33. Number Variance of the Zeros of the Epstein Zeta Functions

By Akio FUJII
Department of Mathematics, Rikkyo University
(Communicated by Shokichi IYANAGA M. J. A., May 12, 1994)

§1. Introduction. Let $Q(x, y)=a x^{2}+b x y+c y^{2}$ be a positive definite quadratic form with discriminant $d=b^{2}-4 a c$, where a, b and c are real numbers and $a>0$. Then the Epstein zeta function $\zeta(s, Q)$ is defined by

$$
\zeta(s, Q)=\frac{1}{2} \sum_{x, y}^{\prime} Q(x, y)^{-s} \quad \text { for } \sigma=\Re(s)>1
$$

where x, y runs over all integers excluding $(x, y)=(0,0)$ and $s=\sigma+i t$ with real numbers σ and t. We put

$$
k=\frac{\sqrt{|d|}}{2 a}
$$

It has been the subject of many mathematicians to study the distribution of the zeros of $\zeta(s, Q)$ from the view point of the comparison with that of the Riemann zeta function $\zeta(s) . \zeta(s, Q)$ does not in general have Euler product expansion, while that of $\zeta(s)$ has been the key source for the proofs of various properties of the distribution of its zeros. Hence it is natural that $\zeta(s, Q)$ has in general the properties which the functions like $\zeta(s)$ never have. For example, $\zeta(s, Q)$ has in general a real zero between 0 and 1 (cf. Bateman-Grosswald [2]). In certain cases, $\zeta(s, Q)$ has even infinitely many zeros in $\Re(s)>1$ (cf. Davenport and Heilbronn [4]). On the other hand, surprisingly enough, the Epstein zeta functions have in general also the properties which one has expected only to the functions like $\zeta(s)$. For example, $\zeta(s, Q)$ has infinitely many zeros on the critical line $\Re(s)=1 / 2$ (cf. Kober [9]). More recently and more strongly, it has been shown under certain hypothesis by Bombieri and Hejhal [3] and Hejhal [7], that almost all the zeros of $\zeta(s, Q)$ with integral a, b and c lie on the critical line $\Re s=1 / 2$. So we are left in the mist.

A remarkable result, bridging these two opposite directions, proved by Stark [13], is that " k-analogue" of the "Riemann Hypothesis" hold for the Epstein zeta functions. The purpose of the present article is to show that " k-analogue" of GUE law fails for the Epstein zeta functions. As we have shown in [5][6] (cf. also [1] and [11]), this should be distinguished completely from the other zeta functions like $\zeta(s)$.

We start with recalling Stark's " k-analogue" of the "Riemann Hypothesis". Stark [13] has shown that
for $k>K$, all the zeros of $\zeta(s, Q)$ in the region $-1<\sigma<2,-2 k \leq t$ $\leq 2 k$ are simple zeros; with the exception of two real zeros between 0 and 1 , all
are on the line $\sigma=1 / 2$ and that for $0<T \leq 2 k$,

$$
N(T, Q)=\frac{T}{\pi} \log \left(\frac{k T}{\pi e}\right)+O\left(\log ^{\frac{1}{3}}(T+3)(\log \log (T+3))^{\frac{1}{6}}\right)
$$

where $N(T, Q)$ denotes the number of the zeros of $\zeta(s, Q)$ in the region -1 $<\sigma<2,0 \leq t \leq T$.

As is seen in Stark's paper [13], we have for $0<T \leq 2 k$,

$$
N(T, Q)=F_{Q}(T)+\Delta_{Q}(T),
$$

where

$$
F_{Q}(T)=\frac{1}{\pi} \arg \left(\frac{k}{\pi}\right)^{\frac{1}{2}+i T}+\frac{1}{\pi} \arg \Gamma\left(\frac{1}{2}+i T\right)+\frac{1}{\pi} \arg \zeta(1+i 2 T)
$$

and

$$
\left|\Delta_{Q}(T)\right| \leq C
$$

C being always some positive constant.
Since

$$
\frac{1}{\pi} \arg \left(\frac{k}{\pi}\right)^{\frac{1}{2}+i T}+\frac{1}{\pi} \arg \Gamma\left(\frac{1}{2}+i T\right)=\frac{T}{\pi} \log \left(\frac{k T}{e \pi}\right)+O(1)
$$

