{l}-1\right)\left(X^{k}-1\right) & \text { if } r>1 \text { and } e \leq k-e, \\ (4) /\left(X^{l}-1\right)\left(X^{k}-1\right) & \text { if } r>1 \text { and } e>k-e\end{cases}
$$

Clearly, the degree of $f_{h}^{m, n}(X)$ is at most $d(m)$ where

$$
d(m)= \begin{cases}0 & \text { if } m=1 \\ m-1-l & \text { if } r=1 \\ m-1-l-\max (k-e, e) & \text { if } r>1\end{cases}
$$

We use the matrix $F_{h}(X)=\left(f_{h}^{m, n}(X)\right)_{1 \leq m<2 h, 1 \leq n<h,(m, h)=(n, h)=1}$ instead of $G_{h}(X)$. We define $F_{h}^{I}(X)$ similarly as $G_{h}^{I}(X)$.

The theorem in $\S 0$ is also correct if we replace $G_{h}^{I}(t)$ by $F_{h}^{I}(t)$ ([2, Theorem 5]).

Let $\Phi_{m}(X)$ be the m-th cyclotomic polynomial. When $\operatorname{det} F_{h}^{I}(X)$ is calculated. we devide $\operatorname{det} F_{h}^{I}(X)$ by X and $\Phi_{m}(X), 1 \leq m<2 h$, as far as possible. Let $C_{h}^{I}(X)$ be the product of all possible such factors. Then we get $Q_{h}^{I}(X)=\operatorname{det} F_{h}^{I}(X) / C_{h}^{I}(X)$. For example when $h=53$,
$I_{1}=(1,2,3,4,6,5,8,10,12,7,9,14,18,15,16,20,24,11,22,30,13,21,26,28,36$,
$42,17,32,34,40,48,19,27,38,54,25,33,44,50,60,23,46,66,39,45,52$, $56,72,35,78,29,58)$
$I_{2}=(\ldots, 29,70), I_{3}=(\ldots, 58,84), I_{4}=(\ldots, 29,70), I_{5}=(\ldots, 58,84)$.
I_{i} have been chosen as follows: Let $S_{h}=\{m ;(m, h)=1,1 \leq m \leq 2 h-1\}$. We number $m \in S_{h}$ such that $d\left(m_{j}\right)<d\left(m_{j+1}\right)$ or $d\left(m_{j}\right)=d\left(m_{j+1}\right), m_{j}$ $<m_{j+1}$. Then
$I_{1}=\left\{m_{1}, m_{2}, \ldots, m_{\varphi(h)-2}, m_{\varphi(h)-1}, m_{\varphi(h)}\right\}$,
$I_{2}=\left\{\ldots, m_{\varphi(h)-2}, m_{\varphi(h)-1}, m_{\varphi(h)+1}\right\}, \quad I_{3}=\left\{\ldots, m_{\varphi(h)-2}, m_{\varphi(h)-1}, m_{\varphi(h)+2}\right\}$,
$I_{4}=\left\{\ldots, m_{\varphi(h)-2}, m_{\varphi(h)}, m_{\varphi(h)+1}\right\}, \quad I_{5}=\left\{\ldots, m_{\varphi(h)-2}, m_{\varphi(h)}, m_{\varphi(h)+2}\right\}$.
Then we have

$$
\begin{aligned}
C_{53}^{I}(X): & X^{17} \Phi_{1}(X)^{37} \Phi_{2}(X)^{38} \Phi_{3}(X)^{4} \Phi_{4}(X)^{6} \Phi_{6}(X)^{8} \Phi_{12}(X) \text { for } I=I_{1} \\
& X^{16} \Phi_{1}(X)^{37} \Phi_{2}(X)^{38} \Phi_{3}(X)^{3} \Phi_{4}(X)^{6} \Phi_{6}(X)^{7} \Phi_{10}(X) \Phi_{12}(X) \text { for } I=I_{2} \\
& X^{17} \Phi_{1}(X)^{37} \Phi_{2}(X)^{38} \Phi_{3}(X)^{3} \Phi_{4}(X)^{7} \Phi_{6}(X)^{7} \Phi_{10}(X) \Phi_{12}(X) \text { for } I=I_{3} \\
& X^{15} \Phi_{1}(X)^{35} \Phi_{2}(X)^{36} \Phi_{3}(X)^{4} \Phi_{4}(X)^{6} \Phi_{6}(X)^{8} \Phi_{12}(X)^{2} \text { for } I=I_{4} \\
& X^{16} \Phi_{1}(X)^{35} \Phi_{2}(X)^{36} \Phi_{3}(X)^{4} \Phi_{4}(X)^{7} \Phi_{6}(X)^{8} \Phi_{12}(X)^{2} \text { for } I=I_{5} .
\end{aligned}
$$

