46. On Representations of Finite Groups in the Space of Modular Forms of Half-integral Weight

By Masaru Ueda
Department of Mathematics, Faculty of Sciences, Nara Women's University
(Communicated by Shokichi IYanAGA, M. J. A., June 7, 1994)

Introduction. Let p be a prime and k an integer. In 1940, Hecke studied a representation of $S L_{2}(\boldsymbol{Z} / p \boldsymbol{Z})$ which is realized in the space of modular forms of level p and of weight k and obtained beautiful results.

In this paper, we study a similar representation $\pi_{k+1 / 2}$ which is realized in the space of cusp forms of level $4 p$ and of weight $k+1 / 2$. In particular, we study in detail the subrepresentation ρ_{f} generated by Hecke common eigenform f of level $4 p$ ("newform"). Then we have some completely different facts from the results in the case of integral weight. For example, ρ_{f} is always irreducible, and if f is of Neben-type, whether ρ_{f} is "residual" or "non-residual" (cf. below (1.2)) is determined by the Atkin-Lehner involution $W(p)$ (cf. Theorem (4.1) for the details).

Finally, we remark that the class number of $\boldsymbol{Q}(\sqrt{-p})$ also occurs in our results as in the classical work of Hecke (cf. Remark(4.2)).
§0 Preliminaries. Throughout this paper, we keep to the notation in [4]. In particular, we use the following general notation.

Let k denote a positive integer and p an odd prime number. If $z \in \boldsymbol{C}$ and $x \in \boldsymbol{C}$, we put $z^{x}=\exp (x \cdot \log (z))$ with $\log (z)=\log (|z|)+\sqrt{-1}$ $\arg (z), \arg (z)$ being determined by $-\pi<\arg (z) \leq \pi$. Also we put $\boldsymbol{e}(z)=$ $\exp (2 \pi \sqrt{-1} z)$.

Let \mathfrak{S} be the complex upper half plane. For $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{0}(4)$ and $z \in \mathfrak{G}$, we define function $j(\gamma, z)$ on \mathfrak{S} by: $j(\gamma, z)=\left(\frac{-1}{d}\right)^{-1 / 2}\left(\frac{c}{d}\right)(c z+d)^{1 / 2}$. Let $\mathscr{G}(k+1 / 2)$ be the group consisting of pairs (α, φ), where $\alpha=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ $\in G L_{2}^{+}(\boldsymbol{R})$ and φ is a holomorphic function on \mathfrak{f} satisfying $\varphi(z)=$ $t(\operatorname{det} \alpha)^{-k / 2-1 / 4}(c z+d)^{k+1 / 2}$ with $t \in \boldsymbol{C}$ and $|t|=1$. The group law is defined by: $(\alpha, \varphi(z)) \cdot(\beta, \psi(z))=(\alpha \beta, \varphi(\beta z) \psi(z))$. For a complex-valued function f on \mathfrak{F} and $(\alpha, \varphi) \in \mathscr{S}(k+1 / 2)$, we define a function $f \mid(\alpha, \varphi)$ on \mathfrak{H} by: $f \mid(\alpha, \varphi)(z)=\varphi(z)^{-1} f(\alpha z)$.
§1. For a positive integer N, we put $\boldsymbol{G}(N):=S L_{2}(\boldsymbol{Z} / N \boldsymbol{Z}), \boldsymbol{B}(N):=$ $\left\{\left(\begin{array}{cc}a^{-1} & b \\ 0 & a\end{array}\right) \in \boldsymbol{G}(N)\right\}, \boldsymbol{U}(N):=\left\{\left(\begin{array}{cc}1 & b \\ 0 & 1\end{array}\right) \in \boldsymbol{B}(N)\right\}$.

