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Abstract: We disprove a conjecture posed in [3] concerning a criterion

for the class group of complex quadratic orders to be generated by given

ideal classes. Secondly we prove a necessary and sufficient condition for

the class group C (for A < 0) to be generated by ambiguous ideals in

terms of the factorization of the Rabinowitsch polynomial. This shows that

the well-known Rabinowitsch result [5] linking ha 1 to the prirnality of

Frobenius-Rabinowitsch polynomial for A < 0 is not just a curiosity but

rather underlies a deeper phenomenon.

The results herein continue the work of [3]-[4] to which we refer the
reader for background and notation. The conjecture in [3, p. 48] says that
the converse of [3, Theorem 2.1, p. 46] holds. We now show that this is, in

fact, false. First, we need a useful technical result.
Lemma 1. Let A be a discriminant with conductor f such that (f,

F, (x)) 1 .for all integers x -- O. If a prime p divides A o then I) does not di-

vide F, (x) for any non-negative integers x.
Proof. Since

4F,1 (x) (2x -+- a 1) A,
then F,l(x) --- O(modp2) implies that p divides A; whence, p 2 and A
O(mod 4). However, in this case, F,l(x)-x -A/4--x --f2Do where
Do 2 or 3 (rood 4), a contradiction to F,(x) =- O(mod 4).

The following example shows that the conjecture is false for A > 0.
Example 1. Let A Ao- 22. 5" 11-- 220 where Do-- 55-= 3(rood

4), then C (Q2) where Q2 is the unique ideal over 2, and IMp] 7 ([y]
denotes the greatest integer less than or equal to y.) If the conjecture were
true, then there would exist an integer x

_
0 and a q 2 such that

F,q(X) 5r where r is not divisible by any unramified primes. By Lemma
1, 5r must be square-free; whence, r[ 22. We further note that F,x(x)

2x 55 and F,2(x) 2x + 2x-- 27. To examine the possibilities we
consider the following chart where we exhibit all F,q(X) such that
x -- O, q[2,5[F,q(x) and [F,q(X)[_ 110.

F, (x)

F,(x)

5"11
10

We observe that only ]F,(x)]- 5" 11 fits the criterion. However, the

5"17
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conjecture further states that we must now be able to find an integer y _> 0
and q]2 such that Fa,q(y) 11 which is clearly impossible.

The following example shows that the conjecture is false for A < 0.
Example 2. Let A =A0= --3 11 19 627-- l(mod4) then

[Ma] 14 and C (Qll) x (Q19 with Qa QIQ9 where Qq (for q
3, 11, or 19) is the unique ideal over q. If the conjecture were true then we

could have an integer x--> 0 and q 209 such that Fa,(x)= 3r where
r 209 (by Lemma 1). We now investigate this possibility in the following
chart where we exhibit all x 0 and Fa,(x) qx + qx + (q--A)/4q
with q[ 209, 3 Fa,v(x) and Fa,q(x) <- 627.

F, (x)
1 4 7 10

3"53 3.59 3"71 3"89
13

3.113
16

3.11.13
19

3.179

A,11 (X) 3"13 3"79

F,.(x) 3"17 3"131

x 1
F,2o9 (x) 3" 157

The chart yields no satisfaction of the necessary criterion, hence the
conjecture fails.

Remark 1. The main result of Halter-Koch in [1] is false. This moti-
vated our main result in [2] which not only corrected the error in [1] but
also provided a sufficient condition for the class group to be generated by
ambiguous ideals (hence of exponent ea --< 2). Theorem 2.1 of [3] weakened
the hypothesis of Theorem 3.1 of [2], generalized the result to arbitrary
orders and achieved the same conclusion as that of Theorem 3.1 of [2]. The
conjecture made in [3] said that the converse of Theorem 2.1 of [3] holds. Ex-
amples 1-2 above, show that this is false. However, these examples suggest
the hypothesis of Theorem 2.1 of [3] might be weakened further in order to
get a necessary and sufficient condition. For instance, in Example 1,
Fa,(10) --5" 9 and F,(8) -9; and in Example 2, F,19(1) 3" 17 and

F,II(O)- 17. Thus, one might be lured into thinking that perhaps the
hypothesis of Theorem 2.1 of [3] could be weakened by allowing r to be di-
visible by unramified primes. The following example shows that if we do so
then Theorem 2.1 of [3] fails.

