42. On Hasse's Argorithm to Calculate Fundamental Units of Real Cyclic Biquadratic Fields*)

By Ken-ichi Yoshino
Department of Mathematics, Kanazawa Medical University
(Communicated by Shokichi IYanaga, M. J. A., June 7, 1994)

1. Introduction. Let K be a real cyclic biquadratic field with conductor F and k the quadratic subfield of K with conductor f. Let E_{K} and E_{k} be the groups of units of K and k, respectively. Hasse [1] defined the unit index of K as $Q_{K}=\left[E_{K}: H E_{k}\right]$, where H is the group of relative units of K, i.e., $H=\left\{\eta \in E_{K} ; N_{K / k}(\eta)= \pm 1\right\}$. Then $Q_{K}=1$ or 2 . Let E be the relative fundamental unit of K, i.e., H is generated by $\pm 1, E$ and the conjugate of E and let ε be the fundamental unit of k. For a number A of K, A is uniquely written in the form $A=\frac{1}{2}\left(u+\frac{v \tau(\chi)+v \tau(\chi)}{2}\right)=[u, v]$, where u, v are elements of $k, \boldsymbol{Q}(\sqrt{-1})$, respectively and $\tau(\chi)$ is the Gauss sum of a generator χ of the character group of K (cf. [1] §8). We call u and v the coordinates of A. If A is an integer of K, then u and v are integers of k and $\boldsymbol{Q}(\sqrt{-1})$, respectively. Let s be a generator of the Galois group of K over \boldsymbol{Q}. Let $A^{\prime}=A^{s}, A^{\prime \prime}=A^{s^{2}}, A^{\prime \prime \prime}=A^{s^{3}}$ be the conjugates of A. Let $a+b i$ be the basis number of K ("Basiszahl" von K in [1] p.30).

If $Q_{K}=2$, then there exists the unique positive unit E^{*} of K such that $E_{K}=<-1, E^{*}, E^{* \prime}, E^{* \prime \prime}>$ and
(1) $\quad E^{*} E^{* \prime}= \pm E, \quad N_{K / k}\left(E^{*}\right)= \pm \varepsilon$.
E^{*} is called the fundamental unit of K. By using (1) Hasse described a method of calculating the coordinates of E^{*} from ε and E ([1], §12 B). We put $E=\left[\left(x_{0}+x_{1} \sqrt{f}\right) / 2, y_{0}+y_{1} i\right]$ and $E^{*}=\left[\left(x_{0}^{*}+x_{1}^{*} \sqrt{f}\right) / 2, y_{0}^{*}+y_{1}^{*} i\right]$. Hasse's method is summarized as follows: To get the non-equivalent solutions $\left(x_{0}^{*}, x_{1}^{*}\right)$, we examine the principal ideals (α) of k such that $N((\alpha))=\left|x_{0}\right|$. And, to get the non-equivalent solutions $\left(y_{0}^{*}, y_{1}^{*}\right)$, we examine the ideals \boldsymbol{a} of k such that $N(\boldsymbol{a})=\left|x_{1}\right| / G$ and $\boldsymbol{a} \in C_{\hat{\varphi}}^{-1}$, where $G=$ F / f and $C_{\hat{\varphi}}$ is the ideal class of k which is corresponding to the primitive quadratic form $\widehat{\varphi}\left(y^{*}\right)=b\left(y_{0}^{* 2}-y_{1}^{* 2}\right) / 2+a y_{0}^{*} y_{1}^{*}$ with determinant f. We note that if $Q_{K}=2$ then G divides x_{1}. In this way we obtain a finite number of candidates $\left(x_{0}^{*}, x_{1}^{*}, y_{0}^{*}, y_{1}^{*}\right)$ for E^{*}. Among them there are solutions of (1). However, if we use Hasse's method to calculate the coordinates of E^{*} from ε and E, then the calculation is complicated in general, because the number of candidates for E^{*} is large.

In this note we shall modify Hasse's method and give a simple algorithm. That is, our method is based upon the following fact: $Q_{K}=2$ if and only if

[^0]there exists a unit γ of K such that $\gamma^{2}=\rho \varepsilon E E^{\prime}$, where $\rho=\operatorname{sign}\left(E^{\prime}\right)$. By our algorithm at most four candidates $\left(x_{0}^{*}, x_{1}^{*}, y_{0}^{*}, y_{1}^{*}\right)$ for E^{*} are easily obtained for any real cyclic biquadratic field K and one of them exactly gives the coordinates of E^{*}. The aim of this note is to prove the following algorithm, wherein (2), ..., (6) denote the equations in §2.