Denote by \mathscr{L} the lifting $\Gamma_{0}(4) \ni \gamma \mapsto \gamma^{*}=\left(\gamma, j(\gamma, z)^{2 k+1}\right)$. Then we put for an odd prime $p, \Delta(4 p):=\mathscr{L}(\Gamma(4 p)), \Delta_{1}(4 p):=\mathscr{L}\left(\Gamma_{1}(4 p)\right)$, and $\Delta_{0}(4 p)$ $:=\mathscr{L}\left(\Gamma_{0}(4 p)\right)$. Moreover, by $S(k+1 / 2, \Delta(4 p))$, we denote the space of all cusp forms of weight $k+1 / 2$ with respect to $\Delta(4 p)$.

For an even character χ modulo $4 p$, define a subspace of $S(k+1 / 2$, $\Delta(4 p)$) by:
$S(k+1 / 2,4 p, \chi):=\left\{\begin{array}{l}f \in S(k+1 / 2, \Delta(4 p)) ; f \mid \gamma^{*}=\chi(d) f \\ \text { for any } \gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{0}(4 p)\end{array}\right\}$.
Since $S(k+1 / 2,4 p, \chi)=\{0\}$ for each odd character χ, we consider only even characters.

Since $\Delta(4 p)$ is a normal subgroup of $\Delta_{0}(4):=\mathscr{L}\left(\Gamma_{0}(4)\right)$, we get a representation $\pi_{k+1 / 2}$ of $\Delta_{0}(4) / \Delta(4 p) \cong \boldsymbol{B}(4) \times \boldsymbol{G}(p)$ on $S(k+1 / 2, \Delta(4 p))$ defined by:
$\left[\pi_{k+1 / 2}(\gamma \bmod 4 p)\right] f=f \mid \gamma^{*-1}, f \in S(k+1 / 2, \Delta(4 p)), \gamma \in \Gamma_{0}(4)$.
For $f \in S(k+1 / 2, \Delta(4 p))$, let ρ_{f} denote the subrepresentation of $\pi_{k+1 / 2}$ generated by f, i.e., we set $\rho_{f}:=\left\langle f \mid \gamma^{*} ; \gamma \in \Gamma_{0}(4)\right\rangle_{C}$.

For any non-zero $f \in S(k+1 / 2,4 p, \chi)$, we study this representation ρ_{f}. By restricting $\pi_{k+1 / 2}, \boldsymbol{C} f$ is a one-dimensional representation space of $\boldsymbol{B}(4) \times \boldsymbol{B}(p) \cong \Delta_{0}(4 p) / \Delta(4 p)$. We denote this representation by $\underline{\underline{\chi}}$. We also set the representations $\underline{\underline{\chi_{2}}}$ and $\underline{\underline{\chi_{p}}}$ by:

$$
\underline{\underline{\chi_{2}}}: \boldsymbol{B}(4) \ni\left(\begin{array}{cc}
a^{-1} & b \\
0 & a
\end{array}\right) \mapsto \chi_{2}(a)^{-1}, \underline{\underline{\chi_{p}}}: \boldsymbol{B}(p) \ni\left(\begin{array}{cc}
a^{-1} & b \\
0 & a
\end{array}\right) \mapsto \chi_{p}(a)^{-1},
$$

where $\chi_{2}\left(\right.$ resp. $\left.\chi_{p}\right)$ is the 2 (resp. p)-primary component of χ. Then $\underline{\underline{\chi}}=\underline{\underline{\chi_{2}}}$ $\otimes \underline{\chi_{\phi}}$.

Moreover we can define a surjective homomorphism between $\boldsymbol{B}(4)$ $\times \boldsymbol{G}(p)$-modules: $\operatorname{Ind}_{\boldsymbol{B}(4) \times \boldsymbol{B}(p)}^{\boldsymbol{B}(4) \times \boldsymbol{\mathcal { G }}(\underline{\chi})} \underline{\chi_{2}} \otimes \operatorname{Ind}_{\boldsymbol{B}(p)}^{\boldsymbol{G}(p)} \underline{\chi_{p}} \rightarrow \rho_{f}$ by $\quad \sum_{\xi} a_{\xi} \xi \otimes f \mapsto$ $\sum_{\xi} a_{\xi} \pi_{k+1 / 2}(\xi) f\left(a_{\xi} \in \boldsymbol{C}, \xi \in(\overline{\boldsymbol{B}}(4) \times \boldsymbol{G}(p)) /(\boldsymbol{B}(4) \times \boldsymbol{B}(p))\right)$. From this, we can identify ρ_{f} with a $\boldsymbol{B}(4) \times \boldsymbol{G}(p)$-submodule of $\underline{\underline{\chi_{2}}} \otimes \operatorname{Ind}_{\boldsymbol{B}(p)}^{\boldsymbol{G}(p)} \underline{\boldsymbol{\chi}_{f}}$.

