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1. Introduction. Let K be a real cyclic biquadratic field with conduc-
tor F and k the quadratic subfield of K with conductor f. Let E,r and Ek be
the groups of units of K and k, respectively. Hasse [1] defined the unit index
of K as Q,r [E,::HEk], where H is the group of relative units of K, i.e.,
H-- {r] E;N,:/(7) 1}. Then Q,r 1 or 2. Let E be the relative
fundamental unit of K, i.e., H is generated by ---+ 1, E and the conjugate of
E and let s be the fundamental unit of k. For a number A of K, A is uniquely

1 ( v(x) + v(x))written in the form A=- u+ 2 [u, v], where u, v are

elements of k, Q(v/--I), respectively and z’(X) is the Gauss sum of a gener-
ator Z of the character group of K (cf. [1] {}8). We call u and v the coordin-
ates of A. If A is an integer of K, then u and v are integers of k and
Q((-- 1), respectively. Let s be a generator of the Galois group of K over Q.
LetA’=As A" As A" As3

be the conjugates of A. Let a + bi be the
basis number of K ("Basiszahl" yon K in [1] p. 30).

If Q, 2, then there exists the unique positive unit E* of K such that

E= < -1, E* E*’ E*" > and
(1) E’E*’ +_ E, N:/(E*) +__ .
E* is called the fundamental unit of K. By using (1) Hasse described a
method of calculating the coordinates of E* from z and E ([1], {}12 B). We
put E [(xo -+- xg-f)/2, Yo + yi] and E* [(Xo* + x*(-f)/2, Yo* + y*i].
Hasse’s method is summarized as follows: To get the non-equivalent solu-
tions (Xo*, x*), we examine the principal ideals (c) of k such that
N((a))- Xo I. And, to get the non-equivalent solutions (Yo*, Y*), we ex-
amine the ideals a of k such that N(a) [x I/G and a C-, where G
F/f and C is the ideal class of k which is corresponding to the primitive
quadratic form ’(y*)- b(yo*"--y*’)/2--k aYo*y* with determinant f. We
note that if Q, 2 then G divides x. In this way we obtain a finite number
of candidates (Xo*, x*, Yo*, Y*)for E*. Among them there are solutions of
(1). However, if we use Hasse’s method to calculate the coordinates of E*
from and E, then the calculation is complicated in general, because the
number of candidates for E* is large.

In this note we shall modify Hasse’s method and give a simple algorithm.
That is, our method is based upon the following fact: Qtr 2 if and only if
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there exists a unit 7 of K such that 7 psEE’, where p sign(E’). By
our algorithm at most four candidates (Xo*, x*, Yo*, Y*)for E* are easily
obtained for any real cyclic biquadratic field K and one of them exactly
gives the coordinates of E*. The aim of this note is to prove the following
algorithm, wherein (2) (6) denote the equations in 2.

Algorithm. (i) Calculate psEE’= [(to + tvf)/2, ro + ri] from s and
E [(Xo + x-f)/2, Yo + yli]

(ii) Calculate at most two integer solutions (Uo, ul) of (4) such that Uo >-- 0
for each integer solution X of (3).

(iii) For each (uo, u 1) of (ii), calculate Vo, vl by (5) and, when they are inte-

gers, examine whetheror not (Uo, ul, Vo, v) satisfies the former two equations of
(2).

(iv) For an integer solution (uo, u, vo, v) of (2) such that uo >--O, put
0 [(uo 4- uf)/2, vo + vi] and calculate the coordinates of OE".

(v) By the values of cosine sums [2 and [2’, calculate the approximate value

of O’E" and determine E* by (6).
Using this algorithm, we shall also give a table of E and E* for such a

field K with conductor F < 300, wherein we correct some errors in Hasse’s
table.

2. Proof of Algorithm. From now on we consider a real cyclic bi-
quadratic field K with Q 2 and suppose that E Ix, y] [(xo 4-
xf)/2, Yo + yli] is given, s is easily calculated by .the well known algor-
ithm. We put n(A) N/(A) for a number A of K. For the calculations of
numbers of K, we need the following lemma which is shown in [1], 8. For
u= (uo4- uvf)/2 and v= Vo + vi, we put0(v) a(v v) 2bvov,
(v) b(v- v)/2 + aVoV and uv {Uo(Vo + vi) + au(a- bi)"
(vo --vi)}/2, where a is the sign defined by [1], 7 (12). Let N(u) and
N(v) be the norms of u and v, respectively and G F/f

