42. On Hasse's Argorithm to Calculate Fundamental Units of Real Cyclic Biquadratic Fields^{*)}

By Ken-ichi YOSHINO

Department of Mathematics, Kanazawa Medical University (Communicated by Shokichi IYANAGA, M. J. A., June 7, 1994)

1. Introduction. Let K be a real cyclic biquadratic field with conductor F and k the quadratic subfield of K with conductor f. Let E_K and E_k be the groups of units of K and k, respectively. Hasse [1] defined the unit index of K as $Q_K = [E_K : HE_k]$, where H is the group of relative units of K, i.e., $H = \{\eta \in E_K; N_{K/k}(\eta) = \pm 1\}$. Then $Q_K = 1$ or 2. Let E be the relative fundamental unit of K, i.e., H is generated by ± 1 , E and the conjugate of E and let ε be the fundamental unit of k. For a number A of K, A is uniquely written in the form $A = \frac{1}{2} \left(u + \frac{v\tau(\chi) + v\tau(\chi)}{2} \right) = [u, v]$, where u, v are elements of k, $Q(\sqrt{-1})$, respectively and $\tau(\chi)$ is the Gauss sum of a generator χ of the character group of K (cf. [1] §8). We call u and v the coordinates of A. If A is an integer of K, then u and v are integers of k and $Q(\sqrt{-1})$, respectively. Let s be a generator of the Galois group of K over Q. Let $A' = A^s$, $A''' = A^{s^2}$, $A''' = A^{s^3}$ be the conjugates of A. Let a + bi be the basis number of K ("Basiszahl" von K in [1] p. 30).

If $Q_{\kappa} = 2$, then there exists the unique positive unit E^* of K such that $E_{\kappa} = \langle -1, E^*, E^{*'}, E^{*''} \rangle$ and (1) $E^*E^{*'} = \pm E$, $N_{\kappa/\kappa}(E^*) = \pm \varepsilon$.

 E^* is called the fundamental unit of K. By using (1) Hasse described a method of calculating the coordinates of E^* from ε and E ([1], §12 B). We put $E = [(x_0 + x_1\sqrt{f})/2, y_0 + y_1i]$ and $E^* = [(x_0^* + x_1^*\sqrt{f})/2, y_0^* + y_1^*i]$. Hasse's method is summarized as follows: To get the non-equivalent solutions (x_0^*, x_1^*) , we examine the principal ideals (α) of k such that $N((\alpha)) = |x_0|$. And, to get the non-equivalent solutions (y_0^*, y_1^*) , we examine the ideals \mathbf{a} of k such that $N(\mathbf{a}) = |x_1|/G$ and $\mathbf{a} \in C_{\widehat{\varphi}}^{-1}$, where G = F/f and $C_{\widehat{\varphi}}$ is the ideal class of k which is corresponding to the primitive quadratic form $\widehat{\varphi}(y^*) = b(y_0^{*2} - y_1^{*2})/2 + ay_0^*y_1^*$ with determinant f. We note that if $Q_K = 2$ then G divides x_1 . In this way we obtain a finite number of candidates $(x_0^*, x_1^*, y_0^*, y_1^*)$ for E^* . Among them there are solutions of (1). However, if we use Hasse's method to calculate the coordinates of E^* from ε and E, then the calculation is complicated in general, because the number of candidates for E^* is large.

In this note we shall modify Hasse's method and give a simple algorithm. That is, our method is based upon the following fact: $Q_{\kappa} = 2$ if and only if

^{*)} Partially supported by Grant-in-Aid for Scientific Research (No. 05640073), Ministry of Education, Science and Culture, Japan.

there exists a unit γ of K such that $\gamma^2 = \rho \varepsilon E E'$, where $\rho = sign(E')$. By our algorithm at most four candidates $(x_0^*, x_1^*, y_0^*, y_1^*)$ for E^* are easily obtained for any real cyclic biquadratic field K and one of them exactly gives the coordinates of E^* . The aim of this note is to prove the following algorithm, wherein (2), ..., (6) denote the equations in §2.

Algorithm. (i) Calculate $\rho \varepsilon EE' = [(t_0 + t_1\sqrt{f})/2, r_0 + r_1i]$ from ε and $E = [(x_0 + x_1\sqrt{f})/2, y_0 + y_1i].$

(ii) Calculate at most two integer solutions (u_0, u_1) of (4) such that $u_0 \ge 0$ for each integer solution X of (3).