As to the representation $\underline{\underline{\chi_{2}}} \otimes \operatorname{Ind}_{\boldsymbol{B}(\phi)}^{G(p)} \underline{\chi_{p}}$, the following assertion is well-known.

Proposition (1.1) ([3, Chapter 7, pp. 54-60]). (1) If $\chi^{2} \neq \mathbf{1}\left(\Leftrightarrow \chi_{p}{ }^{2} \neq \mathbf{1}\right)$, $\underline{\underline{\chi_{2}}} \otimes \operatorname{Ind}_{\boldsymbol{B}(p)}^{G(p)} \underline{\chi_{p}}$ is an irreducible representation.
(2) If $\chi=\mathbf{1}$ (the trivial representation),

$$
1 \otimes \operatorname{Ind}_{B(p)}^{G(p)} 1=(1 \otimes 1) \oplus\left(1 \otimes \mathfrak{C}_{p}\right)
$$

Here, \mathbb{C}_{p} is an irreducible representation of $\boldsymbol{G}(p)$ of degree p which is called Steinberg representation.
(3) If $\chi=(\underline{p})$ (Kronecker symbol),

$$
\underline{\chi_{2}} \otimes \operatorname{Ind}_{\boldsymbol{B}(p)}^{G(p)} \underline{\chi_{\underline{p}}}=\left(\underline{\underline{\chi_{2}}} \otimes \mathfrak{C}_{(p+1) / 2}\right) \oplus\left(\underline{\underline{\chi_{2}}} \otimes \mathbb{C}_{(p+1) / 2}^{\prime}\right) .
$$

Here $\mathfrak{C}_{(p+1) / 2}$ and $\mathfrak{C}_{(p+1) / 2}^{\prime}$ denote irreducible representations of $\boldsymbol{G}(p)$ of degree $(p+1) / 2$, which are not equivalent to each other and satisfy the following: (1.2)
$\mathfrak{C}_{(p+1) / 2}\left|\boldsymbol{U}(p) \cong \psi_{0} \oplus\left(\bigoplus_{a \in \boldsymbol{F}_{p}^{\times 2}} \psi_{a}\right), \quad \mathbb{C}_{(p+1) / 2}^{\prime}\right| \boldsymbol{U}(p) \cong \psi_{0} \oplus\left(\bigoplus_{a \in \boldsymbol{F}_{p}^{\times}-\boldsymbol{F}_{p}^{\times 2}} \psi_{a}\right)$, where for any $a \in \boldsymbol{F}_{p}$, we define $\psi_{a} \in \widehat{\boldsymbol{U}(p)}$ by: $\psi_{a}\left(\left(\begin{array}{cc}1 & u \\ 0 & 1\end{array}\right)\right)=\psi(a u)$ and $\psi(x \bmod p)=\boldsymbol{e}(x / p)(x \in \boldsymbol{Z})$. We call $\mathfrak{C}_{(p+1) / 2}\left(\right.$ resp. $\left.\mathfrak{\bigotimes}_{(p+1) / 2}^{\prime}\right)$ the residual (resp. non-residual) representation.

Corollary (1.3). For any non-zero $f \in S(k+1 / 2,4 p, \chi)$,
§2. Now, we shall study the cases of $\chi=\mathbf{1}$ and (\underline{p}) in detail. From now on until the end of this paper, we fix $\chi=$ either $\mathbf{1}$ or (\underline{p}).