Lemma 1. For a number A [u, v] of K, we have

(i) A
N(v) f + p(v)a

IN(u) G(v)ae 1 + iAl+S(ii) 2 (u’ov),
(iii) n(A) A+s l(u2 G

N(v) f + (v)a)
Using E [(Xo -t- x/f)/2, Yo -+- yi], we first calculate the coordinates

of psEE’ by Lemma 1 (ii), where p sign(E’) E’I/E’. Put psEE’=
[(to + t4f)/2, ro + ri]. Since Q/ 2, there is an integer 7" of K such that

?" psEE’. In the following we calculate the coordinate [u, v] of this unit

(2)

Since u (uo -t- uff)/2 and v Vo + vi, we obtain by Lemma 1 (i)
2 2

Uo + uf + 2G(vo + v) f 4to,
UoUl + aG{a(vg- v) 2bvov} 2t,

UoVo + au(aVo- bv) 2ro,
UoV- au(av + bvo) 2rl.
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We note that integers f, a, b, G, a, tj and rj(j"- 0, 1) are given. It is ob-
vious that the number of the integer solutions (uo, ul, vo, vl) of (2) is exact-
ly two, and that if we denote by (uo, , vo, v) an integer solution of (2), the
other one is given by (--uo, --u, --vo,- v). Therefore we may find an
integer solution (uo, ul, vo, v) of (2) such that uo --> 0.

Now, from psEE" [u, v] we have N(s)EE’E N(s) n (E) E"
([u, v] +s) so that pE [u, v] x+s, where /-- sign([u, v] +s). So it fol-
lows from Lemma 1 (ii) that N(u) pxo and G(v) px. Noting that
N(v)f q(v) - 4(v), we can eliminate Vo and vx in the first two equa-
tions in (2). Namely we get

16to 8to(Uo + uf) + (Uo + uf) 4f(2t UoU) + 16fx.
Since u- uf 4/pxo, we have to(U + uf) 2ftluou 2(t +Wo
ft fx). Putting X (u + uf)/2 and Y UoU, we obtain

X fYz 4x,
toX- ftY 4N(t) + 4N(x),

where N(t)and N(x)are the norms of t= (to+ t(-f)/2 and x= (xo+
xx/f)/2, respectively. Thus we have

2N(t)Xz- 2to(N(t) + N(x))X + 4(N(t) + N(x)) + ftzo O.
We now give a lemma.
Lemma 2. Under the above assumption and notation, we have

N(t) + 2N(x)= 4N(e) 4- Xo.
Therefore

(N(t) + N(x)) N(t)Xo G (y)f.
Proof. By Lemma 1 (ii) we have 4N(t) N()(N(x) z Gz(y)2f).

Since QK 2, N(e)= n(E). So Lemma 1 (iii) shows that GN(y)f
-8N(e) + x- 2N(x)and aG(p(y)- XoX. Hence it follows from these
equations that
16N(t) + 32N(z) N() {4N(x) + 32N() N(x) + Gp (y) 2f_ G2N(y)f 2}

N(e) (- 64 + 16N()x2),
so that the first equation in Lemma 2 is obtained. The second equation is
easily proved by the first one.

Now, by Lemma 2, the solutions of the above quadratic equation are
given by
(3) X ((N(t) + N(x))to +- F(y)t}/N(t).
Since Q 2, at least one of these solutions is an integer. Hence, to get uo,

u which satisfy (2), we may calculate them by the following system of equa-
tions for each integer solution X of (3), because uo ulf 4- 4Xo.

uo= X+ 2xo,(4)
uxf=X 2xo.

Here (4) formally means two systems of equations. However, since f is not a
square of an integer, we may regard (4) as a system of equations. Therefore
we obtain at most four integer solutions (uo, ux) of (4), because uo --> 0 and
the number of integer solutions X is at most two.

On the other hand, the latter two equations in (2) give
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(5)
--ulf)vo 2r0(u0 haul) + 2abrlu,
uf)v 2r(Uo + eau) + 2abrou.

Hence, for each (u0, u)which is an integer solution of (4), we examine
whether or not v0 and v computed by (5) are both rational integers. If this is
the case, we next examine whether or not (Uo, u, v0, vl) satisfies the former
two equations in (2). In this way we obtain an integer solution of (2), since
QK- 2. We denote it by (u0, u, v0, v) and put 0 [(Uo + u(-)/2, Vo +
vi]. Then 0 and --0 are exactly two solutions of 7 --peEE’. Next we
calculate the coordinates of OE" by a formula in [1], p. 35 and calculate the
approximate value of OE" by cosine sums Q and Q’ defined in [1], 8. Then
we can obtain

OE" if OE" > O,
(6) E* OE" otherwise,
because OE" satisfies (1), i.e., OE"O’E +_ E and OE" O"E" +_ e.

