52. On Pythagorean Elliptic Curves

By Norio ADACHI
School of Science and Engineering, Waseda University (Communicated by Shokichi Iyanaga, M. J. A., Sept. 12, 1994)

For any primitive Pythagorean triple (a, b, c), namely, for any relatively prime natural numbers a, b, c which satisfy $a^{2}+b^{2}=c^{2}$ with a even, we define an elliptic curve $E=E(a, b, c)$ by the equation

$$
\begin{equation*}
y^{2}=x\left(x-a^{2}\right)\left(x-c^{2}\right) \tag{1}
\end{equation*}
$$

which will be called the Pythagorean elliptic curve associated with the triple (a, b, c). The curve E is known to be stable with discriminant $\Delta=(a b c / 4)^{4}$ and conductor $N=\Pi_{p \mid a b c / 4} p$ (cf. [1]). We denote by $E(\boldsymbol{Q})$ the group of rational points on the curve E, which is a finitely generated abelian group. For simplicity we will adopt the term "a Pythagorean elliptic curve" for $E(\boldsymbol{Q})$. In the present paper, we are going to prove there exist infinitely many Pythagorean elliptic curves $E(\boldsymbol{Q})$ whose rank is positive.

First of all, we note the following:
Proposition 1. Let T be the torsion subgroup of $E(\boldsymbol{Q})$. Then we have $T \simeq \boldsymbol{Z} / 2 \boldsymbol{Z} \oplus \boldsymbol{Z} / 4 \boldsymbol{Z}$.
For the proof, see [2], pp. 96-98.
We paraphrase having a positive rank in the following way:
Proposition 2. Let \boldsymbol{r} denote the rank of $\boldsymbol{E}(\boldsymbol{Q})$. Then we have the inequality $r \geq 1$ if and only if there exists a rational number x such that

$$
\begin{equation*}
x=\square, x-a^{2}=\square, x-c^{2}=\square \tag{3}
\end{equation*}
$$

Here, and in what follows, \square represents a square of any rational number different from 0 .

Proof. The rank r is positive if and only if the rank of the subgroup $2 E(\boldsymbol{Q})$ is positive. On the other hand, Proposition 1 states that the torsion subgroup of $2 E(\boldsymbol{Q})$ consists of the point at infinity O and the point $P=\left(c^{2}\right.$, 0). If $Q=(x, y)$ is a torsion-free point on $2 E(\boldsymbol{Q})$, then x satisfies (3) (cf. [3], p. 47, or [2], p. 37). Since the point Q is not a torsion, none of these \square 's are 0 .

Conversely, suppose that a rational number x different from 0 satisfies (3). Then the point $Q=(x, y)$, where $y=\sqrt{x\left(x-a^{2}\right)\left(x-c^{2}\right)} \neq 0$ lies on $2 E(\boldsymbol{Q})$ and is torsion-free. Hence we have $r \geq 1$.
Q.E.D.

Since x is a square in (3), it can be expressed as x^{2} itself. We then write the second and the third \square as y^{2} and z^{2}, respectively. Then the condition (3) is equivalent to the condition that there exist rational numbers x, y, z different from 0 which satisfy

$$
x^{2}=a^{2}+y^{2}=c^{2}+z^{2}
$$

Equivalently, that there exist integers k, x, y, z different from 0 which satisfy

$$
\begin{equation*}
x^{2}=(k a)^{2}+y^{2}=(k c)^{2}+z^{2} \tag{4}
\end{equation*}
$$

Lemma 3. The complete solution in integers of the Diophantine equation

$$
x^{2}+y^{2}=z^{2}+w^{2}
$$

is given by
$2 x=U X+V Y, 2 z=U X-V Y, 2 w=U Y+V X, 2 y=U Y-V X$, where U, V, X, Y are arbitrary integers which make x, y, z, w integral.