the number variance with which we are concerned is

$$
\frac{1}{T} \int_{T}^{2 T-2}\left(S_{Q}\left(t+\frac{\alpha \pi}{\log \frac{k T}{\pi}}\right)-S_{Q}(t)\right)^{2} d t
$$

where we put

$$
S_{Q}(t)=\frac{1}{\pi} \arg \zeta(1+i 2 t)+\Delta_{Q}(t) .
$$

If it obeys GUE law, then it must be that

$$
\frac{1}{T} \int_{T}^{2 T-2}\left(S_{Q}\left(t+\frac{\alpha \pi}{\log \frac{k T}{\pi}}\right)-S_{Q}(t)\right)^{2} d t \sim C \log \alpha \text { as } \alpha \rightarrow \infty
$$

Contrary to this, we can show the following theorem.
Theorem. For $k>K$ and $0<T \leq k$, there exists some positive constant C such that

$$
\frac{1}{T} \int_{T}^{2 T-2}\left(S_{Q}\left(t+\frac{\alpha \pi}{\log \frac{k T}{\pi}}\right)-S_{Q}(t)\right)^{2} d t \leq C
$$

uniformly for positive $\alpha \leq \frac{1}{\pi} \log \frac{k T}{\pi}$.
Consequently, we see that as $k \rightarrow \infty$

$$
\frac{1}{k} \int_{k}^{2 k-2}\left(S_{Q}\left(t+\frac{\alpha \pi}{\log \left(k^{2} / \pi\right)}\right)-S_{Q}(t)\right)^{2} d t \leq C
$$

uniformly for positive $\alpha \leq(1 / \pi) \log \left(k^{2} / \pi\right)$. Thus we see that " k analogue" of GUE law fails for the Epstein zeta functions.

To prove the above theorem, we shall prove the following lemma which is more general than what we need.

Lemma. For any σ in $1 / 2<\sigma \leq 1$, there exists a positive constant $\delta(\sigma)$ which may depend on σ such that

$$
\int_{T}^{2 T}(\arg (\zeta(\sigma+i(t+h)))-\arg (\zeta(\sigma+i t)))^{2} d t
$$

$$
=T \sum_{n=2}^{\infty} \frac{\Lambda^{2}(n)}{n^{2 \sigma} \log ^{2} n}(1-\cos (h \log n))+O\left(T^{1-\delta(\sigma)}\right)
$$

uniformly for $0<h \ll T$, where $\Lambda(n)$ is the von-Mangoldt function defined by

$$
\Lambda(n)= \begin{cases}\log p & \text { if } n=p^{k} \text { with a prime number } p \text { and on integer } k \geq 1 \\ 0 & \text { otherwise. }\end{cases}
$$

It is clear that this for $\sigma=1$ implies our Theorem stated above, since $\Delta_{Q}(t)=O(1)$.
§2. Proof of Lemma. Suppose that $2 \leq X=T^{a} \leq T^{2}, a$ is a sufficiently small positive constant which may depend on σ. We put

$$
\sigma_{X, t}=\frac{1}{2}+2 \max _{\rho}\left(\beta-\frac{1}{2}, \frac{2}{\log X}\right),
$$

ρ running here through all zeros $\beta+i \gamma$ of $\zeta(s)$ for which

$$
|t-\gamma| \leq \frac{X^{3\left|\beta-\frac{1}{2}\right|}}{\log X}
$$

We put further

$$
\Lambda_{X}(n)= \begin{cases}\Lambda(n) & \text { for } 1 \leq n \leq X \\ \Lambda(n) \frac{\left(\log \left(X^{3} / n\right)\right)^{2}-2\left(\log \left(X^{2} / n\right)\right)^{2}}{2(\log X)^{2}} & \text { for } X \leq n \leq X^{2} \\ \Lambda(n)\left(\log \left(X^{3} / n\right)\right)^{2} / 2(\log X)^{2} & \text { for } X^{2} \leq n \leq X^{3}\end{cases}
$$

