48. A Certain Formal Power Series Attached to Local Densities of Quadratic Forms. II

By Hidenori Katsurada
Muroran Institute of Technology
(Communicated by Shokichi IYANAGA, M. J. A., June 7, 1994)

In this note, we announce some further results we have obtained as continuation of our previous papers [3], [4] on the formal power series attached to local densities of quadratic forms over the p-adic field. The power series we are treating now are not the same as those considered in [3], [4]. But the main results of [3], [4] can be deduced from the results of the present paper as explained in Remark 1 below. Concerning the matrices S and T of the quadratic forms, we suppose now only that S is even integral unimodular and T is diagonal with diagonal components satisfying certain conditions on ord_{p}. (Notations S, T and others are explained below.) This is a special case, but important special case of our present problem. Details will appear elsewhere.

Let p be an arbitrary prime number. For non-degenerate symmetric matrices S and T of degree m and n, respectively, with entries in the ring \boldsymbol{Z}_{p} of p-adic integers, we define the local density $\alpha_{p}(T, S)$ and the primitive local density $\beta_{p}(T, S)$ by

$$
\alpha_{p}(T, S)=\lim _{e \rightarrow \infty} p^{(-m n+n(n+1) / 2) e} \# \mathscr{A}_{e}(T, S)
$$

and

$$
\beta_{p}(T, S)=\lim _{e \rightarrow \infty} p^{(-m n+n(n+1) / 2) e} \# \mathscr{B}_{e}(T, S),
$$

respectively, where

$$
\mathscr{A}_{e}(T, S)=\left\{\bar{X} \in M_{m, n}\left(\boldsymbol{Z}_{p}\right) / p^{e} M_{m, n}\left(\boldsymbol{Z}_{p}\right) ;^{t} X S X \equiv T \bmod p^{e}\right\}
$$

and

$$
\mathscr{B}_{e}(T, S)=\left\{\bar{X} \in \mathscr{A}_{e}(T, S) ; X \text { is primitive }\right\}
$$

Let A be an even integral unimodular matrix with entries in \boldsymbol{Z}_{p}. That is, A is a symmetric unimodular matrix with entries in \boldsymbol{Z}_{p} whose diagonal components belong to $2 \boldsymbol{Z}_{p}$. Then there exists a non-negative integer r such that A is equivalent, over \boldsymbol{Z}_{p}, to

$$
\operatorname{diag} \overbrace{(H, \ldots, H}^{r}, U),
$$

where we write $\operatorname{diag}(X, Y)=\left(\begin{array}{cc}X & 0 \\ 0 & Y\end{array}\right)$ for two square matrices X, Y, and $H=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, and U is an anisotropic even integral unimodular matrix of degree not greater than 2 . Here we make the convention that $\operatorname{diag}(H, \ldots, H$, $U)=U$ or $=\operatorname{diag}(H, \ldots, H)$ according as $r=0$ or $\operatorname{deg} U=0$. We note that r is the Witt index of A, which will be denoted by $r(A)$. Then we define
a matrix $A^{(k)}$ by

$$
A^{(k)}=\operatorname{diag} \overbrace{(H, \ldots, H}^{r-k}, U) .
$$

This $A^{(k)}$ is uniquely determined only by A up to equivalence over \boldsymbol{Z}_{p}. Further for each integers i, j, k such that $1 \leq k \leq i$, put

$$
r(i, j, k)=(-1)^{k} \sum_{0 \leq i_{1}<\ldots<i_{k} \leq i-1} p^{\left(i-i_{1}\right)\left(j+i_{1}\right)} \cdots p^{\left(i-i_{k}\right)\left(j+i_{k}\right)}
$$

Then our main result is
Theorem 1. Let the notation and the assumptions be as above. Put $e_{p}=1$ or 0 according as $p=2$ or not, and $m_{0}=\min (t-1, r(A))$. Let $B_{1}=\operatorname{diag}\left(b_{1}\right.$, $\left.\ldots, b_{t}\right)$ and $B_{2}=\operatorname{diag}\left(b_{t+1}, \ldots, b_{n}\right)$ with $b_{i} \in \boldsymbol{Z}_{p} \backslash\{0\}$, and e be an integer such that $e \geq \operatorname{ord}_{p}\left(b_{j}\right) / 2-\operatorname{ord}_{p}\left(b_{k}\right) / 2+m_{0}+1+e_{p}$ for $j=t+1, \ldots, n$, $k=1, \ldots, t$. Then we have