The proof is straightforward (cf. [4], p. 15).
Applying Lemma 3 to (4), we have

$$
\begin{gather*}
2 k a=U X+V Y, 2 k c=U X-V Y \tag{5}\\
2 y=U Y-V X, 2 z=U Y+V X
\end{gather*}
$$

Since $c+a, c-a$ are both square numbers, we express them as u^{2}, v^{2}, respectively:

$$
\begin{equation*}
c+a=u^{2}, c-a=v^{2} \tag{7}
\end{equation*}
$$

Here, since a is supposed to be even, we have $u \equiv v \equiv 1(\bmod 2)$.
Then, from (5), we obtain

$$
k u^{2}=U X, k v^{2}=-V Y
$$

Since we have

$$
\square=4(k a)^{2}+4 y^{2}=(U X+V Y)^{2}+(U Y-V X)^{2}=\left(U^{2}+V^{2}\right)\left(X^{2}+Y^{2}\right)
$$

$$
\text { substituting } U=k u^{2} / X, V=-k v^{2} / Y \text {, we see that in order to have } r \geq 1
$$ it is necessary and sufficient that the equation

$$
\begin{equation*}
\left(u^{4} Y^{2}+v^{4} X^{2}\right)\left(X^{2}+Y^{2}\right)=\square \tag{8}
\end{equation*}
$$

has solutions X, Y in integers different from 0 satisfying $X: Y \neq u: v$, which corresponds to the condition that none of the \square 's in (3) is equal to 0 .

On the other hand, since the torsion subgroup of the rational points of the elliptic curve defined by the equation

$$
y^{2}=x(x+1)\left(x+(v / u)^{4}\right)
$$

is isomorphic to the group $\boldsymbol{Z} / 2 \boldsymbol{Z} \oplus \boldsymbol{Z} / 4 \boldsymbol{Z}$ (cf. [2], p. 97), the condition that (8) has nonzero solutions in integers is equivalent to the condition that

$$
X^{2}+Y^{2}=\square, \quad u^{4} Y^{2}+v^{4} X^{2}=\square
$$

has nonzero solutions in integers. The last equation cannot have such solutions X, Y as $X: Y=u: v$, because it holds that $u^{2}+v^{2}=2 c \neq \square$, since c is odd. We thus completed the proof of the following:

Proposition 4. Let r be the rank of $E(\boldsymbol{Q})$. Then $r \geq 1$ if and only if the system of equations

$$
\begin{equation*}
x^{2}+y^{2}=\square, \quad v^{4} x^{2}+u^{4} y^{2}=\square \tag{9}
\end{equation*}
$$

has solutions in integers different from 0 .
Next, we study how to generate Pythagorean elliptic curves with positive rank. For the purpose we first give a solution x, y to the first equation of (9), and then find u, v for which the second equation of (9) holds.

Any solution to the first equation of (9) is given by

$$
x=2 p q, y=p^{2}-q^{2},
$$

where p, q are arbitrary integers with odd parity. Putting $n=p q\left(p^{2}-q^{2}\right)$, we get

$$
\left(u\left(p^{2}-q^{2}\right)\right)^{4}+4 n^{2} v^{4}=\square
$$

from the second equation. If this equation has a solution (u, v) with u, v
odd, we can determine a, c by (7). Then the elliptic curve defined by (1) with these a, c has a positive rank. In other words, it is enough that the equation

$$
\begin{equation*}
C_{n}: V^{2}=U^{4}+4 n^{2} \tag{10}
\end{equation*}
$$

has a rational point (U, V) with $U \neq \pm\left(p^{2}-q^{2}\right)$ and with $U 2$-free, that is to say, the numerator and the denominator are both odd when U is expressed in the lowest term.

The curve C_{n} is birationally equivalent to

$$
E_{n}: y^{2}=x^{3}-n^{2} x
$$

by the transformation

$$
\begin{aligned}
x= & \left(V+U^{2}\right) / 2, y=U\left(V+U^{2}\right) / 2 \\
& V=2 x-(y / x)^{2}, U=y / x
\end{aligned}
$$

It is necessary and sufficient for U to be 2 -free that it holds that $v_{2}(x)=$ $v_{2}(y)$. Here, and in what follows, $v_{2}(x)$ denotes the order of x at 2 .