(iii) For each (u_0, u_1) of (ii), calculate v_0, v_1 by (5) and, when they are integers, examine whether or not (u_0, u_1, v_0, v_1) satisfies the former two equations of (2).

(iv) For an integer solution (u_0, u_1, v_0, v_1) of (2) such that $u_0 \ge 0$, put $\theta = [(u_0 + u_1\sqrt{f})/2, v_0 + v_1i]$ and calculate the coordinates of $\theta E'''$.

(v) By the values of cosine sums Ω and Ω' , calculate the approximate value of $\theta E'''$ and determine E^* by (6).

Using this algorithm, we shall also give a table of E and E^* for such a field K with conductor F < 300, wherein we correct some errors in Hasse's table.

2. Proof of Algorithm. From now on we consider a real cyclic biquadratic field K with $Q_K = 2$ and suppose that $E = [x, y] = [(x_0 + x_1\sqrt{f})/2, y_0 + y_1i]$ is given. ε is easily calculated by the well known algorithm. We put $n(A) = N_{K/k}(A)$ for a number A of K. For the calculations of numbers of K, we need the following lemma which is shown in [1], §8. For $u = (u_0 + u_1\sqrt{f})/2$ and $v = v_0 + v_1i$, we put $\varphi(v) = a(v_0^2 - v_1^2) - 2bv_0v_1$, $\widehat{\varphi}(v) = b(v_0^2 - v_1^2)/2 + av_0v_1$ and $u \circ v = \{u_0(v_0 + v_1i) + \sigma u_1(a - bi) \cdot (v_0 - v_1i)\}/2$, where σ is the sign defined by [1], §7 (12). Let N(u) and N(v) be the norms of u and v, respectively and G = F/f.

Lemma 1. For a number
$$A = [u, v]$$
 of K, we have

(i)
$$A^2 = \left[\frac{1}{2}\left(u^2 + G\frac{N(v)f + \varphi(v)\sigma\sqrt{f}}{2}\right), u \circ v\right]$$

(ii)
$$A^{1+s} = \left[\frac{N(u) - G\varphi(v)\sigma\sqrt{f}}{2}, \frac{1+i}{2}(u' \circ v)\right],$$

(iii)
$$n(A) = A^{1+s^2} = \frac{1}{4} \Big(u^2 - G \frac{N(v)f + \varphi(v)\sigma\sqrt{f}}{2} \Big).$$

Using $E = [(x_0 + x_1\sqrt{f})/2, y_0 + y_1i]$, we first calculate the coordinates of $\rho \varepsilon EE'$ by Lemma 1 (ii), where $\rho = sign(E') = |E'|/E'$. Put $\rho \varepsilon EE' = [(t_0 + t_1\sqrt{f})/2, r_0 + r_1i]$. Since $Q_K = 2$, there is an integer γ of K such that $\gamma^2 = \rho \varepsilon EE'$. In the following we calculate the coordinate [u, v] of this unit γ .

Since
$$u = (u_0 + u_1\sqrt{f})/2$$
 and $v = v_0 + v_1i$, we obtain by Lemma 1 (i)
 $u_0^2 + u_1^2f + 2G(v_0^2 + v_1^2)f = 4t_0,$
(2)
 $u_0u_1 + \sigma G\{a(v_0^2 - v_1^2) - 2bv_0v_1\} = 2t_1,$
 $u_0v_0 + \sigma u_1(av_0 - bv_1) = 2r_0,$
 $u_0v_1 - \sigma u_1(av_1 + bv_0) = 2r_1.$

No. 6]

K. YOSHINO

We note that integers f, a, b, G, σ , t_j and $r_j(j = 0, 1)$ are given. It is obvious that the number of the integer solutions (u_0, u_1, v_0, v_1) of (2) is exactly two, and that if we denote by (u_0, u_1, v_0, v_1) an integer solution of (2), the other one is given by $(-u_0, -u_1, -v_0, -v_1)$. Therefore we may find an integer solution (u_0, u_1, v_0, v_1) of (2) such that $u_0 \ge 0$.

