35. An Example of Elliptic Curve over $\mathbf{Q (T)}$ with Rank ≥ 13

By Koh-ichi NAGAO
Shiga Polytechnic College*)
(Communicated by Shokichi IYanaga M. J. A., May 12, 1994)

Abstract: We construct an elliptic curve over $Q(T)$ with rank ≥ 13.

In [1](resp. [2]), Mestre constructed elliptic curves over $Q(T)$ with rank ≥ 11 (resp. 12). In this paper, we construct an elliptic curve over $Q(T)$ with rank ≥ 13 using Mestre's method. As was explained in [1], for any 6 -ple
$A=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}\right) \in Z^{6}$, we put $q_{A}(X)=\Pi_{i=1}^{6}\left(X-\alpha_{i}\right)$ and put $p_{A}(X)=q_{A}(X-T) * q_{A}(X+T) \in Q(T)[X]$. Then there are $g_{A}(X)$ and $r_{A}(X) \in Q(T)[X]$ with $\operatorname{deg} g_{A}=6, \operatorname{deg} r_{A} \leq 5$ such that $p_{A}=g_{A}^{2}-$ r_{A}. Then the curve $Y^{2}=r_{A}(X)$ contains $12 Q(T)$-rational points P_{1}, \ldots, P_{12} where $P_{i}=\left(T+\alpha_{i}, g_{A}\left(T+\alpha_{i}\right)\right), P_{i+6}=\left(-T+\alpha_{i}, g_{A}\left(-T+\alpha_{i}\right)\right)(1 \leq$ $i \leq 6$) 。

Let c_{5} be the coefficient of X^{5} of $r_{A}(X)$. By a suitable choice of A, we can assume that $c_{5}=0$. In the following, A will be always chosen so that $c_{5}=0$. Then $Y^{2}=r_{A}(X)$ gives an elliptic curve over $Q(T)$ which will be denoted by \mathscr{E}_{A}.

Now, let $A=(148,116,104,57,25,0)$. (Then we have $c_{5}=0$.) In this case, the equation of the curve \mathscr{E}_{A} and its $Q(T)$-rational points P_{1}, \ldots, P_{12} are written as follows.

$$
\begin{aligned}
Y^{2}= & \left(9 T^{2}+211950\right) X^{4}+\left(-2700 T^{2}-63901710\right) X^{3}+ \\
& \left(-18 T^{4}+396150 T^{2}+6706476489\right) X^{2}+\left(2700 T^{4}-\right. \\
& \left.29575350 T^{2}-284435346600\right) X+9 T^{6}-159200 T^{4}+ \\
& 891699592 T^{2}+4156297690000, \\
P_{1}= & {\left[T+148,662 T^{2}+66873 T+1868944\right] } \\
P_{2}= & {\left[T+116,-554 T^{2}-39687 T-191632\right] } \\
P_{3}= & {\left[T+104,-526 T^{2}-28497 T+163372\right] } \\
P_{4}= & {\left[T+57,508 T^{2}-19332 T-368809\right] } \\
P_{5}= & {\left[T+25,580 T^{2}-49116 T+566825\right] } \\
P_{6}= & {\left[T,-670 T^{2}+69759 T-2038700\right] } \\
P_{7}= & {\left[-T+148,-662 T^{2}+66873 T-1868944\right] } \\
P_{8}= & {\left[-T+116,554 T^{2}-39687 T+191632\right] } \\
P_{9}= & {\left[-T+104,526 T^{2}-28497 T-163372\right] } \\
P_{10}= & {\left[-T+57,-508 T^{2}-19332 T+368809\right] } \\
P_{11}= & {\left[-T+25,-580 T^{2}-49116 T-566825\right] } \\
P_{12}= & {\left[-T, 670 T^{2}+69759 T+2038700\right] }
\end{aligned}
$$

By a direct calculation, we see that \mathscr{E}_{A} contains another $Q(T)$-rational point

[^0]$P_{13}=\left[(T+703) / 15,\left(-224 T^{3}-844 T^{2}+900484 T+2161725\right) / 75\right]$.
(The existence of this point is important to break the record.)
Now we put $c_{4}=9 T^{2}+211950$ (the coefficient of X^{4} of r_{A}). The equation $S^{2}=c_{4}(T)$ has a solution parametrized by T^{\prime}
$$
[T, S]=\left[\left(-T^{\prime 2}+23550\right) / 2 T^{\prime}, 3\left(T^{\prime 2}+23550\right) / 2 T^{\prime}\right]
$$

We consider the curve \mathscr{E}_{A}^{\prime} (defined over rational function field $Q\left(T^{\prime}\right)$) which is obtained from \mathscr{E}_{A} by specialization $T \rightarrow\left(-T^{\prime 2}+23550\right) / 2 T^{\prime}$. Then, the 2-points P_{∞} and P_{∞} at infinity of \mathscr{E}_{A}^{\prime} become $Q\left(T^{\prime}\right)$-rational points in the same way as in [2].

Theorem. $\quad Q(T)$-rank of \mathscr{E}_{A}^{\prime} is ≥ 13.
Proof. Now let E be the elliptic curve over Q obtained from \mathscr{E}_{A}^{\prime} by specialization $T^{\prime} \rightarrow 1$ and let $p_{i}\left(i=1,2, \ldots 13, \infty, \infty^{\prime}\right)$ be the rational-points of E obtained from P_{i} by the above specialization. Then in order to prove our theorem, we will show that p_{1}, \ldots, p_{13} are independent points on E when group structure is given by p_{∞} at origin.

It is known (cf. [3] p. 77) that the curve $Y^{2}=a^{2} X^{4}+b X^{3}+c X^{2}+$ $d X+e(a, b, c, d, e \in Q)$ is Q-isomorphic to the Weierstrass model $Y^{2}=$ $X^{3}+c X^{2}+\left(b d-4 a^{2} e\right) X+\left(b^{2} e+a^{2} d^{2}-4 a^{2} c e\right)$ by the map $\phi(X, Y)=\left(-2 a Y+2 a^{2} X^{2}+b X, 4 a^{2} X Y+b Y-4 a^{3} X^{3}-3 a b X^{2}-2 a c X-a d\right)$. By this map, one of the points at infinity of the former curve goes to the unique point at infinity of Weierstrass model. Then we get a Weierstrass model of E. By using calculation system PARI, we see that the determinant of the matrix $\left(\left\langle\phi\left(p_{i}\right), \phi\left(p_{j}\right)\right\rangle\right)_{1 \leq i, j \leq 13}$ associated to the canonical height is 2910704763254221.2813489. Since this determinant is non-zero, we see that p_{1}, \ldots, p_{13} are independent points, and we finish the proof.

References

[1] J. F. Mestre: Courbes elliptiques de rang ≥ 11 sur $Q(T)$. C. R. Acad. Sci. Paris, 313, ser. 1, 139-142 (1991).
[2] -: Courbes elliptiques de rang ≥ 12 sur $Q(T)$. ibid., 313, ser. $1,171-174$ (1991).
[3] L. J. Mordell: Diophantine Equations. Academic Press (1968).

[^0]: *) 1414 Hurukawa-cho, Oh-mihachiman-shi 523.