$$
\begin{gathered}
\alpha_{p}\left(\operatorname{diag}\left(p^{2 e} B_{1}, B_{2}\right), A\right)=-\sum_{i=1}^{m_{0}} \gamma(t,-m+n+1, i) \alpha_{p}\left(\operatorname{diag}\left(p^{2(e-i)} B_{1}, B_{2}\right), A\right) \\
+\left(\prod_{i=0}^{m_{0}} \frac{1-p^{(t-i)(-m+n+i+1)}}{1-p^{-m+n+i+1}}\right) \beta_{p}\left(O_{m_{0}+1}, A\right) \alpha_{p}\left(B_{2}, A^{\left(m_{0}+1\right)}\right)
\end{gathered}
$$

where $O_{m_{0}+1}$ is the zero matrix of $m_{0}+1$. Here we make the convention that the second term on the righ-hand side of the above equation is 0 if $r(A)=m_{0}$, and that we have $\alpha_{p}\left(B_{2}, A^{\left(m_{0}+1\right)}\right)=1$ if $n=t$.

Now for non-degenerate symmetric matrices B_{1}, \ldots, B_{s}, and A with entries in \boldsymbol{Z}_{p} we define a define a formal power series $R\left(\left(B_{1}, \ldots, B_{s}\right)\right.$, $\left.A ; x_{1}, \ldots, x_{s}\right)$ by

$$
\begin{aligned}
R\left(\left(B_{1}, \ldots, B_{s}\right), A ;\right. & \left.x_{1}, \ldots, x_{s}\right) \\
& =\sum_{\substack{e_{1} \geq \ldots \geq e_{s} \geq 0}} \alpha_{p}\left(\operatorname{diag}\left(p^{e_{1}} B_{1}, \ldots, p^{e_{s}} B_{s}\right), A\right) x_{1}^{e_{1}} \ldots x_{s}^{e_{s}} .
\end{aligned}
$$

Then by Theorem 1 we obtain easily
Theorem 2. Let A be as in Theorem 1, and $B_{i}=\operatorname{diag}\left(b_{n_{1}+. .+n_{i-1}+1}, \ldots\right.$, $\left.b_{n_{1}+\ldots+n_{i}}\right)(i=1, \ldots, s)$ with $b_{j} \in \boldsymbol{Z}_{p} \backslash\{0\}$. For $k=1, \ldots, s$ put $m_{k}=\mathrm{min}$ $\left(n_{1}+\ldots+n_{k}-1, r(A)\right)$. Assume that $\left[\operatorname{ord}_{p}\left(b_{j}\right) / 2\right] \geq\left[\operatorname{ord}_{p}\left(b_{j^{\prime}}\right) / 2\right]$ for any $j^{\prime} \geq n_{1}+1$ and $j \leq n_{1}$. Then we have

$$
\begin{gathered}
\prod_{i=0}^{m_{1}}\left(1-p^{\left(n_{1}-i\right)(-m+n+i+1)} x_{1}^{2}\right) R\left(\left(B_{1}, B_{2}, \ldots, B_{s}\right), A ; x_{1}, \ldots, x_{s}\right) \\
=\sum_{i=0}^{m_{1}+e_{p}} x_{1}^{2_{i}} \sum_{j=0}^{i} \gamma\left(n_{1},-m+n+1, i-j\right) R\left(\left(\operatorname{diag}\left(p^{2_{j}} B_{1}, B_{2}\right), B_{3}, \ldots, B_{s}\right),\right. \\
\left.A ; x_{1} x_{2}, x_{3}, \ldots, x_{s}\right) \\
=\sum_{i=0}^{m_{1}+e_{p}} x_{1}^{2_{t}+1} \sum_{j=0}^{i} \gamma\left(n_{1},-m+n+1, i-j\right) R\left(\left(\operatorname{diag}\left(p^{2_{j}+1} B_{1}, B_{2}\right),\right.\right. \\
\left.\left.B_{3}, \ldots, B_{s}\right), A ; x_{1} x_{2}, x_{3}, \ldots, x_{s}\right) \\
+\left(\prod_{i=0}^{m_{1}} \frac{1-p^{\left(n_{1}-i\right)(-m+n+i+1)}}{1-p^{-m+n+i+1}}\right) \beta_{p}\left(O_{m_{1}+1}, A\right) \frac{x_{1}^{2 m_{1}+2+2 e_{p}}}{1-x_{1}} R\left(\left(B_{2}, \ldots, B_{s}\right),\right. \\
\left.A^{\left(m_{1}+1\right)} ; x_{1} x_{2}, x_{3}, \ldots, x_{s}\right) .
\end{gathered}
$$