Algorithm. (i) Calculate $\rho \varepsilon E E^{\prime}=\left[\left(t_{0}+t_{1} \sqrt{f}\right) / 2, r_{0}+r_{1} i\right]$ from ε and $E=\left[\left(x_{0}+x_{1} \sqrt{f}\right) / 2, y_{0}+y_{1} i\right]$.
(ii) Calculate at most two integer solutions $\left(u_{0}, u_{1}\right)$ of (4) such that $u_{0} \geq 0$ for each integer solution X of (3).
(iii) For each (u_{0}, u_{1}) of (ii), calculate v_{0}, v_{1} by (5) and, when they are integers, examine whether or not $\left(u_{0}, u_{1}, v_{0}, v_{1}\right)$ satisfies the former two equations of (2).
(iv) For an integer solution $\left(u_{0}, u_{1}, v_{0}, v_{1}\right)$ of (2) such that $u_{0} \geq 0$, put $\theta=\left[\left(u_{0}+u_{1} \sqrt{f}\right) / 2, v_{0}+v_{1} i\right]$ and calculate the coordinates of $\theta E^{\prime \prime \prime}$.
(v) By the values of cosine sums Ω and Ω^{\prime}, calculate the approximate value of $\theta E^{\prime \prime \prime}$ and determine E^{*} by (6).

Using this algorithm, we shall also give a table of E and E^{*} for such a field K with conductor $F<300$, wherein we correct some errors in Hasse's table.
2. Proof of Algorithm. From now on we consider a real cyclic biquadratic field K with $Q_{K}=2$ and suppose that $E=[x, y]=\left[\left(x_{0}+\right.\right.$ $\left.\left.x_{1} \sqrt{f}\right) / 2, y_{0}+y_{1} i\right]$ is given. ε is easily calculated by the well known algorithm. We put $n(A)=N_{K / k}(A)$ for a number A of K. For the calculations of numbers of K, we need the following lemma which is shown in [1], §8. For $u=\left(u_{0}+u_{1} \sqrt{f}\right) / 2$ and $v=v_{0}+v_{1} i$, we $\operatorname{put} \varphi(v)=a\left(v_{0}^{2}-v_{1}^{2}\right)-2 b v_{0} v_{1}$, $\widehat{\varphi}(v)=b\left(v_{0}^{2}-v_{1}^{2}\right) / 2+a v_{0} v_{1} \quad$ and $\quad u{ }^{\circ} v=\left\{u_{0}\left(v_{0}+v_{1} i\right)+\sigma u_{1}(a-b i)\right.$. $\left.\left(v_{0}-v_{1} i\right)\right\} / 2$, where σ is the sign defined by [1], §7 (12). Let $N(u)$ and $N(v)$ be the norms of u and v, respectively and $G=F / f$.

Lemma 1. For a number $A=[u, v]$ of K, we have

$$
\begin{equation*}
A^{2}=\left[\frac{1}{2}\left(u^{2}+G \frac{N(v) f+\varphi(v) \sigma \sqrt{f}}{2}\right), u^{\circ} v\right] \tag{i}
\end{equation*}
$$

(ii) $A^{1+s}=\left[\frac{N(u)-G \widehat{\varphi}(v) \sigma \sqrt{f}}{2}, \frac{1+i}{2}\left(u^{\prime} \circ v\right)\right]$,
(iii) $n(A)=A^{1+s^{2}}=\frac{1}{4}\left(u^{2}-G \frac{N(v) f+\varphi(v) \sigma \sqrt{f}}{2}\right)$.

Using $E=\left[\left(x_{0}+x_{1} \sqrt{f}\right) / 2, y_{0}+y_{1} i\right]$, we first calculate the coordinates of $\rho \varepsilon E E^{\prime}$ by Lemma 1 (ii), where $\rho=\operatorname{sign}\left(E^{\prime}\right)=\left|E^{\prime}\right| / E^{\prime}$. Put $\rho \varepsilon E E^{\prime}=$ [$\left.\left(t_{0}+t_{1} \sqrt{f}\right) / 2, r_{0}+r_{1} i\right]$. Since $Q_{K}=2$, there is an integer γ of K such that $\gamma^{2}=\rho \varepsilon E E^{\prime}$. In the following we calculate the coordinate $[u, v$] of this unit r.