For any $a \in \boldsymbol{F}_{p}$, take $\zeta_{a} \in S L_{2}(\boldsymbol{Z})$ such that

$$
\zeta_{a} \equiv\left\{\begin{array}{l}
\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)(\bmod 4) \\
\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & a \\
0 & 1
\end{array}\right)(\bmod p)
\end{array}\right.
$$

The set $\left\{\zeta_{a}^{*} \mid a \in \boldsymbol{F}_{p}\right\} \cup\left\{\left(\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), 1\right)\right\}$ gives a complete system of representatives of $\Delta_{0}(4 p) \backslash \Delta_{0}(4)$. Then define an operator X^{*} on $S(k+1 / 2$, $\Delta(4 p))$ by: $f\left|X^{*}:=\sum_{a \in \boldsymbol{F}_{p}} f\right| \zeta_{a}^{*}$.

Proposition (2.1). We assume that $\chi=$ either $\mathbf{1}$ or $\left(\frac{p}{)}\right)$. Put $g_{p}=$ $\sqrt{\left(\frac{-1}{p}\right) p}$. For a non-zero $f \in S(k+1 / 2,4 p, \chi)$, the following hold.
(1) X^{*} induces an operator on $S(k+1 / 2,4 p, \chi)$.
(2) $f \left\lvert\, X^{* 2}= \begin{cases}(p-1) f \mid X^{*}+p f, & \text { if } \chi=\mathbf{1}, \\ \left(\frac{-1}{p}\right) p f, & \text { if } \chi=\left(\frac{p}{-}\right) .\end{cases}\right.$
(3) ρ_{f} is irreducible $\Leftrightarrow f$ is an eigenform of X^{*}.
(4) Let $\chi=1$. Then

$$
\left\{\begin{aligned}
\rho_{f} \cong \mathbf{1} \otimes 1 & \Leftrightarrow f \mid X^{*}=p f \\
\rho_{f} \cong \mathbf{1} \otimes \mathfrak{C}_{p} & \Leftrightarrow f \mid X^{*}=-f .
\end{aligned}\right.
$$

(5) Let $\chi=(\underline{p})$. Then

$$
\left\{\begin{array}{l}
\rho_{f} \cong \underline{\chi_{2}} \otimes \mathfrak{C}_{(p+1) / 2} \Leftrightarrow f \left\lvert\, X^{*}=\left(\frac{-1}{p}\right) \mathfrak{g}_{p} f\right., \\
\rho_{f} \cong \underline{\underline{\chi_{2}}} \otimes \mathfrak{C}_{(p+1) / 2}^{\prime} \Leftrightarrow f \left\lvert\, X^{*}=-\left(\frac{-1}{p}\right) \mathfrak{g}_{p} f .\right.
\end{array}\right.
$$