Degrees of $Q_{53}^{I}(X): 528$ for $I=I_{1}, I_{5}, 530$ for $I=I_{2}, 526$ for $I=I_{3}, 532$ for $I=I_{4}$. Let $R_{h}\left(I_{i}, I_{j}\right)$ be the resultant of $Q_{h}^{I_{i}}(X)$ and $Q_{h}^{I_{j}}(X)$. Then

$$
\begin{aligned}
& R_{53}\left(I_{1}, I_{2}\right)=(28087 \text { digits number }), \text { but } \\
& \operatorname{gcd}\left(R_{53}\left(I_{1}, I_{2}\right), R_{53}\left(I_{2}, I_{3}\right), R_{53}\left(I_{4}, I_{5}\right)\right) \\
&= 320410393=4889 \cdot 65537 .
\end{aligned}
$$

Let q be a prime factor of the above gcd. We can verify $2^{q-1} \not \equiv 1\left(\bmod q^{2}\right)$. Therefore $q \neq p$ and for any $t \in A$ we have $Q_{53}^{I_{t}}(t) \not \equiv 0(\bmod p)$ for some $I_{i}(i=1, \ldots, 5)$. A list of results of factorization of gcd of $R_{h}\left(I_{i}, I_{j}\right)$ is appended below.

Let $S=\left\{k: k \neq 6,5 \leq k, \Phi_{k}(X)\right.$ divides $C_{h}^{I_{i}}(X)$ for some $h(3 \leq h$ $\leq 56)$ and $\left.I_{i}(1 \leq i \leq 5)\right\}$. Let $T_{k, l}$ be the resultant of $\Phi_{k}(X)$ and $\Phi_{l}(1-X)$. Let q be a prime factor of some $T_{k, l}, k, l \in S$. We can verify $2^{q-1} \not \equiv 1$ (mod $\left.q^{2}\right)$. Therefore $q \neq p$ and $T_{k, l} \not \equiv 0(\bmod p)$ for any $k, l \in S$. If there exists k $\in S$ and $t \in A$ such that $\Phi_{k}(t) \equiv 0(\bmod p)$, then we have $\Phi_{l}(1 /(1-t)) \not \equiv$ $0(\bmod p)$ and $\Phi_{l}(1-1 /(1-t)) \not \equiv 0(\bmod p)$ for any $l \in S$, because

$$
\begin{aligned}
& \Phi_{k}(t) \equiv 0 \Leftrightarrow \Phi_{l}(1-t) \not \equiv 0 \Leftrightarrow \Phi_{l}\left(\frac{1}{1-t}\right) \not \equiv 0 \\
& \Leftrightarrow \Phi_{k}\left(\frac{1}{t}\right) \equiv 0 \Leftrightarrow \Phi_{l}\left(1-\frac{1}{t}\right) \not \equiv 0 \Leftrightarrow \Phi_{l}\left(\frac{t}{t-1}\right) \not \equiv 0(\bmod p) .
\end{aligned}
$$

Therefore there exists $t \in A$ such that $\Phi_{k}(t) \not \equiv 0(\bmod p)$ and $\Phi_{k}(1-t)$ $\not \equiv 0(\bmod p)$ for any $k \in S$. Using (1), this is also valid for $k \in$ $\{1,2,3,4,6\}$. We can factorize $T_{k, l}$ easily (see the Table III of [2] for k, l ≤ 109).