$$
\begin{gather*}
\text { Since } u=\left(u_{0}+u_{1} \sqrt{f}\right) / 2 \text { and } v=v_{0}+v_{1} i \text {, we obtain by Lemma } 1 \text { (i) } \\
u_{0}^{2}+u_{1}^{2} f+2 G\left(v_{0}^{2}+v_{1}^{2}\right) f=4 t_{0}, \\
u_{0} u_{1}+\sigma G\left\{a\left(v_{0}^{2}-v_{1}^{2}\right)-2 b v_{0} v_{1}\right\}=2 t_{1}, \tag{2}\\
u_{0} v_{0}+\sigma u_{1}\left(a v_{0}-b v_{1}\right)=2 r_{0}, \\
u_{0} v_{1}-\sigma u_{1}\left(a v_{1}+b v_{0}\right)=2 r_{1} .
\end{gather*}
$$

We note that integers $f, a, b, G, \sigma, t_{j}$ and $r_{j}(j=0,1)$ are given. It is obvious that the number of the integer solutions $\left(u_{0}, u_{1}, v_{0}, v_{1}\right)$ of (2) is exactly two, and that if we denote by ($u_{0}, u_{1}, v_{0}, v_{1}$) an integer solution of (2), the other one is given by $\left(-u_{0},-u_{1},-v_{0},-v_{1}\right)$. Therefore we may find an integer solution ($u_{0}, u_{1}, v_{0}, v_{1}$) of (2) such that $u_{0} \geq 0$.

Now, from $\rho \varepsilon E E^{\prime}=[u, v]^{2}$, we have $N(\varepsilon) E E^{\prime 2} E^{\prime \prime}=N(\varepsilon) n(E) E^{\prime 2}=$ $\left([u, v]^{1+s}\right)^{2}$, so that $\lambda \rho E^{\prime}=[u, v]^{1+s}$, where $\lambda=\operatorname{sign}\left([u, v]^{1+s}\right)$. So it follows from Lemma 1 (ii) that $N(u)=\lambda \rho x_{0}$ and $\sigma G \widehat{\varphi}(v)=\lambda \rho x_{1}$. Noting that $N(v)^{2} f=\varphi(v)^{2}+4 \widehat{\varphi}(v)^{2}$, we can eliminate v_{0} and v_{1} in the first two equations in (2). Namely we get

$$
16 t_{0}^{2}-8 t_{0}\left(u_{0}^{2}+u_{1}^{2} f\right)+\left(u_{0}^{2}+u_{1}^{2} f\right)^{2}=4 f\left(2 t_{1}-u_{0} u_{1}\right)^{2}+16 f x_{1}^{2}
$$

Since $u_{0}^{2}-u_{1}^{2} f=4 \lambda \rho x_{0}$, we have $t_{0}\left(u_{0}^{2}+u_{1}^{2} f\right)-2 f t_{1} u_{0} u_{1}=2\left(t_{0}^{2}+x_{0}^{2}-\right.$ $\left.f t_{1}^{2}-f x_{1}^{2}\right)$. Putting $X=\left(u_{0}^{2}+u_{1}^{2} f\right) / 2$ and $Y=u_{0} u_{1}$, we obtain

$$
\left\{\begin{array}{l}
X^{2}-f Y^{2}=4 x_{0}^{2} \\
t_{0} X-f t_{1} Y=4 N(t)+4 N(x)
\end{array}\right.
$$

where $N(t)$ and $N(x)$ are the norms of $t=\left(t_{0}+t_{1} \sqrt{f}\right) / 2$ and $x=\left(x_{0}+\right.$ $\left.x_{1} \sqrt{f}\right) / 2$, respectively. Thus we have

$$
N(t) X^{2}-2 t_{0}(N(t)+N(x)) X+4(N(t)+N(x))^{2}+f t_{1}^{2} x_{0}^{2}=0
$$

We now give a lemma.
Lemma 2. Under the above assumption and notation, we have

$$
N(t)+2 N(x)=-4 N(\varepsilon)+x_{0}^{2}
$$

Therefore

$$
(N(t)+N(x))^{2}-N(t) x_{0}^{2}=G^{2} \widehat{\varphi}(y)^{2} f
$$

Proof. By Lemma 1 (ii) we have $4 N(t)=N(\varepsilon)\left(N(x)^{2}-G^{2} \widehat{\varphi}(y)^{2} f\right)$. Since $Q_{K}=2, N(\varepsilon)=n(E)$. So Lemma 1 (iii) shows that $G N(y) f=$ $-8 N(\varepsilon)+x_{0}^{2}-2 N(x)$ and $\sigma G \varphi(y)=x_{0} x_{1}$. Hence it follows from these equations that