Now, from $\rho \varepsilon EE' = [u, v]^2$, we have $N(\varepsilon) EE'^2E'' = N(\varepsilon)n(E)E'^2 = ([u, v]^{1+s})^2$, so that $\lambda \rho E' = [u, v]^{1+s}$, where $\lambda = sign([u, v]^{1+s})$. So it follows from Lemma 1 (ii) that $N(u) = \lambda \rho x_0$ and $\sigma G \widehat{\varphi}(v) = \lambda \rho x_1$. Noting that $N(v)^2 f = \varphi(v)^2 + 4 \widehat{\varphi}(v)^2$, we can eliminate v_0 and v_1 in the first two equations in (2). Namely we get

 $16t_0^2 - 8t_0(u_0^2 + u_1^2f) + (u_0^2 + u_1^2f)^2 = 4f(2t_1 - u_0u_1)^2 + 16fx_1^2.$ Since $u_0^2 - u_1^2f = 4\lambda\rho x_0$, we have $t_0(u_0^2 + u_1^2f) - 2ft_1u_0u_1 = 2(t_0^2 + x_0^2 - ft_1^2 - fx_1^2)$. Putting $X = (u_0^2 + u_1^2f)/2$ and $Y = u_0u_1$, we obtain $\int X^2 - fY^2 = 4x_0^2$,

$$\begin{cases} X & f \\ t_0 X - f t_1 Y = 4N(t) + 4N(x), \end{cases}$$

where N(t) and N(x) are the norms of $t = (t_0 + t_1\sqrt{f})/2$ and $x = (x_0 + x_1\sqrt{f})/2$, respectively. Thus we have

 $N(t)X^{2} - 2t_{0}(N(t) + N(x))X + 4(N(t) + N(x))^{2} + ft_{1}^{2}x_{0}^{2} = 0.$ We now give a lemma.

Lemma 2. Under the above assumption and notation, we have $N(t) + 2N(x) = -4N(\varepsilon) + x_0^2$.

Therefore

$$(N(t) + N(x))^{2} - N(t)x_{0}^{2} = G^{2}\widehat{\varphi}(y)^{2}f$$

Proof. By Lemma 1 (ii) we have $4N(t) = N(\varepsilon)(N(x)^2 - G^2 \widehat{\varphi}(y)^2 f)$. Since $Q_K = 2$, $N(\varepsilon) = n(E)$. So Lemma 1 (iii) shows that $GN(y)f = -8N(\varepsilon) + x_0^2 - 2N(x)$ and $\sigma G \varphi(y) = x_0 x_1$. Hence it follows from these equations that

$$16N(t) + 32N(x) = N(\varepsilon) \{4N(x)^2 + 32N(\varepsilon)N(x) + G^2\varphi(y)^2 f - G^2N(y)^2 f^2\}$$

= $N(\varepsilon) (-64 + 16N(\varepsilon)x_0^2),$

so that the first equation in Lemma 2 is obtained. The second equation is easily proved by the first one.

Now, by Lemma 2, the solutions of the above quadratic equation are given by

3)
$$X = \{ (N(t) + N(x))t_0 \pm F\widehat{\varphi}(y)t_1 \} / N(t) \}$$

Since $Q_K = 2$, at least one of these solutions is an integer. Hence, to get u_0 , u_1 which satisfy (2), we may calculate them by the following system of equations for each integer solution X of (3), because $u_0^2 - u_1^2 f = \pm 4x_0$.

(4)
$$\begin{cases} u_0^2 = X \pm 2x_0, \\ u_1^2 f = X \mp 2x_0. \end{cases}$$

Here (4) formally means two systems of equations. However, since f is not a square of an integer, we may regard (4) as a system of equations. Therefore we obtain at most four integer solutions (u_0, u_1) of (4), because $u_0 \ge 0$ and the number of integer solutions X is at most two.

On the other hand, the latter two equations in (2) give

No. 6] On Hasse's Argorithm to Calculate Fundamental Units

(5)
$$(u_0^2 - u_1^2 f) v_0 = 2r_0(u_0 - \sigma a u_1) + 2\sigma b r_1 u_1, (u_0^2 - u_1^2 f) v_1 = 2r_1(u_0 + \sigma a u_1) + 2\sigma b r_0 u_1.$$

Hence, for each (u_0, u_1) which is an integer solution of (4), we examine whether or not v_0 and v_1 computed by (5) are both rational integers. If this is the case, we next examine whether or not (u_0, u_1, v_0, v_1) satisfies the former two equations in (2). In this way we obtain an integer solution of (2), since $Q_{\rm K} = 2$. We denote it by (u_0, u_1, v_0, v_1) and put $\theta = [(u_0 + u_1\sqrt{f})/2, v_0 + v_1i]$. Then θ and $-\theta$ are exactly two solutions of $\gamma^2 = \rho \varepsilon E E'$. Next we calculate the coordinates of $\theta E'''$ by a formula in [1], p. 35 and calculate the approximate value of $\theta E'''$ by cosine sums Ω and Ω' defined in [1], §8. Then we can obtain

(6)
$$E^* = \begin{cases} \theta E''' & \text{if } \theta E''' > 0, \\ -\theta E''' & \text{otherwise,} \end{cases}$$

because $\theta E'''$ satisfies (1), i.e., $\theta E''' \theta' E = \pm E$ and $\theta E''' \theta'' E' = \pm \varepsilon$.

