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In this note, we announce some further results we have obtained as con-
tinuation of our previous papers [3], [4] on the formal power series attached
to local densities of quadratic forms over the p-adic field. The power series
we are treating now are not the same as those considered in [3], [4]. But the
main results of [3], [4] can be deduced from the results of the present paper
as explained in Remark 1 below. Concerning the matrices S and T of the
quadratic forms, we suppose now only that S is even integral unimodular
and T is diagonal with diagonal components satisfying certain conditions on

ordp. (Notations S, T and others are explained below.) This is a special case,
but important special case of our present problem. Details will appear else-
where.

Let p be an arbitrary prime number. For non-degenerate symmetric
matrices S and T of degree m and n, respectively, with entries in the ring Zp
of p-adic integers, we define the local density cry(T, S)and the primitive
local density/3(T, S) by

cr (T, S) lim p-m"+""+)/) # /(T, S),
e--

and

fl(T, S) lim p-m,,+,,,+)/) # (T, S),

respectively, where
,Ne(T, S) (f( M,,,(Z,)/PMm,,,(Z) XSX =- T mod p}

and

e(T, S) { le(T, S) X is primitive).
Let A be an even integral unimodular matrix with entries in Z. That is, A is
a symmetric unimodular matrix with entries in Z whose diagonal compo-
nents belong to 2Zp. Then there exists a non-negative integer r such that A
is equivalent, over Z, to

diagH,...,H, U),

where we write diag(X, y)._(X O)0 Y for two square matrices X, Y, and

1 0
and U is an anisotropic even integral unimodular matrix of

degree not greater than 2. Here we make the convention that diag(H,... ,H,
U) U or diag(H,... ,H) according as r 0 or deg U 0. We note
that r is the Witt index of A, which will be denoted by r(N). Then we define
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a matrix A()
by

r--k

A() diagiH,...,H, U).
This A(k)

is uniquely determined only by A up to equivalence over Zp. Furth-
er for each integers i, j, k such that 1 <_ k <_ i, put

7(i, j, k) (-- 1) k E p(i-i,)(+,>...
Oi<..<ii-1

Then our main result is
Theorem 1. Let the notation and the assumptions be as above. Put ep 1

or 0 according as p 2 or not, and mo min(t- 1, r(A) ). Let B diag(b,
,bt) and Bz diag(bt+t,... ,b,) with b g \ {0), and e be an integer

such that e >_ ord(b)/2 ord(b)/2 + mo + 1 + e for j t + 1,...,n,
k 1,...,t. Then we have

o
a(diag(pZB, Bz), A) 7(t, m + n + 1, )ap (diag(pZ(->Bt, B0, A)

i--1

1 --p-m---;--;i+ (0o+, A)% (B, A(+)),

where Omo+l is the zero matrix of mo + 1. Here we make the convention that the
second term on the righ-hand side of the above equation is 0 if r(A) mo, and
that we have o (Be, A(m+)) 1 if n t.

NOw for. non-degenerate symmetric matrices B,...,Bs, and A with
entries in Z we define a define a formal power series R((B1,... ,Bs),
A x,.. .,xs) by

R ((B,... ,Bs), A x,... ,Xs)
el es

% (diag(p’ Bt,... ,pes Bs), A)xt ...Xs
et >...es:>O

Then by Theorem 1 we obtain easily
Theorem 2. Let A be as in Theorem 1, and B- diag(b,,+..+,,_,+,

bn,+...+n,) (i--- 1,...,s) with b Z \ {0}. For k- 1 ,s put rn min
(nl + + n--1, r(A)). Assume that [ord(b)/2] >_ [ordp(b,)/2] for
any j" >_ n + 1 and j <- n. Then we have

m

H (1 p(nl-i)(-m+’+i+)x)R((B1, Be,...,Bs), A;x xs)
i=O

m+e, x’ ?’(nl, m + n + 1, i--j)R((diag(pB, B), Ba,...,Bs),
i=O j=0

A zz2, :ca,... ,Xs)
m+e 2+2 x E r(n, m + n + 1, i- j)R((diag(p’+B, B),
i=O 1=0

B,. ,Bs), A xx, xa,. ,Xs)

+ 1
R((B,...,Bs),

---o 1 :-+i;-i (O/t A) x1 X

A(m+).
xx2 x3, ,Xs)