$$
\begin{aligned}
16 N(t)+32 N(x) & =N(\varepsilon)\left\{4 N(x)^{2}+32 N(\varepsilon) N(x)+G^{2} \varphi(y)^{2} f-G^{2} N(y)^{2} f^{2}\right\} \\
& =N(\varepsilon)\left(-64+16 N(\varepsilon) x_{0}^{2}\right)
\end{aligned}
$$

so that the first equation in Lemma 2 is obtained. The second equation is easily proved by the first one.

Now, by Lemma 2, the solutions of the above quadratic equation are given by

$$
\begin{equation*}
X=\left\{(N(t)+N(x)) t_{0} \pm F \hat{\varphi}(y) t_{1}\right\} / N(t) \tag{3}
\end{equation*}
$$

Since $Q_{K}=2$, at least one of these solutions is an integer. Hence, to get u_{0}, u_{1} which satisfy (2), we may calculate them by the following system of equations for each integer solution X of (3), because $u_{0}^{2}-u_{1}^{2} f= \pm 4 x_{0}$.

$$
\left\{\begin{array}{c}
u_{0}^{2}=X \pm 2 x_{0} \tag{4}\\
u_{1}^{2} f=X \mp 2 x_{0}
\end{array}\right.
$$

Here (4) formally means two systems of equations. However, since f is not a square of an integer, we may regard (4) as a system of equations. Therefore we obtain at most four integer solutions (u_{0}, u_{1}) of (4), because $u_{0} \geq 0$ and the number of integer solutions X is at most two.

On the other hand, the latter two equations in (2) give

$$
\begin{align*}
& \left(u_{0}^{2}-u_{1}^{2} f\right) v_{0}=2 r_{0}\left(u_{0}-\sigma a u_{1}\right)+2 \sigma b r_{1} u_{1}, \\
& \left(u_{0}^{2}-u_{1}^{2} f\right) v_{1}=2 r_{1}\left(u_{0}+\sigma a u_{1}\right)+2 \sigma b r_{0} u_{1} . \tag{5}
\end{align*}
$$

Hence, for each (u_{0}, u_{1}) which is an integer solution of (4), we examine whether or not v_{0} and v_{1} computed by (5) are both rational integers. If this is the case, we next examine whether or not $\left(u_{0}, u_{1}, v_{0}, v_{1}\right)$ satisfies the former two equations in (2). In this way we obtain an integer solution of (2), since $Q_{K}=2$. We denote it by $\left(u_{0}, u_{1}, v_{0}, v_{1}\right)$ and put $\theta=\left[\left(u_{0}+u_{1} \sqrt{f}\right) / 2, v_{0}+\right.$ $\left.v_{1} i\right]$. Then θ and $-\theta$ are exactly two solutions of $\gamma^{2}=\rho \varepsilon E E^{\prime}$. Next we calculate the coordinates of $\theta E^{\prime \prime \prime}$ by a formula in [1], p. 35 and calculate the approximate value of $\theta E^{\prime \prime \prime}$ by cosine sums Ω and Ω^{\prime} defined in [1], §8. Then we can obtain

$$
E^{*}=\left\{\begin{align*}
\theta E^{\prime \prime \prime} & \text { if } \theta E^{\prime \prime \prime}>0 \tag{6}\\
-\theta E^{\prime \prime \prime} & \text { otherwise }
\end{align*}\right.
$$

because $\theta E^{\prime \prime \prime}$ satisfies (1), i.e., $\theta E^{\prime \prime \prime} \theta^{\prime} E= \pm E$ and $\theta E^{\prime \prime \prime} \theta^{\prime \prime} E^{\prime}= \pm \varepsilon$.
Therefore we complete the proof of our algorithm.
3. Table of E and E^{*}. In the appendix of [1], Hasse tabulated the coordinates of E, E^{*}, the class number h of K and Q_{K} for a real cyclic biquadratic field K with conductor $F<100$. There are some errors in his table. Using our algorithm, we give a table of the fundamental unit E^{*} for a real cyclic biquadratic field K with conductor $F<300$, wherein the symbol " \dagger " denotes the correction of the error in Hasse's table. As to the values of Ω and Ω^{\prime}, we have $\left\{|\Omega|,\left|\Omega^{\prime}\right|\right\}=\{\alpha, \beta\}$ and $4 \Omega \Omega^{\prime}=-2 b G \sigma \sqrt{f}$ by [1], §8, where α and β are given by

$$
\alpha=\sqrt{G(f+|a| \sqrt{f}) / 2}, \quad \beta=\sqrt{G(f-|a| \sqrt{f}) / 2} .
$$