Therefore we complete the proof of our algorithm.

3. Table of E and E^* . In the appendix of [1], Hasse tabulated the coordinates of E, E^* , the class number h of K and Q_K for a real cyclic biquadratic field K with conductor F < 100. There are some errors in his table. Using our algorithm, we give a table of the fundamental unit E^* for a real cyclic biquadratic field K with conductor F < 300, wherein the symbol "†" denotes the correction of the error in Hasse's table. As to the values of Q and Q', we have $\{|Q|, |Q'|\} = \{\alpha, \beta\}$ and $4QQ' = -2bG\sigma\sqrt{f}$ by [1], §8, where α and β are given by

 $\alpha = \sqrt{G(f+|a|\sqrt{f})/2}, \qquad \beta = \sqrt{G(f-|a|\sqrt{f})/2}.$

So we can write the values of Ω and Ω' by α and β . Our table consists of the following: 1. the conductor F of K, 2. the conductor f of k, 3. the basis number a + bi of K, 4. the fundamental unit ε of k, 5. the values of Ω and Ω' , 6. the relative fundamental unit E of K, 7. the relative norm n(E) of E, 8. the sign ρ of E', 9. the integer solution X of (3), 10. the coordinates of θ , 11. the coordinates of E^* , 12. the relative norm $n(E^*)$ of E^* , 13. $E^*E^{*'}$.

1	2	3	4	5	6	7	8
F	f	a + bi	ε	(Ω, Ω')	Ε	n(E)	ρ
16	8	2 + 2i	$1 + \sqrt{2}$	$(\alpha, -\beta)$	$[2+2\sqrt{2}, 1-i]$	- 1	+ 1
17	17	1 + 4i	$4 + \sqrt{17}$	(β, α)	$[(1+\sqrt{17})/2, i]$	- 1	- 1
41	41	5 + 4i	$32 + 5\sqrt{41}$	$(-\beta, -\alpha)$	$[(5+\sqrt{41})/2, -i]$	- 1	- 1
73	73	-3 + 8i	$1068 + 125\sqrt{73}$	(α, β)	$[92 + 12\sqrt{73}, 18 + 14i]$	- 1	† - 1
80	8	2 + 2i	$1 + \sqrt{2}$	(β, α)	$[14 + 10\sqrt{2}, 1 + 3i]$	- 1	- 1
85	17	1 + 4i	$4 + \sqrt{17}$	$(\alpha, -\beta)$	$[76 + 20\sqrt{17}, 14 - 10i]$	- 1	- 1
89	89	5 + 8i	$500 + 53\sqrt{89}$	(β, α)	$[68 + 20\sqrt{89}, 2 + 30i]$	- 1	- 1
97	97	9 + 4i	$5604 + 569\sqrt{97}$	$(-\beta, -\alpha)$	$\dagger [(9 + \sqrt{97})/2, -i]$	- 1	† - 1
113	113	-7 + 8i	$776 + 73\sqrt{113}$	(α, β)	$\begin{matrix} [4264 + 400\sqrt{113}, \\ 730 + 330i \end{matrix}]$	- 1	+ 1
137	137	-11 + 4i	$1744 + 149\sqrt{137}$	$(-\alpha, -\beta)$	$[(11 + \sqrt{137})/2, -1]$	- 1	+ 1