Example 3. Let A 23. 13 then [Ma] 5 and both 3 and 5 split.
Since F,(x) x + 26 and Fz,2(x) 2x2 -- 13, then Fz,2(2) 21 and

F,2(5) 3" 21, while F,t(5) 51 and F,2(11) 5" 51. However, C 4:

(Q2),infact, C (Q2) x (Qa),with h 6.
The following example shows how (even for maximal orders) Theorem

2.1 of [3] is an improvement over Theorem 3.1 of [2] in that we may have C
generated by ambiguous ideals with IF,q(X) not being prime for all re-
levant non-inert primes less than M.
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Example 4. Let A 2. 3" 7 then [MJ 5 and C- (Q>
(Q3> with the split prime Q QQ. A look at F,() for q16 shows that

F,(x) 5 for any q and any x >- 0. However, Fa,(3) 5"7 and F,3(0)
7.

Despite the negative aspects of Examples 1-3, we now obtain necessary
and sufficient conditions for the generation of C by ambiguous ideals when
A < 0 in terms of the factorization of the Rabinowitsch polynomial Fa,(x).
This result (Theorem 1 below) turns out to be a very palatable generaliza-
tion of the well-known Rabinowitsch [5] result for complex quadratic fields
and yields more recent results in the literature as consequences such as
Sasaki [61.

The following generalizes [6, Lemma 2, p. 38].
Lemma 2. If A < 0 is a discriminant and I [a, b + w] is a primi-

tive, regular ideal of Oa with N(b + o9) < N(OOA) then I is principal if and
only if a= 1 or a N(b + ooa).

Proof Clearly, if a 1, then I is principal and if a N(b + w) then
I (b + co) is principal. On the other hand, if I [a, b + co] 1 and
ac N(b + c%) < N(OgA) then either a < N(WA) or c < N(c%). However,
since I I then there are integers x and y with c ax + (b + og)y and
N(c) a. Thus, a (ax + by) + (oo + (o)xy +
N(wa) if y 4: 0, since N(wa) > 0 when A < 0. Thus, if a < N(wa)then
a= 1. If c<N(coa) then since (b+wa) [ac, b+
[c, b + ooa] we must have [c, b + ooa] 1. By the same argument as above,
--1o

Corollary 1. If A < 0 and I [a, b + ooa] is a primitive, regular ideal

of Oa and 1 < a < N(ooa), N(b + wa) < N(wa) then I is not principal.
We will also need the following useful fact.
Lemma 3. If A < 0 (A 4: 3, 4) is a discriminant then Fa, (x)

< N(ooa) if and only ifx I {0,1,2,...,[I A I/4 1l).
Proof. We have that Fa,(x)= ((ax+ a--1)a- D)/a. If a 1,

then [I B I/4 II D 1. whence, Fa,(x) <_ Fa,(-- D 1) (D +
1)a- D D + D + 1 < Da- N(wa) unless A 4 which is excluded
by hypothesis. If a 2, then lib I/4--1] (D+ 7)/4; whence,
Fa,(x) < Fa,(-- (D 4- 7)/4) ((1 (D + 7)/2) D)/4 (D + 6D
+ 25)/16 < (D- 2D+ 1)/16 N(wa) , unless A 3 which is
excluded by hypothesis. Hence, if x I then F,(x) < N(wa) .

Suppose that Fa,t(x)<N(c%) . If a 1 then
(-- D) =D2- D>D’= N(wa)". Thus, x_<lAI/4-- 1. If a= 2 then

Fa,(-- (D + 3)/4) N(wa) . Since (D + 3)/4 [1 zll/4 1] where
Ix] denotes the least integer greater than or equal to x, then x--< (D-+-
7)/4 tl All4 1J.