Proof. (1) From easy computation, we have $f\left|X^{*}\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)^{*}=f\right| X^{*}$. Since $\quad \Delta_{1}(4 p)=\left\langle\Delta(4 p),\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)^{*}\right\rangle, f \mid X^{*} \in S\left(k+1 / 2, \Delta_{1}(4 p)\right)$. The assertion follows from checking the action of any element $\left(\begin{array}{cc}a & 0 \\ 0 & a^{-1}\end{array}\right)$, $\left.\left(\begin{array}{cc}b & 0 \\ 0 & b^{-1}\end{array}\right)\right) \in \boldsymbol{B}(4) \times \boldsymbol{B}(p)$ on $f \mid X^{*}$.
(2) $f\left|X^{* 2}=\sum_{a, b \in \boldsymbol{F}_{p}} f\right| \zeta_{a}{ }^{*} \zeta_{b}^{*}$. We divide the right-hand side into two parts S_{1} (the part of $a=0$) and S_{2} (the part of $a \neq 0$). Then from easy computation, $S_{1}=p \chi_{p}(-1) f$ and $S_{2}=(p-1) f \mid X^{*}$ or 0 according to $\chi=\mathbf{1}$
or (\underline{p}).
(3) Assume that ρ_{f} is irreducible. Then $1=\left\langle\rho_{f}, \underline{\chi_{2}} \otimes \operatorname{Ind}_{\boldsymbol{B}(p)}^{\boldsymbol{G}(p)}\right.$
 $\bar{S}(k+1 / 2,4 p, \chi) \cap \rho_{f}$. If $g \neq 0$, both $\boldsymbol{C} f$ and $\boldsymbol{C} g$ give the subrepresentation $\underline{\underline{\chi}}$ of $\left.\rho_{f}\right|_{\boldsymbol{B}_{(4) \times \boldsymbol{B}(p)}}$. Hence $\boldsymbol{C f}=\boldsymbol{C g}$. Next, we assume that $f \mid X^{*}=\lambda f(\lambda \in \boldsymbol{C})$. $\frac{\bar{\chi}}{T}$ hen $\operatorname{dim} \rho_{f}=\operatorname{dim}\left\langle f, f \mid \zeta_{a}^{*} ; a \in \boldsymbol{F}_{p}\right\rangle{ }_{C} \leq p$. From this and Corollary (1.3), ρ_{f} is irreducible.
(4) Let $\rho_{f} \cong \mathbf{1} \otimes \mathfrak{C}_{p} . g=f+f\left|X^{*}=\sum_{r^{*} \in \Delta_{0}(4 p) \backslash \Delta_{0}(4)} f\right| \gamma^{*}$ is $\Delta_{0}(4)-$ invariant. Hence if $g \neq 0, \boldsymbol{C} g$ is a $\boldsymbol{B}(4) \times \boldsymbol{G}(p)$-submodule of ρ_{f} which is isomorphic to $\mathbf{1} \otimes \mathbf{1}$. Therefore we have $g=0$. The assertion for $1 \otimes 1$ is trivial.

The contrary easily follows form the above, (3), and Corollary (1.3).
(5) For any $u \in \boldsymbol{F}_{p}$, put $f_{u}:=\sum_{a \in \boldsymbol{F}_{p}} \boldsymbol{e}(-u a / p) f \mid \zeta_{a}^{*} \in \rho_{f}$. From similar computation to (2), $f_{u}\left|X^{*}=\left(\frac{-1}{p}\right) p f+\left(\frac{u}{p}\right) \mathfrak{g}_{p} f\right| X^{*}$. If $f_{u} \neq 0$, $\boldsymbol{C} f_{u}$ gives the subrepresentation $\underline{\chi_{2}} \otimes \psi_{(-u)}$ of $\left.\rho_{f}\right|_{\boldsymbol{B}^{(4)} \times \boldsymbol{U}(p)}$.

Let $\rho_{f} \cong \underline{\underline{\chi_{2}}} \otimes \mathfrak{๒}_{(p+1) / 2}$. Then $f \mid X^{*}=\lambda f(\lambda \in \boldsymbol{C})$ by (3). Take u such that $\left(\frac{-u}{p}\right)=-1$. From the condition (1.2), we have $f_{u}=0$. Hence $0=$ $f_{u} \left\lvert\, X^{*}=\left(\frac{-1}{p}\right)\left(p-g_{p} \lambda\right) f\right.$. Therefore $\lambda=\left(\frac{-1}{p}\right) \mathfrak{g}_{p}$. As to $\underline{\underline{\chi_{2}}} \otimes \mathfrak{C}_{(p+1) / 2}^{\prime}$, we can verify in the same way. The contrary is easily shown from the above results and Corollary (1.3).
§3. Now, we shall characterize irreducibility of ρ_{f} in terms of Fourier coefficients of f. We introduce the operators $U(p), \tilde{W}(p), Y_{p}$, and Hecke operator $\tilde{T}\left(n^{2}\right)=\tilde{T}_{k+1 / 2,4 p, \chi}\left(n^{2}\right)$ from [4]. See [4, §0 and §1] for the definitions of these operators.