Under these notations, we shall use the following Selberg's explicit formula (cf. p. 239 of Selberg [12]) for $\sigma \geq \sigma_{X, t}$ and $t \geq \sqrt{X}$.

$$
\frac{\zeta^{\prime}}{\zeta}(s)=-\sum_{n<X^{3}} \frac{\Lambda_{X}(n)}{n^{s}}+O\left(\left.\left.X^{\frac{1}{4}-\frac{\sigma}{2}}\right|_{n<X^{3}} \frac{\Lambda_{X}(n)}{n^{\sigma_{X}, t i t}} \right\rvert\,\right)+O\left(X^{\frac{1}{4}-\frac{\sigma}{2}} \log t\right) .
$$

Then we get for $t \geq T$ and for $\sigma \geq \sigma_{X, t}$,

$$
\begin{aligned}
\arg (\zeta(\sigma+i t)) & =-\int_{\sigma}^{\infty} \mathfrak{J} \frac{\zeta^{\prime}}{\zeta}(u+i t) d u \\
& =\mathfrak{J} \sum_{n<X^{3}} \frac{\Lambda_{X}(n)}{n^{\sigma+i t} \log n}+O\left(\frac{X^{\frac{1}{4}-\frac{\sigma}{2}}}{\log X}\left(\left|\sum_{n<X^{3}} \frac{\Lambda_{X}(n)}{n^{\sigma_{X, t}+i t}}\right|+\log t\right)\right) \\
& =M(t)+O(R(t)), \text { say. }
\end{aligned}
$$

We put

$$
f(\sigma, t)=\left\{\begin{array}{lc}
1 & \text { if } \sigma \geq \sigma_{X, t} \\
0 & \text { otherwise }
\end{array}\right.
$$

Now for any $1 / 2<\sigma \leq 1$,
$\int_{T}^{2 T}(\arg (\zeta(\sigma+i(t+h)))-\arg (\zeta(\sigma+i t)))^{2} d t$
$=\int_{T}^{2 T} f(\sigma, t+h) f(\sigma, t)(\arg (\zeta(\sigma+i(t+h)))-\arg (\zeta(\sigma+i t)))^{2} d t$
$+\int_{T}^{2 T}(1-f(\sigma, t+h) f(\sigma, t))(\arg (\zeta(\sigma+i(t+h)))-\arg (\zeta(\sigma+i t)))^{2} d t$
$=S_{1}+S_{2}$, say.
Since $\arg (\zeta(\sigma+i t)), \arg (\zeta(\sigma+i(t+h))) \ll \log T$ for $\sigma \geq 1 / 2$, we get
where we put

$$
\Psi(\sigma, T)=\min \left(T^{\frac{12}{5}\left(1-\left(\frac{1}{2}+\sigma\right) \frac{1}{2}\right)}, T^{4\left(\frac{1}{2}+\sigma\right) \frac{1}{2}\left(1-\left(\frac{1}{2}+\sigma\right) \frac{1}{2}\right)}\right) \log ^{C} T .
$$

We notice that we have used Theorem 1 in p. 128 and Theorem 1 in p. 131 of Karatsuba and Voronin [8]. (One might get a better estimate if one does not use a trivial estimate $X^{3\left(\beta-\frac{1}{2}\right)} \ll X^{\frac{3}{2}}$.) In a similar manner we estimate $S^{\prime \prime}{ }_{2}$ and get

$$
S_{2} \ll \frac{X^{3 / 2}}{\log X} \Psi(\sigma, T) \log ^{2} T
$$

To evaluate S_{1}, we use the above formula for $\arg (\zeta(\sigma+i t))$ and $\arg (\zeta(\sigma+i(t+h)))$.We get first

