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For any primitive Pythagorean triple (a, b, c), namely, for any relative-
b cly prime natural numbers a, b, c which satisfy a + with a even, we

define an elliptic curve E E(a, b, c) by the equation
() y =x(x-- a)(x- c),
which will be called the Pythagorean elliptic curve associated with the triple
(a, b, c). The curve E is known to be stable with discriminant A (abc/4)
and conductor N-1-[tlaoc/4P (cf. [1]). We denote by E(Q)the group of
rational points on the curve E, which is a finitely generated abelian group.
For simplicity we will adopt the term "a Pythagorean elliptic curve" for
E(Q). In the present paper, we are going to prove there exist infinitely many
Pythagorean elliptic curves E(Q) whose rank is positive.

First of all, we note the following:
Proposition 1. Let T be the torsion subgroup of E(Q). Then we have

(2) T Z/2Z Z/4Z.
For the proof, see [2], pp. 96-98.
We paraphrase having a positive rank in the following way:
Proposition 2. Let r denote the rank of E(Q). Then we have the inequality

r >_ 1 if and only if there exists a rational number x such that
2(3) x-- [--],x-- a [::], x-- c [.

Here, and in what follows, V- represents a square of any rational number different
from O.

Proof The rank r is positive if and only if the rank of the subgroup
2E() is positive. On the other hand, Proposition 1 states that the torsion
subgroup of 2E() consists of the point at infinity O and the point P = (c,
0). If 0 (x, y) is a torsion-free point on 2E(), then x satisfies (3) (cf.
[3], p. 47, or [2], p. 37). Since the point is not a torsion, none of these [-]’s
are 0.

Conversely, suppose that a rational number x different from 0 satisfies

(3). Then the point 0 (x, y), where y v/x(x- a) (x- c2) 4:0 lies on
2E(Q) and is torsion-free. Hence we have r >_ 1. Q.E.D.

Since x is a square in (3), it can be expressed as x itself. We then
2

write the second and the third [--] as y and z, respectively. Then the condi-
tion (3) is equivalent to the condition that there exist rational numbers x, y,
z different from 0 which satisfy

2 2x =a +y =c +z.
Equivalently, that there exist integers k, x, y, z different from 0 which
satisfy
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(4) x (kc) + z.
Lemma 3. The complete solution in integers of the Diophantine equation

2 2 2x --y =z
is given by
2x= UX + VY, 2z- UX- VY, 2w= UY+ VX, 2y- UY- VX,

where U, V, X, Y are arbitrary integers which make x, y, z, w integral.

The proof is straightforward (cf. [4], p. 15).
Applying Lemma 3 to (4), we.have

(5) 2ka- UX + VY, 2kc- UX- VY
(6) 2y- UY- VX, 2z-- UY + VX.

2
Since c-+- a, c- a are both square numbers, we express them as u v re-

spectively:
(7) c+a=u,c--a=v.
Here, since a is supposed to be even, we have u v 1 (mod 2).

Then, from (5), we obtain
ku= UX, kv VY.

Since we have
4(ka) + 4y = (UX+ VY) + (UY- VX)= (U + V)(X + Y),

substituting U
it is necessary and sufficient that the equation
(8) (uY
has solutions X, Y in integers different from 0 satisfying X" Y u’v,

which corresponds to the condition that none of the [’s in (3) is equal to 0.
On the other hand, since the torsion subgroup of the rational points of

the elliptic curve defined by the equation
y =x(x+ 1)(x+ (v/u))

is isomorphic to the group Z/2Z@ Z/4Z (cf. [2], p. 97), the condition that
(8) has nonzero solutions in integers is equivalent to the condition that

X + Y= 7-], u4Y2 -I- v4X2= [--]
has nonzero solutions in integers. The last equation cannot have such solu-
tions X, Y as X" Y= u’v, because it holds that u + v= 2c :/= [:], since
c is odd. We thus completed the proof of the following:

Proposition 4. Let r be the rank of E(Q). Then r I if and only if the
system of equations

z yZ y4X2 4y(9) x + =V, +u =[::]
has solutions in integers different from O.

Next, we study how to generate Pythagorean elliptic curves with posi-
tive rank. For the purpose we first give a solution x, y to the first equation
of (9), and then find u, v for which the second equation of (9) holds.

Any solution to the first equation of (9) is given by
2x 2pq, y p q

where p, q are arbitrary integers with odd parity. Putting n pq(p q),
we get

(u (p q) ) 4

from the second equation. If this equation has a solution (u, v) with u, v
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odd, we can determine a, c by (7). Then the elliptic curve defined by (1)
with these a, c has a positive rank. In other words, it is enough that the
equation
(10) Cn" V2= U4+ 4n
has a rational point (U, V) with U =g= -4-(pz- q) and with U 2-free, that
is to say, the numerator and the denominator are both odd when U is ex-

pressed in the lowest term.
The curve Cn is birationally equivalent to

En y2 X l/ X

by the transformation
x (V+ U)/2, y U(V+ U)/2;

V= 2x- (y/x), U= y/x.
It is necessary and sufficient for U to be 2-free that it holds that re(x)
vz(y). Here, and in what follows, v(x) denotes the order of x at 2.

Incidentally, the elliptic curve En is known to be related to the con-
gruent number problem (cf. [3]).

E.(Q) has the point

Po (Xo, Yo) (Pz(P2-- qZ), PZ(P qZ)2)
which is torsion-free. We note that Xo/Yo is 2-free. Since p and q have odd
parity, we assume that p is odd. When we deal with E.(Q), this assumption
does not damage generality.

For a point P (x, y) we let t t(P) x/y and s s(P) 1/y.
Then we have the following result:

Proposition 5. Let C be the set of rational points (x, y) on the curve E
for which v(s) > 0 (and hence v(t) 0), plus the point at infinity O. Then
the set C is a subgroup of En(Q), and the map

C--,Z/8Z, P= (x,y) t(P) x/y
is a homomorphism, namely, if P1, Pz C, then
(11) t(P + Pz) =- t(P) + t(P) (mod 8).

Proof Since
x 1

t
Y

and s -,
2

(2)
Let P1

n x becomes
S t3m n2ts2.

(t, s) and P2 (t2, s2) be two rational points on the curve
(12). And let cr be the slope of the straight line connecting P with P2; if

P P2, let c denote the slope of the tangent line to the curve (12) at P1.
Then we find

2 2t + tt + t2 n s2

I + nt (s + s)
Let P (t3, s) be the third point of intersection of the line s t +

with the curve (12): fl s ate. Then we get

2naflt + t + t=
1
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cf. [6], pp. 50-55 for the detailed calculation.
Since v.(a) and v.(fl) are nonnegative and since n is even, we see

t + t. - t 0 (mod 8),
from which follows the assertion of the proposition. Q.E.D.

Repeated application of the congruence (11) gives the formula
t(mP) --rot(P) (mod 8)

for a point P C. On the other hand, the point P0 defined before is in the
group C, because p is odd. Hence for any odd positive integer m( 1) the
point mPo (x, y) has the property that x/y is 2-free. From the preceding
consideration we know that this implies the existence of an infinite number
of Pythagorean elliptic curves whose rank is positive.
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