Let $U=\{a-1 ; a$: prime, $a \leq 113\}$. Let $v_{k}(X)=\left(X^{k}-1\right) /\left(X^{6}-1\right)$ if $k \equiv 0(\bmod 6), v_{k}(X)=X^{k}-1$ otherwise. Let V_{k} be the resultant of $v_{k}(X)$ and $v_{k}(1-X)$. Let q be a prime factor of some $V_{k}, k \in U$. We can verify $2^{q-1} \not \equiv 1\left(\bmod q^{2}\right)$. Therefore $V_{k} \not \equiv 0(\bmod p)$ and for any $t \in A$ and for any prime $a \leq 113$, we have $t^{a-1} \not \equiv 1(\bmod p)$ or $(1-t)^{a-1} \not \equiv 1(\bmod p)$ because of (1).

Now we can use also in this case the theorem in §0. First of all there
exists $t \in A$ such that $\Phi_{k}(t) \not \equiv 0(\bmod p)$ and $\Phi_{k}(1-t) \not \equiv 0(\bmod p)$ for any $k \in S \cup\{1,2,3,4,6\}$. We fix $a \leq 113$. If $t^{a-1} \equiv 1(\bmod p)$ then we use $1-t$ instead of t. So there exists $t \in A$ such that $\Phi_{k}(t) \not \equiv 0(\bmod p)$ and $t^{a-1} \not \equiv 1(\bmod p)$. For this t and for any $h(3 \leq h \leq 56)$ there exists I_{i} such that $Q_{h}^{I_{i}}(t) \not \equiv 0(\bmod p)$. Hence we have $\operatorname{det} F_{h}^{I_{i}}(t) \not \equiv 0(\bmod p)$ and finally we get $a^{p-1} \equiv 1\left(\bmod p^{2}\right)$ for any $a \leq 113$. We can see some of large factors of V_{k} for $k \in U$, in Table III of [2].

We implemented the program for the above computation in FORTRAN on a HITAC S-820/80 at Computer Centre University of Tokyo. In case $h=53$, where $\varphi(h)$ is maximal for $3 \leq h \leq 56$, we have obtained five polynomials $Q_{53}^{I_{i}}(i=1, \ldots, 5)$ within about 120 seconds.

Table $\operatorname{gcd}\left(R_{h}\left(I_{1}, I_{2}\right), R_{h}\left(I_{2}, I_{3}\right), R_{h}\left(I_{4}, I_{5}\right), R_{h}\left(I_{5}, I_{1}\right)\right)(h \leq 44)$ $\operatorname{gcd}\left(R_{h}\left(I_{1}, I_{2}\right), R_{h}\left(I_{2}, I_{3}\right), R_{h}\left(I_{4}, I_{5}\right)\right)(h \geq 45)$
For $3 \leq h \leq 10, h=12, h=14$, we can find $Q_{h}^{I_{t}}(t)=1$ for some I_{i}.

h	factorization
11	$\left(5^{2}\right)^{2}$
13	$\left(2^{5} \cdot 3 \cdot 19^{2}\right)^{2}$
15	$\left(2^{2}\right)^{2}$
16	$\left(3^{2} \cdot 5\right)^{2}$
17	$\left(5^{3} \cdot 73\right)^{2}$
18	7^{2}
19	$\left(2^{13} \cdot 3^{5} \cdot 7\right)^{2}$
20	1
21	13^{4}
22	$\left(2^{5} \cdot 5^{2} \cdot 11 \cdot 31\right)^{2}$
23	$\left(2^{3} \cdot 3 \cdot 7 \cdot 11^{3}\right)^{4}$
24	$\left(3^{2} \cdot 13\right)^{2}$
25	2^{36}
26	$\left(2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 19^{2} \cdot 73 \cdot 769\right)^{2}$
27	1
28	$\left(2^{6} \cdot 3^{2} \cdot 5 \cdot 7^{3} \cdot 11^{2} \cdot 13^{2}\right)^{2}$
29	$\left(2^{62} \cdot 3^{3} \cdot 7^{6}\right)^{2}$
30	$(2 \cdot 5)^{4}$
31	$\left(2^{7} \cdot 3^{7} \cdot 5^{2}\right)^{4}$
32	$\left(3^{2} \cdot 17\right)^{6}$
33	$\left(2^{13} \cdot 5\right)^{2}$
34	$\left(2^{13} \cdot 3^{8} \cdot 5^{5} \cdot 19\right)^{2}$
35	$\left(2^{21} \cdot 3^{4} \cdot 13^{2}\right)^{2}$
36	$\left(7 \cdot 13^{3} \cdot 19 \cdot 31 \cdot 79\right)^{2}$
37	$\left(2^{14} \cdot 3^{29} \cdot 7^{6} \cdot 19^{8} \cdot 37^{2}\right)^{2}$
38	$\left(2^{4} \cdot 3^{14} \cdot 7 \cdot 19^{5} \cdot 73 \cdot 487\right)^{2}$
39	$\left(2^{6} \cdot 3^{14} \cdot 5^{3} \cdot 13^{2} \cdot 19^{2} \cdot 37^{2}\right)^{2}$
40	$\left(2^{2} \cdot 5^{2} \cdot 7 \cdot 41^{2}\right)^{2}$
41	$\left(2^{62} \cdot 3^{6} \cdot 5^{9} \cdot 11^{11}\right)^{2}$

