29. On Inner Amenability of Clifford Semigroups

By Koukichi SAKAI

College of Liberal Arts, Kagoshima University (Communicated by Kiyosi Itô, M. J. A., May 12, 1994)

§0. Introduction. The inner amenability of groups is investigated by many authors e.g., [4]-[8], [15] and [16]. In this paper we shall introduce the inner amenability for Clifford semigroups and show various necessary and sufficient conditions for Clifford semigroups to be inner amenable.

Throughout this paper S is a Clifford semigroup, i.e., S is an inverse semigroup such that the set E_S of all idempotent elements in S is contained in the center Z(S) of S (cf. [9]). For any $s \in S$ there corresponds a unique $s^* \in S$, the inverse of s, such that $ss^*s = s$ and $s^*ss^* = s^*$. Since ss^* , $s^*s \in E_S \subseteq Z(S)$, we can define the inner endomorphism c(s) on S by $c(s)t = sts^*(t \in S)$.

For any space X, let B(X) be the Banach space of all bounded functions on X with the supremum norm. A mean ϕ on X is a positive linear functional on B(X) such that $\phi(1_X) = 1$, where in general 1_Y is the characteristic function of any $Y \subseteq X$. For brevity we write $\phi(Y) = \phi(1_Y)$.

For $f \in B(S)$ and $s \in S$ we define $c(s) f \in B(s)$ by $c(s) f(a) = f(sas^*)$, $a \in S$. A mean ϕ on S is said to be inner invariant if $\phi(c(s) f) = \phi(f)$ for any $s \in S$ and $f \in B(S)$. A subset $V \subseteq S$ is said to be inner invariant if $c(s)^{-1} V = V$ for any $s \in S$, where $c(s)^{-1} V = \{a \in S; sas^* \in V\}$. S is said to be inner amenable on an inner invariant subset V if there exists an inner invariant mean ϕ on S such that $\phi(V) = 1$.

In S we can introduce a congruence relation ρ by $s_1(\rho)s_2$, s_1 , $s_2 \in S$ if and only if $s_1e = s_2e$ for some $e \in E_s$ (cf. [9]). Then the quotient semigroup $G_s = S/\rho$ becomes a group. We denote also by ρ the canonical homomorphism of S onto G_s . Then $\rho(s^*) = \rho(s)^{-1}$, $s \in S$, Evidently ρ transforms the inner endomorphism c(s) to the inner automorphism $c(\rho(s))$ on G_s induced by $\rho(s)$. We set $Z_s = \rho^{-1}(Z(G_s))$, where $Z(G_s)$ is the center of G_s .

In the section 1 we establish the relation between the inner amenability of S and G_s . The section 2 gives various conditions for S to be inner amenable on any inner invariant subset of S, which are derived from author's papers [10]-[12] and[13]. Especially we show the fixed point theorem corresponding to the inner amenability of S. In section 3 we give some conditions for S to be inner amenable on $S-Z_s$, the complement of Z_s in S, which are generalizations of the main result in Paschke [8].

Throughout this paper V is an inner invariant subset of S and $W = \rho(V)$, which is also an inner invariant subset of G_S , i.e., $W = \rho(S) W \rho(S)^{-1}$ for any $S \in S$. We note that $\rho^{-1}(W') \subseteq S$ is inner invariant for any inner

invariant $W' \subseteq G_s$.