So we can write the values of Ω and Ω^{\prime} by α and β. Our table consists of the following: 1. the conductor F of $K, 2$. the conductor f of $k, 3$. the basis number $a+b i$ of $K, 4$. the fundamental unit ε of $k, 5$. the values of Ω and $\Omega^{\prime}, 6$. the relative fundamental unit E of $K, 7$. the relative norm $n(E)$ of E, 8. the $\operatorname{sign} \rho$ of E^{\prime}, 9. the integer solution X of (3), 10. the coordinates of θ, 11. the coordinates of $E^{*}, 12$. the relative norm $n\left(E^{*}\right)$ of $E^{*}, 13 . E^{*} E^{* \prime}$.

1	2	3	4	5	6	7	8
F	f	$a+b i$	ε	$\left(\Omega, \Omega^{\prime}\right)$	E	$n(E)$	ρ
16	8	$2+2 i$	$1+\sqrt{2}$	$(\alpha,-\beta)$	$[2+2 \sqrt{2}, 1-i]$	-1	+1
17	17	$1+4 i$	$4+\sqrt{17}$	(β, α)	$[(1+\sqrt{17}) / 2, i]$	-1	-1
41	41	$5+4 i$	$32+5 \sqrt{41}$	$(-\beta,-\alpha)$	$[(5+\sqrt{41}) / 2,-i]$	-1	-1
73	73	$-3+8 i$	$1068+125 \sqrt{73}$	(α, β)	$[92+12 \sqrt{73}, 18+14 i]$	-1	$\dagger-1$
80	8	$2+2 i$	$1+\sqrt{2}$	(β, α)	$[14+10 \sqrt{2}, 1+3 i]$	-1	-1
85	17	$1+4 i$	$4+\sqrt{17}$	$(\alpha,-\beta)$	$[76+20 \sqrt{17}, 14-10 i]$	-1	-1
89	89	$5+8 i$	$500+53 \sqrt{89}$	(β, α)	$[68+20 \sqrt{89}, 2+30 i]$	-1	-1
97	97	$9+4 i$	$5604+569 \sqrt{97}$	$(-\beta,-\alpha)$	$\dagger[(9+\sqrt{97}) / 2,-i]$	-1	$\dagger-1$
113	113	$-7+8 i$	$776+73 \sqrt{113}$	(α, β)	$[4264+400 \sqrt{113}$,	-1	+1
137	137	$-11+4 i$	$1744+149 \sqrt{137}$	$(-\alpha,-\beta)$	$[(11+\sqrt{137}) / 2,-1]$	-1	+1

193	193	$-7+12 i$	$\begin{aligned} & 1764132 \\ & +126985 \sqrt{193} \end{aligned}$	(α, β)	$\begin{gathered} {[(903+63 \sqrt{193}) / 2,} \\ 56+31 i] \end{gathered}$	- 1	+1
208	8	$2+2 i$	$1+\sqrt{2}$	$(-\beta,-\alpha)$	$[62+26 \sqrt{2},-1-7 i]$	-1	-1
233	233	$13+8 i$	$23156+1517 \sqrt{233}$	$(-\beta,-\alpha)$	$\begin{gathered} {[101876+6676 \sqrt{233},} \\ -3634-12846 i] \end{gathered}$	- 1	-1
241	241	$-15+4 i$	$\begin{aligned} & 71011068 \\ & +4574225 \sqrt{241} \\ & \hline \end{aligned}$	$(-\alpha,-\beta)$	$[(15+\sqrt{241}) / 2,-1]$	- 1	+1
257	257	$1+16 i$	$16+\sqrt{257}$	(β, α)	$\begin{gathered} {[191176+11752 \sqrt{257},} \\ 16338+17138 i] \end{gathered}$	- 1	+1
272	136	$-6+10 i$	$35+6 \sqrt{34}$	(α, β)	$[610+108 \sqrt{34}, 66+36 i]$	+1	-1
272	136	$10-6 i$	$35+6 \sqrt{34}$	$(\beta,-\alpha)$	$[66+12 \sqrt{34}, 2-8 i]$	+1	-1
281	281	$5+16 i$	$\begin{array}{\|l} 1063532 \\ +63445 \sqrt{281} \\ \hline \end{array}$	$(-\beta,-\alpha)$	$\begin{array}{\|c} {[43380+} \\ \\ -3588 \sqrt{281} \\ -3066-4170 i] \end{array}$	-1	+1