$$
\begin{aligned}
S_{1}= & \int_{T}^{2 T} f(\sigma, t+h) f(\sigma, h)(M(t+h)-M(t))^{2} d t \\
+ & O\left(\sqrt{\int_{T}^{2 T}(M(t+h)-M(t))^{2} d t} \sqrt{\int_{T}^{C T} R(t)^{2} d t}\right)+O\left(\int_{T}^{C T} R(t)^{2} d t\right) \\
= & S_{3}+O\left(\sqrt{S_{4}} \sqrt{S_{5}}\right)+O\left(S_{5}\right), \text { say. } \\
S_{3}= & \int_{T}^{2 T}(M(t+h)-M(t))^{2} d t \\
& +\int_{T}^{2 T}(f(\sigma, t+h) f(\sigma, t)-1)(M(t+h)-M(t))^{2} d t \\
& =S_{4}+S_{6}, \text { say. }
\end{aligned}
$$

$$
S_{6} \ll \sqrt{\int_{T}^{2 T}(1-f(\sigma, t)) d t} \sqrt{\int_{T}^{2 T}(M(t+h)-M(t))^{4} d t}
$$

$$
+\sqrt{\int_{T}^{2 T}(1-f(\sigma, t+h)) d t} \sqrt{\int_{T}^{2 T}(M(t+h)-M(t))^{4} d t}
$$

$$
=\sqrt{S_{2}^{\prime}} \sqrt{S_{7}}+\sqrt{S_{2}^{\prime \prime}} \sqrt{S_{7}}, \text { say }
$$

So we are left to evaluate S_{4}, S_{7} and S_{5}.

$$
\begin{aligned}
S_{4} & =\int_{T}^{2 T}\left(\frac{\eta(t)-\bar{\eta}(t)}{2 i}\right)^{2} d t \\
& =-\frac{1}{4} \int_{T}^{2 T} \eta^{2}(t) d t-\frac{1}{4} \int_{T}^{2 T} \bar{\eta}^{2}(t) d t+\frac{1}{2} \int_{T}^{2 T}|\eta(t)|^{2} d t \\
& =S_{8}+\bar{S}_{8}+S_{9}, \text { say, }
\end{aligned}
$$

where we put

$$
\begin{aligned}
& S_{2} \ll \log ^{2} T \int_{T}^{2 T}(1-f(\sigma, t)) d t+\log ^{2} T \int_{T}^{2 T}(1-f(\sigma, t+h)) d t \\
& =\log ^{2} T\left(S_{2}^{\prime}+S_{2}^{\prime \prime}\right) \text {, say } \text {. } \\
& S_{2}^{\prime} \leq \left\lvert\,\left\{T \leq t \leq 2 T \text {; there exists } \beta+i \gamma \text { in the region } \beta>\frac{1}{2}+\frac{1}{\log X}\right. \text {, }\right. \\
& \left.T-\frac{X^{\frac{3}{2}}}{\log X} \leq \gamma \leq 2 T+\frac{X^{\frac{3}{2}}}{\log X} \text { such that } \max _{\substack{1-\gamma \leq \frac{X^{2}\left(--\frac{1}{3}\right)}{\log X} \\
\beta>\frac{1}{2}+\frac{1}{\log X}}} \beta>\left(\frac{1}{2}+\sigma\right) \frac{1}{2}\right\} \mid \\
& \leq 2 \sum_{\substack{\tau-\frac{X^{\frac{1}{2}}}{\log X} \leq r \leq 2 T+\frac{X^{\frac{2}{2}}}{\log X}}} \frac{X^{3\left(\beta-\frac{1}{2}\right)}}{\log X} \ll \frac{X^{\frac{3}{2}}}{\log X} \Psi(\sigma, T),
\end{aligned}
$$

$$
\eta(t)=\sum_{n<X^{3}} \frac{\Lambda_{X}(n)}{n^{\sigma+i t} \log n}\left(\frac{1}{n^{i h}}-1\right) .
$$

We get simply,

$$
S_{8} \ll \sum_{m, n<X^{3}} \frac{\Lambda_{X}(m) \Lambda_{X}(n)}{(m n)^{\sigma} \log m \log n \log (m n)} \ll \Phi(X, \sigma),
$$

where we put

$$
\Phi(X, \sigma)= \begin{cases}1 & \text { if } \sigma=1 \\ X^{6(1-\sigma)} / \log ^{3} X & \text { if } 1 / 2<\sigma<1\end{cases}
$$