Here we make the convention that R((diag(pB1, B2), Ba,.. ,Bs), A xx., x3,

,Xs) o (pkB, A) and R((B, Bs), A(m+l) xx,...,Xs)) 1 if s- 1.
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Using Theorem 2, we can prove the following theorem by induction on s.
Theorem 3. Assume that [ordp(bj)/2] -> [ordp(bj.)/2] for any j’ >-

z + + ni+ 1 and j <-- nl + + ni and i= 1, s-- 1. Then
R((B,...,Bs) A x,... ,Ws)) is a rational function of x,...,a s over the field
Q of rational numbers. Further its denominator is

II (1 p"+’"+""--+"++(x...x) ) II (1 xl...x) m’,
k=l i=0 k=l

where m’g 1 or 0 according as r(A) >_ n + + n or not. In particular

if m >- 2n d- 2, the denominator of the above power series is
s ni+...+n-
II II (1 p("’+"’+"-)(-m+"++t) (X...Xg)Z) lfI (1 X...X).
k=l i=0 k=l

Remark 1. In [1], for non-degenerate symmetric matrices BI,...,Bs,

and A with entries in Z, B(Scherer and Sato defined a formal power series

Q((B,. Bs), A Xl,. ,Xs) by

el esQ((B,. .,Bs), A x,. .,Xs) Z %(diag(p*‘Bt,...,pBs), A)x .Xs
el,...,es----O

and showed that it is a rational function of x,...,xs over Q. On the other
hand, we define a formal power series P((BI,..., Bs), A Xl,..., x) by

P((B ,Bs) A x, ,Xs) %(diag(p’ B, .,p" Bs) A)x: oooX$
el,...,es=O

which is a special case of the one defined in [3]. As stated in [3] and [4], the
above two types of power series are related with each other. In [4], we
obtained an explicit form of the denominator of P((B,..., Bs), A x,...,
Xs), and therefore, of Q((Bt,..., Bs), A ;x,..., Xs) when n Us
1 and p 4= 2. On the other hand, as easily seen, Q((B,..., Bs), A ;x,...,
xs) can be expressed as a Q[x,...,Xs]-linear combination of several power
series defined in this note. For example, if bl, bz Z \ {0}, we have
Q((b, b0, A ;x, x0 R((bl, b0, A ;xt, x) + R((bz, b), A x, x)

R(diag(b, bz), A ;xx).
Thus, by Theorem 3, we can also obtain an explicit form of the denominator
of Q((B,..., Bs), A x, Xs), and therefore of P( (B, Bs), A xt,

xs) when A is even integral unimodular and B,..., Bs are diagonal,

which will appear elsewhere.
Remark 2. By the above theorem we see that the denominator of

R(B,A;x) is
min(n-l,r(A)

II (1 p(n-i)(-m+n+i+.)X) (I--x) m’,
i0

where m’ 1 or 0 according as r(A) >_ or not. This is a refinement of
the result of [2], [61.

Remark 3. Theorem 3 can be generalized to the case where A is an
arbitrary non-degenerate matrix if p 4= 2.

Remark 4. In the above results, the condition that B are diagonal is
not necessary if p 4= 2.

Now we show that our result on the denominator of the above power
series is best possible by giving a simple example. Let p 4= 2, m 3, n 2,
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and n n 1. Let A be a unimodular symmetric matrix of degree 3 with
entries in Zp and bl, bz be elements of the group Z* of p-adic units. We
assume that z(bldetA)= 1 and Z(--bzdtA)=- 1, where Z is the
quadratic residue symbol defined modulo p. Then by [5] we have

2(1 p-Z) (1 + 2xxz + xxz)
R ((b, bz), A x, xz) 2(1 x) (1 xxz ) (1 px xz

Thus the reduced denominator of R((b, bz),A;x,xz) is (1-x)
(1 22 22xlx2) (1 pxlxz). We note that r(A) 1, and therefore rnl 0 and
rn 1. Thus Theorem 3 is best possible.

Acknowledgement. The author would like to thank the referee for
many valuable comments.

References

1 S. B0cherer and F. Sato: Rationality of certain formal power series related to loc-
al densities. Comment. Math. Univ. St. Paul., 36, 53-86 (1987).

2 Y. Hironaka: On a denominator of Kitaoka’s formal power series attached to local
densities, ibid., 37, 159-171 (1988).

[3] H. Katsurada: Generalized Igusa local zeta functions and local densities of

quadratic forms. T0hoku Math. J., 44, 211-218 (1992).
4 : A certain formal power series of several variables attached to local densi-

ties of quadratic forms. (to appear in J. Number Theory).
[5] Y. Kitaoka: A note on local densities of quadratic forms. Nagoya Math. J., 92,

145-152 (1983).
[6] : Local densities of quadratic forms and Fourier coefficients of Eisenstein

series, ibid., 103, 149-160 (1986).