Here we make the convention that $R\left(\left(\operatorname{diag}\left(p^{k} B_{1}, B_{2}\right), B_{3}, \ldots, B_{s}\right), A ; x_{1} x_{2}, x_{3}\right.$, $\left.\ldots, x_{s}\right)=\alpha_{p}\left(p^{k} B_{1}, A\right)$ and $\left.R\left(\left(B_{2}, \ldots, B_{s}\right), A^{\left(m_{1}+1\right)} ; x_{1} x_{2}, \ldots, x_{s}\right)\right)=1$ if $s=1$.

Using Theorem 2, we can prove the following theorem by induction on s .
Theorem 3. Assume that $\left[\operatorname{ord}_{p}\left(b_{j}\right) / 2\right] \geq\left[\operatorname{ord}_{p}\left(b_{j^{\prime}}\right) / 2\right]$ for any $j^{\prime} \geq$ $n_{1}+\ldots+n_{i}+1$ and $j \leq n_{1}+\ldots+n_{i}$ and $i=1, \ldots, s-1$. Then $\left.R\left(\left(B_{1}, \ldots, B_{s}\right) A ; x_{1}, \ldots, x_{s}\right)\right)$ is a rational function of x_{1}, \ldots, x_{s} over the field \boldsymbol{Q} of rational numbers. Further its denominator is

$$
\prod_{k=1}^{s} \prod_{i=0}^{m_{k}}\left(1-p^{\left(n_{1}+\ldots+n_{k}-i\right)(-m+n+i+1)}\left(x_{1} \ldots x_{k}\right)^{2}\right) \prod_{k=1}^{s}\left(1-x_{1} \ldots x_{k}\right)^{m_{k}^{\prime}}
$$

where $m_{k}^{\prime}=1$ or $=0$ according as $r(A) \geq n_{1}+\ldots+n_{k}$ or not. In particular if $m \geq 2 n+2$, the denominator of the above power series is

$$
\prod_{k=1}^{s} \prod_{i=0}^{n_{1}+\ldots+n_{k}-1}\left(1-p^{\left(n_{1}+\ldots+n_{k}-i\right)(-m+n+i+1)}\left(x_{1} \ldots x_{k}\right)^{2}\right) \prod_{k=1}^{s}\left(1-x_{1} \ldots x_{k}\right)
$$

Remark 1. In [1], for non-degenerate symmetric matrices B_{1}, \ldots, B_{s}, and A with entries in \boldsymbol{Z}_{p}, Böcherer and Sato defined a formal power series $Q\left(\left(B_{1}, \ldots, B_{s}\right), A ; x_{1}, \ldots, x_{s}\right)$ by $Q\left(\left(B_{1}, \ldots, B_{s}\right), A ; x_{1}, \ldots, x_{s}\right)=\sum_{e_{1}, \ldots, e_{s}=0}^{\infty} \alpha_{p}\left(\operatorname{diag}\left(p^{e_{1}} B_{1}, \ldots, p^{e_{s}} B_{s}\right), A\right) x_{1}^{e_{1}} \ldots x_{s}^{e_{s}}$, and showed that it is a rational function of x_{1}, \ldots, x_{s} over \boldsymbol{Q}. On the other hand, we define a formal power series $P\left(\left(B_{1}, \ldots, B_{s}\right), A ; x_{1}, \ldots, x_{s}\right)$ by
$P\left(\left(B_{1}, \ldots, B_{s}\right), A ; x_{1}, \ldots, x_{s}\right)=\sum_{e_{1}, \ldots, e_{s}=0}^{\infty} \alpha_{p}\left(\operatorname{diag}\left(p^{2 e_{1}} B_{1}, \ldots, p^{2 e_{s}} B_{s}\right), A\right) x_{1}^{e_{1}} \ldots x_{s}^{e_{s}}$, which is a special case of the one defined in [3]. As stated in [3] and [4], the above two types of power series are related with each other. In [4], we obtained an explicit form of the denominator of $P\left(\left(B_{1}, \ldots, B_{s}\right), A ; x_{1}, \ldots\right.$, $\left.x_{s}\right)$, and therefore, of $Q\left(\left(B_{1}, \ldots, B_{s}\right), A ; x_{1}, \ldots, x_{s}\right)$ when $n_{1}=\ldots=n_{s}=$ 1 and $p \neq 2$. On the other hand, as easily seen, $Q\left(\left(B_{1}, \ldots, B_{s}\right), A ; x_{1}, \ldots\right.$, x_{s}) can be expressed as a $\boldsymbol{Q}\left[x_{1}, \ldots, x_{s}\right]$-linear combination of several power series defined in this note. For example, if $b_{1}, b_{2} \in \boldsymbol{Z}_{p} \backslash\{0\}$, we have $Q\left(\left(b_{1}, b_{2}\right), A ; x_{1}, x_{2}\right)=R\left(\left(b_{1}, b_{2}\right), A ; x_{1}, x_{2}\right)+R\left(\left(b_{2}, b_{1}\right), A ; x_{1}, x_{2}\right)$