Incidentally, the elliptic curve E_{n} is known to be related to the congruent number problem (cf. [3]).
$E_{n}(\boldsymbol{Q})$ has the point

$$
P_{0}=\left(x_{0}, y_{0}\right)=\left(p^{2}\left(p^{2}-q^{2}\right), p^{2}\left(p^{2}-q^{2}\right)^{2}\right)
$$

which is torsion-free. We note that x_{0} / y_{0} is 2 -free. Since p and q have odd parity, we assume that p is odd. When we deal with $E_{n}(\boldsymbol{Q})$, this assumption does not damage generality.

For a point $P=(x, y)$ we let $t=t(P)=x / y$ and $s=s(P)=1 / y$. Then we have the following result:

Proposition 5. Let C be the set of rational points (x, y) on the curve E_{n} for which $v_{2}(s) \geq 0$ (and hence $v_{2}(t) \geq 0$), plus the point at infinity O. Then the set C is a subgroup of $E_{n}(\boldsymbol{Q})$, and the map

$$
C \rightarrow \boldsymbol{Z} / 8 \boldsymbol{Z}, \quad P=(x, y) \mapsto t(P)=x / y
$$

is a homomorphism, namely, if $P_{1}, P_{2} \in C$, then

$$
\begin{equation*}
t\left(P_{1}+P_{2}\right) \equiv t\left(P_{1}\right)+t\left(P_{2}\right)(\bmod 8) \tag{11}
\end{equation*}
$$

Proof. Since

$$
t=\frac{x}{y} \text { and } s=\frac{1}{y},
$$

$y^{2}=x^{3}-n^{2} x$ becomes

$$
\begin{equation*}
s=t^{3}-n^{2} t s^{2} \tag{12}
\end{equation*}
$$

Let $P_{1}=\left(t_{1}, s_{1}\right)$ and $P_{2}=\left(t_{2}, s_{2}\right)$ be two rational points on the curve (12). And let α be the slope of the straight line connecting P_{1} with P_{2}; if $P_{1}=P_{2}$, let α denote the slope of the tangent line to the curve (12) at P_{1}. Then we find

$$
\alpha=\frac{t_{1}^{2}+t_{1} t_{2}+t_{2}^{2}-n^{2} s_{2}^{2}}{1+n^{2} t_{1}\left(s_{1}+s_{2}\right)}
$$

Let $P_{3}=\left(t_{3}, s_{3}\right)$ be the third point of intersection of the line $s=\alpha t+$ β with the curve (12): $\beta=s_{1}-\alpha t_{1}$. Then we get

$$
t_{1}+t_{2}+t_{3}=\frac{2 n^{2} \alpha \beta}{1-n^{2} \alpha^{2}}
$$

cf. [6], pp. 50-55 for the detailed calculation.
Since $v_{2}(\alpha)$ and $v_{2}(\beta)$ are nonnegative and since n is even, we see
$t_{1}+t_{2}+t_{3} \equiv 0(\bmod 8)$,
from which follows the assertion of the proposition.
Q.E.D.

Repeated application of the congruence (11) gives the formula
$t(m P) \equiv m t(P)(\bmod 8)$
for a point $P \in C$. On the other hand, the point P_{0} defined before is in the group C, because p is odd. Hence for any odd positive integer $m(\neq 1)$ the point $m P_{0}=(x, y)$ has the property that x / y is 2 -free. From the preceding consideration we know that this implies the existence of an infinite number of Pythagorean elliptic curves whose rank is positive.

References

[1] Frey, G.: Links between stable elliptic curves and certain diophantine equations. Annales Universitatis Saraviensis, Series Mathematicae, 1, 1-40 (1986).
[2] Hüsemôller, D.: Elliptic Curves. GTM 111, Springer (1987).
[3] Koblitz, N.: Introduction to Elliptic Curves and Modular Forms. GTM 97, Springer (1984).
[4] Mordell, L. J.: Diophantine Equations. Academic Press (1969).
[5] Silverman, J.: The Arithmetic of Elliptic Curves. GTM 106, Springer (1986).
[6] Silverman, J., and Tate, J.: Rational Points on Elliptic Curves. UTM, Springer (1992).