§1. Amenability of S and G_S . By M(S) [resp. IM(S)] we denote the space of all means [resp. inner invariant means] on S, and set $M(S, A) = \{\phi \in M(S) : \phi(A) = 1\}$ and $IM(S, A) = M(S, A) \cap IM(S)$ for any $A \subseteq S$. Since E_S is a commutative subsemigroup of S, there exists a translation invariant mean ϕ on E_S (cf. [1]), i.e., $\phi(h_e) = \phi(h)$ for any $h \in B(E_S)$ and $e \in E_S$, where $h_e(t) = h(te)$ ($t \in E_S$). For any $f \in B(S)$, we define $f \cap E(S)$ by $f \cap E(S) = f \cap E(S)$, $f \cap E(S) = f \cap E(S)$ is given by $f \cap E(S) = f \cap E(S)$, $f \cap E(S) = f \cap E(S)$ is consider as a function on G_S . So for any $f \in B(S)$ we define $f \cap E(S) = f \cap E(S)$ by $f \cap E(S) = f \cap E(S)$ we define $f \cap E(S) = f \cap E(S)$ by $f \cap E(S) = f \cap E(S)$ we define $f \cap E(S) = f \cap E(S)$ by $f \cap E(S) = f \cap E(S)$ by $f \cap E(S) = f \cap E(S)$ by $f \cap E(S) = f \cap E(S)$, $f \cap E(S) = f \cap E(S)$ we define $f \cap E(S) = f \cap E(S)$ by $f \cap E(S) = f \cap E(S)$ by $f \cap E(S) = f \cap E(S)$, $f \cap E(S) = f \cap E(S)$ by $f \cap E(S) = f \cap E(S)$. The next is easily seen.

Lemma 1. (1) $\rho(1_V) = 1_W$ and $\rho(c(S)f) = c(\rho(S))\rho f$ for $f \in B(S)$ and $S \in S$.

(2) $\rho^*(1_w) = 1_v$ and $\rho^*(c(\rho(s))h) = c(s)\rho^*h$ for any $h \in B(G_s)$ and $s \in S$.

Let $\phi^{\wedge} \in IM(G_s, W)$ and define $\phi \in M(S)$ by $\phi(f) = \phi^{\wedge}(\rho f)$, $f \in B(S)$. Then we see from Lemma 1(1) that $\phi \in IM(S, V)$. Conversely for any $\phi \in IM(S, V)$, we define $\phi^{\wedge} \in M(G_s)$ by $\phi^{\wedge}(h) = \phi(\rho^* h)$, $h \in B(G_s)$. Then $\phi^{\wedge} \in IM(G_s, W)$. Therefore we have

Theorem 1. S is inner amenable on V if and only if G_S is inner amenable on W.

The above is analogous to the fact that S is amenable if and only if so is G_S (cf. [3]). Let $E = \rho^{-1}(\{\mathbf{e}\})$, where \mathbf{e} is the identity in G_S . Evidently G_S is inner amenable on $\{\mathbf{e}\}$ and $Z(G_S)$ respectively. So from Theorem 1 we have

Corollary 1. S is inner amenable on E and Z_S respectively.

For any $s \in S$ we define a map $c^*(s)$ on M(S) by $c^*(s)\phi(f) = \phi(c(s)f)$, $f \in B(S)$. Then the map c^* is a homomorphism of S to the semigroup of all continuous affine maps on M(S). Moreover we see that $c^*(s)\phi \in M(S, V)$ for any $\phi \in M(S, V)$ and $s \in S$. M(S) and M(S, V) are w^* -compact convex subsets of the dual space $B(S)^*$. From these facts and Day's fixed point theorem (cf. [1], [2]) we have

Theorem 2. If S is amenable, then S is inner amenable on V.

Let $\phi \in IM(S)$ and $\alpha = \phi(V)$. We suppose $0 < \alpha < 1$ and define the means ϕ_1 and ϕ_2 on S by $\phi_1(f) = \alpha^{-1}\phi(1_V f)$ and $\phi_2(f) = (1-\alpha)^{-1}\phi(1_{S-V}f)$, $f \in B(S)$, respectively. Then $\phi_1 \in IM(S,V)$ and $\phi_2 \in IM(S,S-V)$. So we have

Theorem 3. Let $\phi \in IM(S)$ and $\alpha = \phi(V)$. Then S is inner amenable on V [resp. S - V] if $\alpha > 0$ [resp. $\alpha < 1$].