Remark 2. It is worth observing that the proof of Lemma 3 actually
shows that x [I A1 1] is the largest integer such that F,(x) is less
than N(ooa) .

Definition 1. Let F(A) denote the maximum number of (not necessarily
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distinct) primes which divide F4,1(x) for any x I.
Although the following holds for arbitrary orders we prove it only for

maximal orders so that we may present it in its most palatable, and as it
turns out, most useful form.

Theorem 1. Let A A0 < 0 (A #= 3, 4) be a discriminant divisible by
exactly N 4-1 (N >-O)distinct primes then C4 is generated by ambiguous
ideals if and only if h4 2

F4)-
and F(A) N + 1.

Proof. Since Gauss tells us that C4 is generated by ambiguous ideals if
and only if h4 2

g
then the ’if’ part of the proof is clear. We now prove the

’only if’ part.
First we establish that 2

F4)-
h4. If N--0 then h4---- 1 so this is

clear (observing that F(A) >_ 1 since F(A) --0 if and only if A 3 or

4). So assume thatN>- 1 and let C4 (Q) (Q) (QN) with

h 2
g

where Qi is the unique 04-prime above the prime divisor q of
A for i-- 1,2,... ,N. By Gauss, A is divisible by exactly one more distinct
prime qN+ which we may assume without loss of generality (by Theorem 1.2
of [3]) is the largest such prime. Form the ideal Q 1-I N= Q which has a
representation Q [q, b + oo4] where 0 --< b < q H Ni=l q" Moreover,
q < A I/4 1 (since A 3 or 4 by hypothesis, and A 4= 7 for
which N 0). Since Q is not principal (being the product of the generators
of C4) then q divides N(b + oo4) F4,(b) > q. Hence, F(A) >_ N + 1" i.e.,
2
F<4)-x

h4. Now we show that h4 >_ F(A) 1.
Let F(A)= n then there exists an x I such that r= II M=lp’=

F4,x(x) where the p’s are distinct primes for 1 _< i--< M and e- n
(M > 1 since F(A) 0 if and only if A 3 or 4). Thus if P [IM

P’ Jr, x + oo4] where P is a fixed choice of ideal over p for 1 --< --< M
then P is a primitive principal ideal since N(x + oo4) -F4,(x) r. Now,
let S’c_ S-- {1,2,... ,N} be the subset of indices, i, such that e is odd.
Hence, (since e4 <-- 2) we have 1 P [Is,P Jr’, x + oo4] where r"
[Is,P. Therefore, by Lemmas 2-3, either r’= 1 (in which case e is even
for all S) or r’= r (in which case e 1 for all S and n M). If
the former occurs then 1 P Px [p, x + co4]. By Lemma 2, p N(x
+ w4) r; i.e., M 1 and el 2 n. Thus px < N(m4) and h4 -> 2
2
4)-x

by Corollary 1. Thus for the remainder of the proof, we may assume
the latter above" i.e., that n F(A) M and e 1 for 1 <_" <-- M.

Suppose that a and a2 are two positive relatively prime divisors of r. If
I [a, x + oo4] I,. [aa, x + w4] then J II, [ala,., x + oo4]
I: 1 since ea <- 2. Moreover, ] is a principal, primitive ideal since gcd(a,
a,) 1. Therefore, by Lemma 2, N(x + m4) aa,.. Thus, the exact num-
ber of equivalences among ideals whose norms are relatively prime positive
divisors of r is equal to the number of distinct factorizations of r into 2 posi-
tive factors (where order of the factors is not taken account). We claim that
this number is 2-. To see this, a simple induction argument will suffice. If
n 1 then there is the trivial factorization r p-1 (p 1 or Pt prime)

2’-1 2
0 2"-only; i.e., 1 such factorizations. Assume that 1-I n-= p has
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factorizations and we prove that r H n 2n-1i=lPi has factorizations. To the
2n-2 factorization of I-I n-1i=1 Pi we must add those now involving Pn and there

n-1 n-l)are =o of them (since for each i 0 1 n I we choose i of the
E.-1 (n-1p’s to form a product with Pn). Moreover, =o ) (since this is

just a special case Of the binomial theorem (a + b)- =on- ()n- a-l-b
with a b 1). Hence there are a total of 2" 2- 2- distinct Iactoriza-
tions of r, thereby securing the claim.