By Montgomery and Vaughan [10], we get

$$
\begin{aligned}
S_{9}= & \frac{1}{2} \sum_{n<X^{3}}(T+O(n)) \frac{\Lambda_{X}^{2}(n)}{n^{2 \sigma} \log ^{2} n}\left|\frac{1}{n^{i n}}-1\right|^{2} \\
= & T \sum_{n=2}^{\infty} \frac{\Lambda^{2}(n)}{n^{2 \sigma} \log ^{2} n}(1-\cos (h \log n)) \\
& +O\left(T \sum_{n>X} \frac{\Lambda^{2}(n)}{n^{2 \sigma} \log ^{2} n}\right)+O\left(\sum_{n<X^{3}} \frac{\Lambda^{2}(n)}{n^{2 \sigma-1} \log ^{2} n}\right) \\
= & T \sum_{n=2}^{\infty} \frac{\Lambda^{2}(n)}{n^{2 \sigma} \log ^{2} n}(1-\cos (h \log n))+O\left(\frac{T}{X^{2 \sigma-1} \log X}\right)+O\left(\Phi_{1}(X, \sigma)\right),
\end{aligned}
$$

where we put

$$
\Phi_{1}(X, \sigma)= \begin{cases}\log \log X & \text { if } \sigma=1 \\ X^{6(1-\sigma)} / \log X & \text { if } 1 / 2<\sigma<1\end{cases}
$$

Using Montgomery and Vaughan [10] again, we get

$$
\begin{aligned}
S_{7} & \ll \int_{T}^{2 T}\left|\sum_{m, n<X^{3}} \frac{\Lambda_{X}(m) \Lambda_{X}(n)}{(m n)^{\sigma+i t} \log m \log n}\left(\frac{1}{m^{i h}}-1\right)\left(\frac{1}{n^{i h}}-1\right)\right|^{2} d t \\
& \ll \int_{T}^{2 T}\left|\sum_{k<X^{6}} \frac{a(k)}{k^{\sigma+i t}}\right|^{2} d t \ll \sum_{k<X^{6}}(T+O(k)) \frac{|a(k)|^{2}}{k^{2 \sigma}} \\
& \ll T \sum_{k<X^{6}} d(k)^{2} k^{-2 \sigma}+\sum_{k<X^{6}} d(k)^{2} k^{1-2 \sigma} \ll T+X^{12(1-\sigma)} \log ^{3} X,
\end{aligned}
$$

where

$$
a(k)=\sum_{\substack{m n=k \\ m, n<X^{3}}} \frac{\Lambda_{X}(m) \Lambda_{X}(n)}{\log m \log n}\left(\frac{1}{m^{i h}}-1\right)\left(\frac{1}{n^{i h}}-1\right) \ll d(k) \equiv \sum_{d \mid k} \cdot 1
$$

and we have used the estimate

$$
\sum_{k \leq Y} d^{2}(k) \ll Y \log ^{3} Y
$$

Finally, we get, by using pp. 248-251 of Selberg [12],

$$
\begin{aligned}
& S_{5} \ll \frac{X^{\frac{1}{2}-\sigma}}{\log ^{2} X}\left(\int_{T}^{C T}\left|\sum_{n<X^{3}} \frac{\Lambda_{X}(n)}{n^{\sigma_{X, i}+i t}}\right|^{2} d t+T \log ^{2} T\right) \\
& \ll \frac{X^{\frac{1}{2}-\sigma}}{\log ^{2} X}\left(\sqrt{T \log X}\left(\int_{\frac{1}{2}}^{\infty} X^{\frac{1}{2}-\sigma} \int_{T}^{C T}\left|\sum_{p<X^{3}} \frac{\Lambda_{X}(p) \log (X p)}{p^{\sigma+i t} \log ^{2} X}\right|^{4} d t d \sigma\right)^{\frac{1}{2}}\right. \\
&\left.\quad \quad+T \log ^{2} T\right) \ll T X^{(1 / 2)-\sigma}
\end{aligned}
$$