h	factorization
42	$\left(2 \cdot 3^{8} \cdot 5^{6} \cdot 7^{5} \cdot 13^{4}\right)^{2}$
43	$\left(2^{17} \cdot 3^{6} \cdot 5^{2} \cdot 7^{10} \cdot 29^{2} \cdot 211^{2}\right)^{2}$
44	$\left(2^{8} \cdot 3^{8} \cdot 5^{4} \cdot 7 \cdot 11^{4} \cdot 23^{2} \cdot 29 \cdot 31^{6} \cdot 101 \cdot 641 \cdot 15641\right)^{2}$
45	$\left(2^{12} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11\right)^{4}$
46	$\left(2^{5} \cdot 3^{4} \cdot 11^{4} \cdot 23^{2} \cdot 67 \cdot 89 \cdot 37181\right)^{2}$
47	$\left(2^{12} \cdot 3 \cdot 5^{2} \cdot 11 \cdot 17 \cdot 23^{18} \cdot 139^{4}\right)^{2}$
48	$3^{2} \cdot 13$
49	$\left(2^{9} \cdot 3 \cdot 43^{2}\right)^{2}$
50	$\left(3^{4} \cdot 11^{3} \cdot 23 \cdot 29 \cdot 31 \cdot 47\right)^{2}$
51	$\left(2^{33} \cdot 3^{3} \cdot 5^{2}\right)^{4}$
52	$\left(2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 7^{3} \cdot 13^{4} \cdot 19^{2} \cdot 73 \cdot 769\right)^{2}$
53	$4889 \cdot 65537$
54	$(7 \cdot 17 \cdot 19 \cdot 37 \cdot 73 \cdot 271 \cdot 307)^{2}$
55	$\left(2^{33} \cdot 3^{6} \cdot 5^{9} \cdot 11^{11} \cdot 19\right)^{2}$
56	$\left(2^{8} \cdot 3^{3} \cdot 5^{5} \cdot 7 \cdot 11^{4} \cdot 13^{8} \cdot 43 \cdot 73\right)^{2}$

References

[1] Coppersmith, D.: Fermat's last theorem (case 1) and the Wieferich criterion. Math. Comp., 54, 895-902 (1990).
[2] Granville, A., and Monagan, B.: The first case of Fermat's last theorem is true for all prime exponents up to $714,591,416,091,389$. Trans. Amer. Math. Soc., 306, 329-359 (1987).
[3] Gunderson, N. G.: Derivation of criteria for the first case of Fermat's last theorem and the combination of these criteria to produce a new lower bound for the exponent. Thesis. Cornell University (1948).
[4] Lehmer, D. H.: On Fermat's quotient, base two. Math. Comp., 36, 289-290 (1981).
[5] Pollaczek, F.: Über den grössen Fermat'schen Satz. Wien. Berichte. Abt. IIa, 126, 45-59 (1917).
[6] Suzuki, J.: On the generalized Wieferich criteria for the first case of Fermat's last theorem (in preparation).

