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On Birational Models of Enriques Surfaces in p3
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Abstract: We prove that an Enriques surface S with certain con-

figuration of halfpencils is birationally equivalent to a normal quintic sur-

face. No Enriques surfaces are known which do not satisfy this condition.

We construct birational maps explicitly, and obtain the defining equations

with ten parameters of the image in e3.
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0. Introduction. Let S be an Enriques surface defined over an alge-
braically closed field k of characteristic 0. By definition S is a non-singular
projective surface with q(S) pg(S) 0 and 2Ks O. An effective divisor
E on S is called a halfpencit if 2E is base point free and defines an elliptic
fibration (cf. [2]). If E is a halfpencil, then there exists a unique halfpencil E’
adjoint with E so that E’ =/= E and [2E’I 12E [.

Cossec [3] proved that every Enriques surface admits a birational
morphism onto a surface of degree 10 in P with isolated rational double
points, and also that every Enriques surface is birationally equivalent to a
(non-normal) sextic surface in

Theorem 1. Suppose there exist on S three halfpencils E, Ee, E such
that:

EE EE EE 1,
(ii) (E + E;) E E , where E; denotes the halfpencil adjoint

with E.
Then S is birationally equivalent to a normal quintic surface in P.

Cossec and Dolgachev [4] defined the non-degeneracy invariant d(S) of
an Enriques surface S, which is reformulated as follows:

d(S) max
such that EE 1(1 <- i j <_

Cl-llry. If d(S) >_ 4,, then S is birationally equivalent to a normal qin-
tic surface.

Remark. (1) d(S) 10 for generic S ([3], [1], [5]).
(2) d(S) -> 3 for any S ([3]).
(3) The value d(S) is calculated for S with finite automorphism group clas-
sified in [7]. They all have d(S) -> 4 ([8]).

This note is an announcement of the main results in [11]. After the au-
thor had written up [11], she received a paper of Y. Kim [6], in which he
claims that the condition (ii) of Theorem 1 is satisfied under other assurnp-
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tions, and hence every Enriques surface is birationally equivalent to a nor-
mal quintic surface; his proof is not complete, however. He says he is prepar-
ing a corrected version.

1. Construction of birational maps in Theorem 1. Lemma 1. Let E and

E2 be effective divisors on a smooth surface such that"

E and E2 have no (-- 1)-curve as a component,
(ii) mE [and mE [define respective elliptic fibrations for some m,

m>_ 1,
(iii) EE2 1.

Then E and E. have no common components.
Set D E + E + E. + E3. Then, by Lemma 1, D has five double

points PI,...,P5 other than singular points of E, E, E2 and E3. Let S-- S
be the blowing-up at P,...,Ps, and H the proper transform to S of a gener-
al member of the linear system 1/ + Ks- P Ps I. Then we can
show that I/1 defines a birational morphism from onto a normal quintic
surface.

The singularity of the image consists of i) four minimally elliptic sin-
gularities ([9]), which correspond to E, E, E., E3, and possibly ii) some
rational double points, which correspond to connected components of the sum
of all curves on S disjoint from D.

2. Proof of Corollary. Lemma 2. Let E, E, E3 be halfpencils on an
Enriques surface S such that EIE EE EaE 1. Let E denote the
halfpencil adjoint with E(i 1, 2, 3). If E, E., Ea meet at one point, then so

do E, E, E E, E, E; E, E, Ea respectively.
Let E, E, Ea, E4 be any halfpencils on S with EE 1(1 _< i4:j

N 4). If E, E., E do not satisfy the hypothesis (ii) of Theorem 1 for i 3,
4, then we can deduce from Lemma 2 that EaE4 2 2, which is a contradic-
tion.

3. Defining equations. By finding out a relation of degree 5 of a
basis of H(, O-(/2i)), we obtain"

Theorem 2. Let X be a normal quintic surface in P3, which is constructed
in the way of 1 from an Enriques surface S satisfying the hypothesis of Theorem
1. Then, with suitable homogeneous coordinates (Xo" XI X. Xa) of Pa, the de-
fining equation of X is of the following form"
(*) F XoX + XoX + XXX + XXX + cXoXX. + cXXXa

+ + c XoX?X + c XoX?X + coX C x 
+ c XoX?X .X + c XoX X & + c XoX X X +

=0
(c4, c, c6, Co =/: 0, q,..., Co k).

Remark. The equation (*) is found in [10].
Theorem 3. Let F 0 be an equation of the form * ). Set X {F 0}

P. Assume that every point of X, except for (1 0 0"0), (0" 1 0"0),
(0 O" 1 O) and (0" 0 0" 1), is at worst an isolated rational double point.
Then X is birationally equivalent to an Enriques surface S which satisfies the
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hypothesis of Theorem 1, and X is constructed from S in the way described in 1.
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