We have therefore shown that there are v(r)- 2n-- 2’- 2n--

2n-1 pairwise inequivalent ideals" i.e., h -> 2
()-1

Remark 3. The proof of Theorem 1 actually contains some hidden in-
formation which we isolate below. First we need another definition.

Definition 2. Let G(A) denote the maximum mumber of distinct primes
which divide F,l(x) for any x I.

Corollary 2. If A A
0 < 0 (A = 3, 4) CA is generated by ambi-

guous ideals then F(A) G(A) N + 1.
Proof The proof of Theorem 1 shows that the result holds except poss-

ibly when F(A) 2. We now show that if F(A)--2 then G(A)- 2. By
Theorem 1, ha 2. If A 0 (rood 8) then F,I(0) A/4 is even compo-
site. If A----4(rood8) then F,(1)= I- A/4 is even composite (since
A < --4 when h 2). If A l(modS) then FA,I(0) (1 --LI)/4 is
even composite. If A 5(rood 8) then h 2 implies A qq where
q =/= q(mod 4). Thus Fa,((q 1)/2) q(q + q0/4 is composite.

Corollary 3. F(A) _> N+ 1 for any discriminant A Ao 0 (A =/=

3, --4).
Proof By Gauss, CA always contains an elementary abelian 2-subgroup

of order 2. The result now follows as in the second paragraph of the proof
of Theorem 1.

Remark 4. In [6], Sasaki observed (in his Remark at the end of the pap-
er) that there are fields for which h > F(A) and cites A 21 as an ex-
ample where h 4 and F(A) 3. However, Theorem 1 asserts that C is
generated by ambiguous ideals if and only if hA 2

()-
2N-. Thus ha

F(A) if and only if h 1 or 2 (when ea _< 2). These fields are uniquely
characterized by the following well-known results.

Corollary4(Rabinowitsch [5]). IrA Ao< 0(A =/= 3, 4) is adis-
criminant then h 1 if and only if F(LI) 1.

Proof. If hA 1 then by Theorem 1, F(LI)= 1. If F(AI)= 1 and p
v/- A/3 is any non-inert prime, then we may form the ideal P [p, b

+ WA] where 0 --< b < p < /-- A/3 --< A/4 (since A :/: 3, 4). Since
p[N(b + WA) then FA,I(b) N(b + oo) p so P 1. This secures the re-
sult by Theorem 1.2 of [3].

Corollary 5 (Sasaki [6]). If A Ao 0 is a discriminant then h 2
if and only if F(A) 2.

Proof If h 2 then F(AI) 2 by Theorem 1. If F(A) 2 then letP
and Q be any non-principal prime ideal. We may assume that A <_ 12
(since h 1 otherwise contradicting Corollary 3). Thus I [pq, b +
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w] with 0 <_ b<pq< A/3 <_ -A/4- 1, thus N(b+ ooa) Fa,l(b)
-pq forcing PQ 1. In particular if P Q then 1; i.e., e --2.
Furthermore, if ha > 4 then let P and Q be distinct generators of Ca. Since
PQ 1 then P Q’ Q (since the conjugate Q’ must be in the same class
as Q when ea 2), a contradiction.

Remark 5. We note that the condition F(A)= N + 1 cannot be re-
moved in Theorem 1 and still maintain a necessary and sufficient condition.
Although we have clearly shown that when Ca is generated by ambiguous
ideals then ha --2F)-I, the converse fails without the condition that
F(A) N + 1. For example, if A 23. 23 then N 1, F(A) 3, ha
4 2Fa)-, but Ca is cyclic. We have also shown that if Ca is generated by
ambiguous ideals then F(A) N-+- 1. However, if we remove the condition
ha ----2

<a)-
then the converse fails. For example, if A 9867 then

F(A) N + 1 = 4 but ha 24 4= 2r<)-. Hence Ca has an element of order
4.
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