Let $f \in S(k+1 / 2,4 p, \chi)$. Since $f|\tilde{W}(p)=f| \zeta_{0}^{*-1}\left(\left(\begin{array}{cc}p & 0 \\ 0 & 1\end{array}\right), p^{-k / 2-1 / 4}\right)$ and $f\left|U(p)=p^{k / 2-3 / 4} \sum_{a \in \boldsymbol{F}_{p}} f\right|\left(\left(\begin{array}{cc}1 & 0 \\ 0 & p\end{array}\right), p^{k / 2+1 / 4}\right)\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right)^{*}([4$, pp. 151-152]), we have $f\left|X^{*}=p^{-k / 2+3 / 4} \chi_{p}(-1) f\right| \tilde{W}(p) U(p)$ and $f \mid U(p) X^{*}=\chi_{p}(-1)$ $\left.\left(\frac{-1}{p}\right) f \right\rvert\, Y_{p} U(p)$.

Put $g:=f \mid U(p)$. Observing that the map $f \mapsto f \mid U(p)$ gives an isomorphism from $S(k+1 / 2,4 p, \chi)$ onto $S(k+1 / 2,4 p, \chi(\underline{p}))([4$, Proposition (1.28)]), $g\left|X^{*}=\lambda g(\lambda \in C) \Leftrightarrow f\right| Y_{p}=\chi_{p}(-1)\left(\frac{-1}{p}\right) \lambda f$.

If $\chi=1, g=f \left\lvert\, U(p) \in S\left(k+1 / 2,4 p,\left(\frac{p}{}\right)\right)\right.$ and $\lambda= \pm\left(\frac{-1}{p}\right) g_{p}$.
Then the following follows from [4, Proposition (1.29)].
Theorem (3.1). Let $(0 \neq) f=\sum_{n \geq 1} a(n) \boldsymbol{e}(n z) \in S(k+1 / 2,4 p, 1)$. Then $f \mid U(p)=\sum_{n \geq 1} a(p n) \boldsymbol{e}(n z)$ and

$$
\left\{\begin{array}{l}
\rho_{f \mid U(p)} \cong \underline{\theta} \otimes \mathfrak{c}_{(p+1) / 2} \Leftrightarrow a(n)=0 \text { if }\left(\frac{-n}{p}\right)=-1, \\
\rho_{f \mid U(p)} \cong \underline{\theta} \otimes \mathfrak{C}_{(p+1) / 2}^{\prime} \Leftrightarrow a(n)=0 \text { if }\left(\frac{-n}{p}\right)=+1 .
\end{array}\right.
$$

Here, θ is the 2-primary component of Kronecker symbol (\underline{p}).
§4. In the case of integral weight, a Hecke eigenform f with $\rho_{f} \cong$ $\mathfrak{C}_{(p+1) / 2}$ is very special, in fact, such f corresponds to a Grössencharacter of $\boldsymbol{Q}(\sqrt{-p})$. In our case, a Hecke eigenform f with $\rho_{f} \cong{\underline{\underline{\chi_{2}}}}^{\otimes} \mathscr{E}_{(p+1) / 2}$ or $\underline{\underline{\chi_{2}}} \otimes$ $\mathbb{C}_{(p+1) / 2}^{\prime}$ is also a little special in the following sense.

We introduce the following subspace which is called Kohnen space.

$$
S(k+1 / 2,4 p, \chi)_{K}:=\left\{\begin{array}{l}
f=\sum_{n \geq 1} a(n) \boldsymbol{e}(n z) \in S(k+1 / 2,4 p, \chi) ; \\
a(n)=0 \text { if } \chi_{2}(-1)(-1)^{k} n \equiv 2,3(\bmod 4)
\end{array}\right\}
$$