$$
-R\left(\operatorname{diag}\left(b_{1}, b_{2}\right), A ; x_{1} x_{2}\right)
$$

Thus, by Theorem 3, we can also obtain an explicit form of the denominator of $Q\left(\left(B_{1}, \ldots, B_{s}\right), A ; x_{1}, \ldots, x_{s}\right)$, and therefore of $P\left(\left(B_{1}, \ldots, B_{s}\right), A ; x_{1}\right.$, \ldots, x_{s}) when A is even integral unimodular and B_{1}, \ldots, B_{s} are diagonal, which will appear elsewhere.

Remark 2. By the above theorem we see that the denominator of $R(B, A ; x)$ is

$$
\prod_{i=0}^{\min (n-1, r(A))}\left(1-p^{(n-i)(-m+n+i+1)} x^{2}\right)(1-x)^{m^{\prime}}
$$

where $m^{\prime}=1$ or $=0$ according as $r(A) \geq n$ or not. This is a refinement of the result of [2], [6].

Remark 3. Theorem 3 can be generalized to the case where A is an arbitrary non-degenerate matrix if $p \neq 2$.

Remark 4. In the above results, the condition that B_{i} are diagonal is not necessary if $p \neq 2$.

Now we show that our result on the denominator of the above power series is best possible by giving a simple example. Let $p \neq 2, m=3, n=2$,
and $n_{1}=n_{2}=1$. Let A be a unimodular symmetric matrix of degree 3 with entries in \boldsymbol{Z}_{p} and b_{1}, b_{2} be elements of the group \boldsymbol{Z}_{p}^{*} of p-adic units. We assume that $\chi\left(b_{1} \operatorname{det} A\right)=1$ and $\chi\left(-b_{2} \operatorname{det} A\right)=-1$, where χ is the quadratic residue symbol defined modulo p. Then by [5] we have

$$
R\left(\left(b_{1}, b_{2}\right), A ; x_{1}, x_{2}\right)=\frac{\left(1-p^{-2}\right)\left(1+2 x_{1}^{2} x_{2}+x_{1}^{2} x_{2}^{2}\right)}{\left(1-x_{1}^{2}\right)\left(1-x_{1}^{2} x_{2}^{2}\right)\left(1-p x_{1}^{2} x_{2}^{2}\right)}
$$

Thus the reduced denominator of $R\left(\left(b_{1}, b_{2}\right), A ; x_{1}, x_{2}\right)$ is $\left(1-x_{1}^{2}\right)$ $\left(1-x_{1}^{2} x_{2}^{2}\right)\left(1-p x_{1}^{2} x_{2}^{2}\right)$. We note that $r(A)=1$, and therefore $m_{1}=0$ and $m_{2}=1$. Thus Theorem 3 is best possible.

Acknowledgement. The author would like to thank the referee for many valuable comments.

References

[1] S. Böcherer and F. Sato: Rationality of certain formal power series related to local densities. Comment. Math. Univ. St. Paul., 36, 53-86 (1987).
[2] Y. Hironaka: On a denominator of Kitaoka's formal power series attached to local densities. ibid., 37, 159-171 (1988).
[3] H. Katsurada: Generalized Igusa local zeta functions and local densities of quadratic forms. Tôhoku Math. J., 44, 211-218 (1992).
$[4]$-: A certain formal power series of several variables attached to local densities of quadratic forms. I (to appear in J. Number Theory).
[5] Y. Kitaoka: A note on local densities of quadratic forms. Nagoya Math. J., 92, 145-152 (1983).
[6] -: Local densities of quadratic forms and Fourier coefficients of Eisenstein series. ibid., 103, 149-160 (1986).