From Corollary 1 and the proof of Theorem 3, we see that every $\phi \in IM(S)$ is expressed in the convex linear combination of $\phi_1 \in IM(S, Z_S)$ and $\phi_2 \in IM(S, S - Z_S)$.

§2. Characterizations of inner amenability. In order to state the main theorem we begin with some notations. For any $p \in [1, \infty)$, let $L_p(S)$ be the

usual Banach space of functions on S with respect to the counting measure on S. We set:

 $M_{b}(S) = \{h \in L_{b}(S) ; h \ge 0 \text{ and } ||h||_{b} = 1\}, F_{b}(S) = \{h \in M_{b}(S) ; \text{supp}(h)\}$ is finite, and for any $A \subseteq S$,

 $L_p(S, A) = \{h \in L_p(S) : \text{supp } (h) \subseteq A\}, M_p(S, A) = L_p(S, A) \cap M_p(S),$ $F_{\mathfrak{p}}(S, A) = M_{\mathfrak{p}}(S, A) \cap F_{\mathfrak{p}}(S).$

Every $h \in M_1(S)$ is identified with a mean on S defined by h(f) = $\sum \{h(s) f(s); s \in S\}$. So $M_1(S)$ [resp. $M_1(S, A)$] is regarded as a subset of M(S) [resp. M(S, A)]. We note that $F_1(S)$ [resp. $F_1(S, A)$] is weakly* dense in M(S) [resp. M(S, A)].

For $s \in S$ we put $R(s) = \{a \in S ; ss^*a = s^*sa = a\}$. Since ss^* , s^*s $\in E_S \subseteq Z(S)$, R(s) is an ideal of S and R(s) = c(s)S = c(s)R(s). c(s)and $c(s^*)$ are bijective on R(s), and $c(s^*) = c(s)^{-1}$ on R(s). Let P(S) be the family of all finite subsets of S. For $K \in P(S)$ we set $R(K) = \bigcap$ $\{R(s): s \in K\}$, which is also an ideal of S. We see that $\rho(R(K)) = G_s$ and that $\phi(V \cap R(K)) = 1$ for any $\phi \in M(S, V)$ such that $c^*(s)\phi = \phi$ for all s $\in K$

Let us fix $p \in [1, \infty)$. For $s \in S$ we define an linear operator $c_p(s)$ on $L_{\mathfrak{p}}(S)$ by $c_{\mathfrak{p}}(s)h(a) = h(s^*as)$ if $a \in R(s)$ and $c_{\mathfrak{p}}(s)h(a) = 0$ if $a \notin$ R(s) for $h \in L_p(S)$. Then $c_1(s)h = c^*(s)h$ for $h \in M_1(S, R(s))$, and $c_p(s)$ induces an isometry on $L_h(S, R(s))$. Moreover we see that $c_h(s)c_h(t) =$ $c_b(st)$ for $s, t \in S$ from the relation $R(st) = R(s) \cap R(t)$.

Now we consider the following condition $(P)_b$: For any $K \in P(S)$ and $\varepsilon > 0$ there exists $h \in F_p(S, R(K))$ such that $||c_p(s)h - h||_p < \varepsilon$ for all $s \in K$. By the same method as in [14] we see that $(P)_p \Leftrightarrow (P)_q$ for any $p, q \in [1, \infty)$. Under these notations, the next theorem is derived from author's papers [10], [11] and [13].

Theorem 4. The following conditions are mutually equivalent.

- (1) S is inner amenable on V.
- (2) There exists a net $\{\phi_{\alpha}\}$ in $F_1(S, V)$ such that
- $w^*-\lim_{\alpha}(c^*(s)\phi_{\alpha}-\phi_{\alpha})=0 \text{ for any } s\in S.$ (3) There exists a net $\{\phi_{\alpha}\}$ in $F_1(S, V)$ such that $\lim_{\alpha} \|c^*(s)\phi_{\alpha} - \phi_{\alpha}\|_{1} = 0 \text{ for any } s \in S.$
- (4) $(P)_1$ holds.
- (5) $(P)_{p}$ holds for some $p \in (1, \infty)$.
- (6) For any $K \in P(S)$ and $\varepsilon > 0$ there exists a finite subset $A \subseteq S$ such that $|A - sAs^*| = |sAs^* - A| < \varepsilon |A|$ for all $s \in K$,

where |B| denotes the cardinality of any finite set B.