Therefore we complete the proof of our algorithm.
3. Table of E and E*. In the appendix of [1], Hasse tabulated the

coordinates of E, E*, the class number h of K and Qz for a real cyclic bi-
quadratic field K with conductor F < 100. There are some errors in his
table. Using our algorithm, we give a table of the fundamental unit E* for a
real cyclic biquadratic field K with conductor F < 300, wherein the symbol

"f" denotes the correction of the error in Hasse’s table. As to the values of .Q

and D’, we have {I 9 l, ]} {, and 4DD’ 2bGav/f by [1], 8,
where c and/3 are given by

a /G(f + al(f)/2, (G(f-- a (f)/2.
So we can write the values of Q and Q’ by c and/3. Our table consists of the
following: 1. the conductor F of K, 2. the conductor f of k, 3. the basis
number a + bi of K, 4. the fundamental unit e of k, 5. the values of Q and
2’, 6. the relative fundamental unit E of K, 7. the relative norm n(E) of E,
8. the sign p of E’, 9. the integer solution X of (3), 10. the coordinates of 0,
11. the coordinates of E* 12 the relative norm n(E*) of E* 13 E’E*"

F
16

17

41

73

8O

85

89

97

113

137

2

8

17

41

73

8

17

89

97

113

137

a+ bi

2+2i
1+4i 4+,/

[2 + 2f, -i]

[(1 + -)/2, i]

5 + 4i 32 + 5]- (-/, a) [(5 + ]-)/2, i]

3 + 8i 1068 + 125- (a, ) [92 + 12, 18 + 14i]

2 + 2i + f (fl, a) [14 + 10f, + 3i]

+ 4i 4 + - (a, -/) [76 + 20f, 14 10i]

5 + 8i 500 + 53 (fl, a) [68 + 20f, 2 + 30i]

5604 + 569f9+4i

-7+8i

-11+4i

(-f,-cO

776 + 731,/]-

1744 / 14911-

[(9 + f9-)/2, i]

[4264 + 400,/13,
730 + 330i]

[(11 + 1)/2,- 1]

7

n(E)

-1
-1

-1

-1

-1

-1

-1

-1

-1

-1

8

P
+1
-1

-1

-1
-1

-1

-1

-1

+1

+1
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208

233

241

257

272

272

281

193

233

241

257

136

136

281

7 + 12i

2+2i

13 + 8i

15 + 4i

+ 16i

-6+10i

10 6i

5+ 16i

1764132
+ 126985J’]-

23156 + 1517
71011068

16 + 2-
35 + 634
35 + 6--

1063532
+ 634452-

[(903 + 631/]-)/2,
56 + 31i]

[62 + 26J-,-
[101876 + 66762/-,

3634- 12846i]

[(15 + 2)/2,- 1]

[191176 + 11752,/7,
16338 + 17138i]

[610 + 108, 66 + 36i]

[66 + 12, 2 8i]

[43380 + 25882J’]-,
3066- 4170i]

-1

-1

-1

-1

-1

+1

+1

-1

+1

-1

+1

+1

-1

-1

+1

9

X
8

66

10

[2, 1]

[4+ J, +i]

[13 + 2-,- 1- 3i]666

4418036 [1051 + 123J-, 202 + 140i]

88 [6 + 2/-, i]

11

E
[2 + 2-, 1]

[1,1 +i]

[6 + -, 3i]

[93 + 11/, 20 + 14i]

[2 + 4/, i]

8532 [47 + 11-, 8 6i] [1 + 3-, 2]

30980628 [2783 + 295/, 286 / 516/] [15 + /, 4 / 6/]

155218 [197 + 20-, 7- 33i] t [128 + 13-, 7- 33i]

158928292

26874

43784723698

[6303 + 59313, 1080 + 490i]

[82 + 713-,- 17- 3i]

[104624 + 7531/]-,
13063 + 7503i]

[529 + 49J]13, 90 + 40i]

[117 + 101i, 17- 3i]

[7613 + 5489-, 921 / 529/]

1048 [18 10J, 2 i] [38 + 28,/-, 2 5/]

271347635604

1636687906

33764767812

4616

2440

59390491284

[260455 + 170632,/--,
9294 32836i]

[20228 + 13032,/-,
2999- 393i]

[91877 + 573122,
7848 + 8354i]

[9063 + 593-, 324- I142i]

[26329 + 16962/,
2999- 393i]

[-2835+1812,-258+248i]

[42 + 43--, 3 + 3i] [654 + 112-, 69 + 39i]

[26 + 4--i 3i] [94 + 16J’, 3 11i]

[121851 + 72692-,
8612- 11714i]

[378627 + 225872-,
26758- 36396i]

12 13

n(E*) E’E*’
-E
+E
-E
-E
-E
-E
+E
-E

+ +E

+ -E

+ -E

- +E

+ -E

+ -E- +E- +E

+ -E

[11
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