[Vol. 70(A),

193	193	-7 + 12i	$1764132 \\+ 126985 \sqrt{193}$	(α, β)	$[(903 + 63\sqrt{193})/2, \\56 + 31i]$	- 1	+ 1
208	8	2 + 2i	$1 + \sqrt{2}$	$(-\beta, -\alpha)$	$[62+26\sqrt{2}, -1-7i]$	- 1	- 1
233	233	13 + 8 <i>i</i>	$23156 + 1517\sqrt{233}$	$(-\beta, -\alpha)$	$[101876 + 6676\sqrt{233}, \\ - 3634 - 12846i]$	- 1	- 1
241	241	- 15 + 4 <i>i</i>	$71011068 \\+ 4574225 \sqrt{241}$	$(-\alpha, -\beta)$	$[(15 + \sqrt{241})/2, -1]$	- 1	+ 1
257	257	1 + 16i	$16 + \sqrt{257}$	(β, α)	$[191176 + 11752\sqrt{257}, \\ 16338 + 17138i]$	- 1	+ 1
272	136	-6 + 10i	$35 + 6\sqrt{34}$	(α, β)	$[610 + 108\sqrt{34}, 66 + 36i]$	+ 1	- 1
272	136	10 - 6i	$35 + 6\sqrt{34}$	$(\beta, -\alpha)$	$[66 + 12\sqrt{34}, 2 - 8i]$	+ 1	- 1
281	281	5 + 16 <i>i</i>	$\frac{1063532}{+\ 63445\sqrt{281}}$	$(-\beta, -\alpha)$	$[43380 + 2588\sqrt{281}, \\ - 3066 - 4170i]$	- 1	+ 1

9	10	11	12	13
X	θ	<u> </u>	$n(E^*)$	$E^{*}E^{*'}$
8	[2, 1]	$[2+2\sqrt{2},1]$	+ε	- E
66	$[4 + \sqrt{17}, 1 + i]$	[1, 1+i]	-ε	+ E
666	$[13+2\sqrt{41}, -1-3i]$	$[6+\sqrt{41}, -1-3i]$	-ε	- E
4418036	$[1051 + 123\sqrt{73}, 202 + 140i]$	$[93 + 11\sqrt{73}, 20 + 14i]$	-ε	-E
88	$[6+2\sqrt{2}, i]$	† $[2+4\sqrt{2}, i]$	$\dagger - \epsilon$	$\dagger - E$
8532	$[47 + 11\sqrt{17}, 8 - 6i]$	$[1+3\sqrt{17}, 2]$	-ε	- E
30980628	$[2783 + 295\sqrt{89}, 286 + 516i]$	$[15 + \sqrt{89}, 4 + 6i]$	-ε	$\dagger + E$
155218	$[197 + 20\sqrt{97}, -7 - 33i]$	\dagger [128 + 13 $\sqrt{97}$, - 7 - 33 <i>i</i>]	-ε	-E
158928292	$[6303 + 593\sqrt{113}, 1080 + 490i]$	$[529 + 49\sqrt{113}, 90 + 40i]$	+ε	+ E
26874	$[82 + 7\sqrt{137}, -17 - 3i]$	$[117 + 10\sqrt{137}, -17 - 3i]$	+ε	- E
43784723698	$[104624 + 7531\sqrt{193}, 13063 + 7503i]$	$[7613 + 548\sqrt{193}, 921 + 529i]$	+ε	- E
1048	$[18 - 10\sqrt{2}, 2 - i]$	$[38+28\sqrt{2}, -2-5i]$	-ε	-E
271347635604	$\frac{[260455 + 17063\sqrt{233}, \\ - 9294 - 32836i]}{}$	$[9063 + 593\sqrt{233}, -324 - 1142i]$	-ε	+ E
1636687906	$[20228 + 1303\sqrt{241}, -2999 - 393i]$	$\frac{[26329 + 1696\sqrt{241},}{-2999 - 393i]}$	+ε	- E
33764767812	$\frac{[91877 + 5731\sqrt{257},}{7848 + 8354i]}$	$[-2835+181\sqrt{257}, -258+248i]$	+ε	- E
4616	$[42 + 4\sqrt{34}, 3 + 3i]$	$[654 + 112\sqrt{34}, 69 + 39i]$	-ε	+ E
2440	$[26 + 4\sqrt{34}, 1 - 3i]$	$[94 + 16\sqrt{34}, 3 - 11i]$	-ε	+ E
59390491284	$ \begin{bmatrix} 121851 + 7269\sqrt{281}, \\ -8612 - 11714i \end{bmatrix} $	$[378627 + 22587\sqrt{281}, -26758 - 36396i]$	+ε	- E

Reference

 Hasse, H.: Arithmetische Bestimmung von Grundeinheit und Klassenzahl in zyklischen kubischen und biquadratischen Zahlkörpern. Abh. Deutsch. Akad. Wiss. Berlin, Math. Nat. Kl., 1948, Nr. 2, 3-95 (1950).