We show the fixed point property corresponding to the inner amenability of S. A compact affine conjugate action of S is a quadruplet $\{Q, T, \pi, \tau\}$ with the following properties (a)–(c):

- (a) Q is a compact convex subset of a locally convex topological linear space T,
- (b) π is a homomorphism of S to the semigroup of all continuous affine maps on Q,
 - (c) τ is a map of S to Q such that $\tau(sts^*) = \pi(s)\tau(t)$ for any $s, t \in S$.

We define a map δ of S to M(S) by $\delta(s) f = f(s) (s \in S, f \in B(S))$. Then we see that $c^*(s)\delta(t)(f) = f(sts^*) = \delta(sts^*)f$ for any $s, t \in S$ and $f \in B(S)$. So $\{M(S), B(S)^*, c^*, \delta\}$ is a compact affine conjugate action of S. We denote by Co(A) the convex hull of any subset A of a linear space.

Theorem 5. The following conditions are equivalent.

- (1) S is inner amenable on V.
- (2) For any given compact affine conjugate action $\{Q, T, \pi, \tau\}$ of S, there exists a point p in the closure of $Co(\{\tau(s) ; s \in V\})$ such that $\pi(s)p = p$ for all $s \in S$.

Sketch of proof. Let $\phi \in IM(S, V)$. We note that ϕ is in the w^* -closure of $Co(\{\delta(s); s \in V\})$. According to Lemma 2.1 in [12], any compact affine conjugate action $\{Q, T, \pi, \tau\}$ of S induces a continuous affine map τ^{\wedge} of M(S) to Q such that $\tau^{\wedge}(\delta(s)) = \tau(s)$ for any $s \in S$ and $\tau^{\wedge}(c^*(s)\psi) = \pi(s)\tau^{\wedge}(\psi)$ for any $(s, \psi) \in S \times M(S)$. So $p = \tau^{\wedge}(\phi)$ is the desired point in the closure of $Co(\{\tau(s); s \in V\})$. Conversely suppose (2). Applying (2) to the compact affine conjugate action $\{M(S), B(S)^*, c^*, \delta\}$ of S, we get an inner invariant mean in M(S, V).

§3. Inner amenability on $S-Z_S$. As noted in Corollary 1, S is inner amenable on Z_S . In this section let us show some conditions for S to be inner amenable on $S-Z_S$. For brevity we write $G=G_S$ and $Z=Z(G_S)$. By virtue of Theorem 1, it suffices to consider the conditions for G to be inner amenable on G-Z instead of the inner amenability of S on $S-Z_S$. Let H(G) be the C^* -algebra of all bounded linear operators on the Hilbert space $L_2(G)$ and $C^*(c_2, G)$ be the C^* -subalgebra of H(G) generated by the unitary operators $c_2(g)$, $g \in G$, on $L_2(G)$, where $c_2(g)h(a) = h(g^{-1}ag)$, $a \in G$, $h \in L_2(G)$. We define $P_Z \in H(G)$ by $P_Z h = 1_Z h$, $h \in L_2(G)$. Let us fix a point w in Z and put $w = 1_{(w)} \in L_2(G)$. The next theorem is a generalization of the main result in Paschke [8].

Theorem 6. The following conditions are mutually equivalent.

- (1) S is inner amenable on $S-Z_s$, i.e., G is inner amenable on G-Z.
- (2) P_z is not contained in $C^*(c_2, G)$.
- (3) There exists a state ω on H(G) such that $\omega(P_z)=0$ and $\omega(c_2(g))=1$ for all $g\in G$.