9	10	11	12	13
X	θ	E^{*}	$n\left(E^{*}\right)$	$E^{*} E^{* \prime}$
8	[2, 1]	$[2+2 \sqrt{2}, 1]$	+ ε	$-E$
66	$[4+\sqrt{17}, 1+i]$	[1, 1+i]	- ε	$+E$
666	$[13+2 \sqrt{41},-1-3 i]$	$[6+\sqrt{41},-1-3 i]$	- ε	$-E$
4418036	$[1051+123 \sqrt{73}, 202+140 i]$	[93+11 $73,20+14 i]$	- ε	-E
88	$[6+2 \sqrt{2}, i]$	$\dagger \quad[2+4 \sqrt{2}, i]$	$\dagger-\varepsilon$	$\dagger-E$
8532	$[47+11 \sqrt{17}, 8-6 i]$	[1+3, 17,2$]$	- ε	$-E$
30980628	$[2783+295 \sqrt{89}, 286+516 i]$	$[15+\sqrt{89}, 4+6 i]$	- ε	$\dagger+E$
155218	[197+20 $\sqrt{97},-7-33 i]$	$\dagger \quad[128+13 \sqrt{97},-7-33 i]$	- ε	$-E$
158928292	$[6303+593 \sqrt{113}, 1080+490 i]$	$[529+49 \sqrt{113}, 90+40 i]$	$+\varepsilon$	$+E$
26874	$[82+7 \sqrt{137},-17-3 i]$	$[117+10 \sqrt{137},-17-3 i]$	$+\varepsilon$	$-E$
43784723698	$\begin{array}{r} {[104624+7531 \sqrt{193},} \\ 13063+7503 i] \end{array}$	$[7613+548 \sqrt{193}, 921+529 i]$	$+\varepsilon$	$-E$
1048	$[18-10 \sqrt{2}, 2-i]$	$[38+28 \sqrt{2},-2-5 i]$	$-\varepsilon$	$-E$
271347635604	$\begin{gathered} {[260455+17063 \sqrt{233}} \\ -9294-32836 i] \end{gathered}$	$[9063+593 \sqrt{233},-324-1142 i]$	$-\varepsilon$	$+E$
1636687906	$\begin{gathered} {[20228+1303 \sqrt{241}} \\ -2999-393 i] \end{gathered}$	$\begin{aligned} {[26329+1696 \sqrt{241}} & \\ & -2999-393 i] \end{aligned}$	+ ε	$-E$
33764767812	$\begin{array}{\|c\|} \hline[91877+5731 \sqrt{257}, \\ 7848+8354 i] \\ \hline \end{array}$	$[-2835+181 \sqrt{257},-258+248 i]$	$+\varepsilon$	$-E$
4616	$[42+4 \sqrt{34}, 3+3 i]$	$[654+112 \sqrt{34}, 69+39 i]$	- ε	$+E$
2440	$[26+4 \sqrt{34}, 1-3 i]$	[94+16 $\sqrt{34}, 3-11 i]$	- ε	+ E
59390491284	$\begin{aligned} & {[121851+7269 \sqrt{281},} \\ &-8612-11714 i] \end{aligned}$	$\begin{aligned} {[378627+22587} & \sqrt{281} \\ & -26758-36396 i] \end{aligned}$	$+\varepsilon$	$-E$

Reference

[1] Hasse, H.: Arithmetische Bestimmung von Grundeinheit und Klassenzahl in zyklischen kubischen und biquadratischen Zahlkörpern. Abh. Deutsch. Akad. Wiss. Berlin, Math. Nat. Kl., 1948, Nr. 2, 3-95 (1950).

[^0]: *) Partially supported by Grant-in-Aid for Scientific Research (No. 05640073), Ministry of Education, Science and Culture, Japan.