We recall that we have a theory of newforms for Kohnen spaces (cf. [1], [4]).
Let $\mathfrak{S}^{ø, \kappa}(k+1 / 2,4 p, \chi)_{K}$ be the space of newforms. See $[4, \S 3]$ for the defintion. The space is denoted by $S_{k+1 / 2}^{\text {new }}\left(p, \chi_{p}\right)$ in [1]. From [4,§3], we know the following: $S(k+1 / 2,4 p, \chi)_{K}=\mathbb{S}^{\varnothing, \chi}(k+1 / 2,4 p, \chi)_{K} \oplus \mathbb{S}^{\varnothing, \kappa}(k+1 /$ $2,4, \chi)_{K} \oplus \mathfrak{S}^{\varnothing, x}(k+1 / 2,4, \chi)_{K} \mid U\left(p^{2}\right)$; Both $\mathfrak{S}^{0, \kappa}(k+1 / 2,4 p, \chi)_{K}$ and $\mathfrak{S}^{\infty, x}(k+1 / 2,4, \chi)_{K}$ have \boldsymbol{C}-basis consisting of common eigenforms for all $\tilde{T}\left(l^{2}\right)(l$: prime, $l \neq p) ; \mathfrak{S}^{\varnothing, \chi}(k+1 / 2,4 p, \chi)_{K}$ and $\mathbb{S}^{\varnothing, \chi}(k+1 / 2,4$, $\chi)_{K} \oplus \mathfrak{S}^{\infty, \kappa}(k+1 / 2,4, \chi)_{K} \mid U\left(p^{2}\right)$ correspond to the spaces $S^{0}(2 k, p)$ and $S(2 k, 1)$ respectively via Shimura correspondence; $\mathfrak{S}^{\propto, \kappa}(k+1 / 2,4 p$, $\chi)_{K}$ is stable under the operators $U\left(p^{2}\right)$ and $\tilde{T}\left(n^{2}\right)$ with $(n, p)=1$ ([4, Theorem (3.9-10)]). We also claim that X^{*} and Y_{p} fix the space $\mathfrak{S}^{\varnothing, x}(k+1 /$ $2,4 p, \chi)_{K}$. This follows from [4, Theorem (3.10-11), Propositions (1.20) and (1.28)] and [2, Theorem 4.6.19].

Theorem (4.1). Let $(0 \neq) f \in \mathbb{S}^{\varnothing, x}(k+1 / 2,4 p, \chi)_{K}$ be a common eigenform for all $\tilde{T}\left(l^{2}\right)$ ($l:$ prime, $l \neq p$). Then we have the following.
(1) ρ_{f} is always irreducible.
(2) If $\chi=\mathbf{1}$, then $\rho_{f} \cong \mathbf{1} \otimes \mathfrak{@}_{p}$.
(3) If $\chi=\left(\frac{p}{}\right)$, then

$$
\left\{\begin{array}{l}
\rho_{f} \cong \underline{\chi_{2}} \otimes \mathfrak{E}_{(p+1) / 2} \Leftrightarrow G \left\lvert\, W(p)=\left(\frac{-1}{p}\right)^{k-1} G\right. ; \\
\rho_{f} \cong \underline{\chi_{2}} \otimes \mathfrak{E}_{(p+1) / 2}^{\prime} \Leftrightarrow G \left\lvert\, W(p)=-\left(\frac{-1}{p}\right)^{k-1} G .\right.
\end{array}\right.
$$

Here, $W(p)$ is the Atkin-Lehner involution on $S(2 k, p)$ (see [4, p. 5]) and G is the primitive form $\in S^{0}(2 k, p)$ which corresponds to $f \mid U(p)^{-1}=: g$ in the sense of $[4$, Theorem (3.11)(1)] (via Shimura Correspondence).

Proof. (1) X^{*} commutes with all Hecke operators $\tilde{T}\left(n^{2}\right),(n, 2 p)=1$ ([4, Proposition (1.20)]). Then from the strong multiplicity one theorem ([4, Theorem 3.11)]), f is also an eigenform of X^{*} and hence ρ_{f} is irreducible.
(2) Suppose that $\rho_{f} \cong \mathbf{1} \otimes \mathbf{1}$. Then $f \mid \gamma^{*}=f$ for all $\gamma \in \Gamma_{0}(4)$. Since $S(k+1 / 2,4,1) \cap S(k+1 / 2,4 p, 1)_{K}=S(k+1 / 2,4,1)_{K}=\mathbb{S}^{0, \kappa}(k+$ $1 / 2,4, \mathbf{1})_{K}, f \in \mathbb{S}^{\theta, \kappa}(k+1 / 2,4, \mathbf{1})_{K} \cap \mathfrak{S}^{\theta, \kappa}(k+1 / 2,4 p, \mathbf{1})_{K}=\{0\}$. This
is a contradiction.
(3) From [4, (3.3), Propositions (1.20) and (3.8), Theorem (3.11)], we can show that $g:=f \mid U(p)^{-1} \in \mathbb{S}^{\infty, \chi}(k+1 / 2,4 p, \mathbf{1})_{K}, g$ is a common eigenform for all $\tilde{T}\left(l^{2}\right)(l:$ prime $\neq p)$, and $g \mid U\left(p^{2}\right)=\lambda_{p} g, \lambda_{p}= \pm p^{k-1}$. Moreover, we defined the involution \boldsymbol{w}_{p} on $\mathbb{S}^{\infty, \chi}(k+1 / 2,4 p, \mathbf{1})_{K}$ by $g \mid \boldsymbol{w}_{p}$ $\left.=p^{-1 / 2}\left(\frac{-1}{p}\right)^{k+1 / 2} g \right\rvert\, Y_{p}$ (cf. [4, (3.6) and Theorem (3.9)]).