Sketch of proof. Suppose (1). Since G is inner amenable both on G-Z and Z, it follows from Proposition 4.7 in [6] that $\|P_Z-T\| \ge 1/2$ for any $T \in C^*(c_2, G)$. So (1) implies (2). We note that $P_Zc_2(g) = c_2(g)P_Z = P_Z$ for any $g \in G$ and $P_ZT = TP_Z = \langle Tw, w \rangle P_Z$ for any $T \in C^*(c_2, G)$. So it follows from (2) that the direct sum $C^*(c_2, P_Z, G)$ of $C^*(c_2, G)$ and the 1-dimensional algebra generated by P_Z becomes also a C^* -subalgebra of H(G). Let us define a state ψ on $C^*(c_2, P_Z, G)$ by $\psi(T + cP_Z) = \langle Tw, w \rangle$, $T \in C^*(c_2, G)$, $c \in C$. Then $\psi(P_Z) = 0$ and $\psi(c_2(g)) = 1$ for any $g \in G$. Hence any extending state ω on H(G) of ψ satisfies (3). Finally let ω be a state on H(G) as in (3). Then by the unitarity of $c_2(g)$, $\omega(c_2(g)T) = \omega(Tc_2(g)) = \omega(T)$ for any $g \in G$ and $T \in H(G)$. For any $f \in B(G)$ we define $m(f) \in H(G)$ by m(f)h = fh, $h \in L_2(G)$, and define $\phi \in M(G)$ by

 $\phi(f) = \omega(m(f)), f \in B(G)$. Since $m(c(g)f) = c_2(g)^{-1}m(f)c_2(g)$, we have $\phi(c(g)f) = \omega(c_2(g)^{-1}m(f)c_2(g)) = \omega(f)$ for any $g \in G$ and $f \in B(G)$, and $\phi(Z) = \omega(m(1_Z)) = \omega(P_Z) = 0$. Therefore $\phi \in IM(S, V)$.

References

- [1] M. M. Day: Amenable semigroups. Illinois J. Math., 1, 509-544 (1957).
- [2] —: Fixed-point theorems for compact convex sets. ibid., 5, 585-590 (1961).
- [3] J. Duncan and I. Namioka: Amenability of inverse semigroups and their semi-group algebras. Proc. Roy. Soc. Edinburgh, 80A, 309-321 (1978).
- [4] E. G. Effros: Property Γ and inner amenability. Proc. Amer. Math. Soc., 47, 483-486 (1975).
- [5] A. T. Lau and A. L. T. Paterson: Operator theoretic characterizations of [IN]-groups and inner amenability. ibid., 102, 893-897 (1988).
- [6] —: Inner amenable locally compact groups. Trans. Amer. Math. Soc., 325, 155-169 (1991).
- [7] V. Losert and H. Rindler: Conjugate invariant means. Colloq. Math., 15, 221-225 (1987).
- [8] W. L. Paschke: Inner amenability and conjugation operators. Proc. Amer. Math. Soc., 71, 117-118 (1978).
- [9] M. Petrich: Inverse Semigroups. John Wiley and Sons, New York (1984).
- [10] K. Sakai: $F\phi$ Iner's conditions for amenable transformation semigroups. Sci. Rep. Kagoshima Univ., 23, 7-13 (1974).
- [11] —: On amenable transformation semigroups. I. J. Math. Kyoto Univ., 16, 555-595 (1976).
- [12] —: ditto. II. ibid., **16**, 596–626 (1976).
- [13] —: On amenable inverse semigroups. Sci. Rep. Kagoshima Univ., 36, 1-12 (1987).
- [14] J. D. Stegeman: On a property concerning locally compact groups. Nederl. Akad. Wetensch. Proc. Ser. A, 68, 702-703 (1965).
- [15] C. K. Yuan: The existence of inner invariant means on $L^{\infty}(G)$. J. Math. Anal. Appl., 130, 514-524 (1988).
- [16] —: Conjugated convolutions and inner invariant means. ibid., 157, 166-178 (1991).