Consequently, we get

$$
\int_{T}^{2 T}(\arg (\zeta(\sigma+i(t+h)))-\arg (\zeta(\sigma+i t)))^{2} d t
$$

$$
\begin{aligned}
= & T \sum_{n=2}^{\infty} \frac{\Lambda^{2}(n)}{n^{2 \sigma} \log ^{2} n}(1-\cos (h \log n))+O\left(T^{\frac{1}{2}+\frac{13 a}{4}-\frac{7 a \sigma}{2}} \frac{1}{\sqrt{\log T}}\right) \\
& +O\left(T^{1-\frac{a}{2}\left(\sigma-\frac{1}{2}\right)}\right)+O\left(\frac{T^{6 a(1-\sigma)}}{\log T}\right)+O\left(T^{3 a} \Psi(\sigma, T) \log T\right) \\
& +O\left(T^{\frac{3 a}{4}}\left(T^{6 a(1-\sigma)} \log T+\sqrt{\frac{T}{\log T}}\right) \sqrt{\Psi(\sigma, T)}\right) .
\end{aligned}
$$

Here we can choose an optimal a and get our Lemma as described in the introduction, although we shall not describe it explicitly.
§3. Concluding remarks. 3-1. It is clear that Stark's remainder term in $N(T, Q)$ can be replaced by $O(\log \log T)$.

3-2. More generally, we can evaluate the mean values

$$
\int_{T}^{2 T}(\arg (\zeta(\sigma+i(t+h)))-\arg (\zeta(\sigma+i t)))^{2 k} d t
$$

Here we notice only that we have the following asymptotic formula for an integer $k \geq 1$ and for any $1 / 2<\sigma \leq 1$.

$$
\int_{T}^{2 T}(\arg (\zeta(\sigma+i t)))^{2 k} d t=T C(\sigma, k)+O\left(T^{1-\delta(\sigma, k)}\right)
$$

where we put

$$
\begin{gathered}
C(\sigma, k)=\frac{(-1)^{k}}{2^{2 k}} \sum_{j=0}^{2 k}\binom{2 k}{j}(-1)^{j} \sum_{\substack{n_{1}, \ldots, n_{j}=2}}^{\infty} \frac{\Lambda\left(n_{1}\right) \ldots \Lambda\left(n_{j}\right)}{\left(n_{1} \ldots n_{j}\right)^{2 \sigma} \log n_{1} \ldots \log n_{j}} \\
\sum_{n_{1} \ldots n_{j}=m_{1} \ldots m_{2 k-j}} \frac{\Lambda\left(m_{1}\right) \ldots \Lambda\left(m_{2 k-j}\right)}{\log m_{1} \ldots \log m_{2 k-j}}
\end{gathered}
$$

and $\delta(\sigma, k)$ is a positive constant which may depend on σ and k.
3-3. It is noticed by Professor Ramachandra that the remainder terms in the above mean value theorems for $\sigma=1$ can be improved. For example, when $k=1$ and $\sigma=1$, the last remainder term can be replaced by $O(\log \log T)$.

References

[1] M. V. Berry: Nonlinearity, 1, 399-407 (1988).
[2] P. T. Bateman and E. Grosswald: Acta Arith., 9, 395-373 (1964).
[3] E. Bombieri and D. Hejhal: C. R. Acad. Sci. Paris, 304, 213-217 (1987).
[4] H. Davenport and H. Heilbronn: J. of London Math. Soc., 11, 181-185; 307-312 (1936).
[5] A. Fujii: Advanced Studies in Pure Math., 21, 237-280 (1992).
[6] -: Proc. Japan Acad., 66A, 75-79 (1990).
$[7]$ D. Hejhal: Proc. Int. Congress of Math., Berkeley, pp. 1362-1384 (1988).
[8] A. S. Karatsuba and S. M. Voronin: The Riemann zeta function. de Gruyter exp. in math., 5 (1992).
[9] H. Kober: Proc. London Math. Soc., 42, 1-8 (1936).
[10] H. L. Montgomery and R. Vaughan: J. of London Math. Soc., 8 (2), 73-82 (1974).
[11] A. E. Ozluk: Number Theory, W. de Gruyter, pp. 471-476 (1990).
[12] A. Selberg: Collected Papers. Springer-Verlag, vol. 1 (1989); vol. 2 (1991).
[13] H. M. Stark: Mathematika, 14, 47-55 (1967).