This involution corresponds to the Atkin-Lehner involution $W(p)$ as follows. Take the primitive form $G \in S^{0}(2 k, p)$ as in the above statement. Then from [4, Theorem (3.9)], we can write $\sigma_{p} g=-p^{1-k} g\left|U\left(p^{2}\right)=g\right| \boldsymbol{w}_{p}$, $\sigma_{p}:=-p^{1-k} \lambda_{p}= \pm 1$. By using [4, Theorem (3.11)(1)] and [2, Corollary 4.6.18(2)], $\sigma_{p} G=-p^{1-k} G|U(p)=G| W(p)$.

Therefore, $\left.\quad f\left|X^{*}=\left(\frac{-1}{p}\right) \mathfrak{g}_{p} f \Leftrightarrow g\right| Y_{p}=g_{p} g \Leftrightarrow g \right\rvert\, \boldsymbol{w}_{p}=\left(\frac{-1}{p}\right)^{k-1} g$ $\Leftrightarrow G \left\lvert\, W(p)=\left(\frac{-1}{p}\right)^{k-1} G\right.$.

Remark (4.2). For $\chi=(\underline{p})$, take a \boldsymbol{C}-basis $\left\{f_{i}\right\}$ of $\mathbb{S}^{\varnothing, \kappa}(k+1 / 2,4 p$, $\chi)_{K}$ consisting of common eigenforms for all $\tilde{T}\left(l^{2}\right)$ (l : prime, $l \neq p$). Put $\rho_{i}:=\rho_{f_{i}}$. Then we have $\boldsymbol{D}:=\#\left\{i \mid \rho_{i} \cong \underline{\underline{\chi_{2}}} \otimes \mathfrak{c}_{(p+1) / 2}\right\}-\#\left\{i \mid \rho_{i} \cong \underline{\underline{\chi_{2}}} \otimes\right.$ $\left.\mathfrak{S}_{(p+1) / 2}^{\prime}\right\}=\left(\frac{-1}{p}\right)^{k-1} \operatorname{tr}(W(p) ; S(2 k, p))$. In particular, when $p \geq 5$ and $k \geq 2$, we have

$$
\boldsymbol{D}=\left(\frac{-1}{p}\right)^{k-1}\left((-1)^{k} / 2\right) \times \begin{cases}h(-4 p), & \text { if } p \equiv 1(\bmod 4), \\ 4 h(-p), & \text { if } p \equiv 3(\bmod 8), \\ 2 h(-p), & \text { if } p \equiv 7(\bmod 8)\end{cases}
$$

Here, $h(u)$ is the class number of $\boldsymbol{Q}(\sqrt{u})$.

References

[1] W. Kohnen: Newforms of half-integral weight. J. reine und angew. Math., 333, 32-72 (1982).
[2] T. Miyake: Modular Forms. Springer (1989).
[3] J.-P. Serre: Linear representations of finite groups. Springer G. T. M., 42 (1977).
[4] M. Ueda: On twisting operators and newforms of half-integral weight. Nagoya Math. J., 131, 135-205 (1993).

