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24. On Confluences of the General Hypergeometric Systems
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(Communicated by Kiyosi IT(5, M.J.A., May 12, 1993)

Introduction. Let r and n(> r) be positive integers and let Zr,n be the
set of r n complex matrices of maximal rank.

In the preceding paper [7], we introduced, for any given composition
,- (,1 /) of the integer n, the generalized confluent hypergeometric
functions with variables z- (zip)oir_l,O<pn_ Zr,n. They are defined
as solutions of the system of partial differential equations on Zr,n called the
generalized confluent hypergeometric system (see Definition 1.1). In case

where the composition of n is - (1 ,1), the generalized confluent
hypergeometric functions coincide With the general hypergeometric functions

due to K. Aornoto and I. M. Gelfand ([1], [2]).
One may ask why we have given the name "the generalized confluent"

hypergeometric functions to the functions we introduced. The purpose of this

paper is to justify our naming to these functions. In fact we show that the
generalized confluent hypergeornetric systems can be obtained from the
Aornoto-Gelfand’s system by a finite number of certain limit processes called
the processes of confluence (see Theorem 2.5). It is to be noted that the pro-
cesses of confluence for our systems are determined from the group theoretic
point of view (Theorems 2.3, 2.4).

To explain our problem more concretely, we recall a classical example’
a confluence of two singular points for the hypergeometric equation of
Gauss. The Gauss hypergeometric equation is

(0.1) x(1--x)u"+ {7-- (a+fl+ 1)x}u’--aflu--0, d/dx.

For the equation (0.1), consider a change of variables and parameters
x-, fl=l/.

Then the equation for (e, u) is

d2u du
(0.2) (1--e) + (7--e(cr+s- + 1))-d--au- 0

and the coefficients of du/d, du/d and u depend holomorphically on

at - 0. Putting --0 in the equation (0.2) we obtain the Kummer’s con-

fluent hypergeometric equation

(o.) d’--u-u + (r- ) du

d -- au O.

*) Department of Mathematical Sciences, University of Tokyo.
**) Department of Mathematics, Kumamoto University.

***) Department of Mathematics, Kobe University.



100 H. KIMURA, Y. HARAOKA and K. TAKANO [Vol. 69(A),

Our problem is to generalize this process for all confluent hypergeometric
systems.

In Section 1 we recall the definition of the generalized confluent
hypergeometric functions (system) and their properties necessary in stating
our results of this paper. In Section 2, we give our main results. We also
explain the above process from the Gauss hypergeometric equation to the
Kummer’s confluent hypergeometric one in the framework of our general con-
fluence process.

1. Generalized confluent hyperg’eometric systems. There is given a
composition , (1,...,) of n, i. e. the sequence of positive integers satis-
fying ,1 + -+- /t n and ,k(k 1,...,l) are not necessarily arrayed in
descending or ascending order. We associate a composition , of n with a dia-
gram defined as the set of points (k, m) Z such that 0 <_ m _< ,k 1. In
drawing such diagram we adopt the convention that the first coordinate k
(the row index) increases as one goes downwards, and the second coordinate
m (the column index) increases as one goes from left to right, and we place a
square at each point (k, m) Z2 as is illustrated in the figure. The number
of squares of the diagram 2 will be called the weight of / and will be de-
noted by l I,

A2
3

J

Fig. 1
Definition 1.1. Let 2 (2x,... ,2) be a diagram of weight n and let

(1) (l) (k) (k) (k) (k)- (t ,l ), l 10 tl ’O[’,k--1) (k 1, l), be a COrn-
(k)

stant column vector of dimension n satisfying = c0 r. The general-
ized confluent hypergeometric system of type , (CHG system for short) is the
system of linear partial differential equations:

(k)
gkml O(.m ,
Muu 6uu
,,u 0

where

6i being the Kronecker’s symbel. We denote the system by M(c0 or M(z c0,
if it is necessary to indicate the constants c or, moreover, the independent
variables z (zip).

It has been shown ([7]) that the system M is holonomic and hence the
space of solutions for M at a "generic" point of Zr,n is isomorphic to a finite
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dimensional complex vector space. Any solution of the system Ma is called
the generalized confluent hypergeometric function of type / (CHG function for
short).

Now we recall some properties of the CHG functions of type ,. We first
explain several terminologies.

Let J(m) be the Jordan group of size rn, namely, a maximal abelian Lie
subgroup of GL(m, C) defined by

J(m) c- cA; c C, cog= 0
’-0

where A Am (6i+l,j)oi,jm_ M(m, . The group J(m) is isomor-
phic to the group C* x Cm- Cm-1where is equipped with the natural
additive structure. In fact, this isomorphism is established by associating
C m-1i=o ciA with (Co, Or(c),...,Om_(c)).
Here

0i(C) 0i((CO,C ,Cm_l, 0,...)), O,
where Oi(i O) are functions defined by

tOi(w)ti-log(zo+wt+w2 + "")
i=O

=logwo+log(l+ t+t2+ "")o o
for a sequence w (o, w, 2,...) with o O. We note that 0o(c) log Co
and Oi(c) (i 1) is a weighted homogeneous polynomial of Cx/Co,...,ci/Co.
It follows from this fact that a character X:](m) C of the universal
covering group ](m) of J(m) is written as

m-1 ) m-1 ) m-1

X(c) exp 0(c) c0 exp O(c) c-- cA
for some - (o,..., -) C. This character will be denoted by
2(’;) to indicate the dependence on .

For a diagram (,...,2) of weight , we consider an abelian Lie
subgroup H J() x x J() GL(n, C) of dimension n and its
universal covering group . Let a t(a<),...,a()) C.

be the constant
column vector given in Definition 1.1. Then X(" ;): C defined by

(c a) HX (c> >) for
2-1

c (c <t) )) A,...,c B,c X c,
i=O

is a character of called the character of homogeneity a Cn.
As one of the important properties for the CHG functions, we have
Prosition 1.2. The generalized confluent hypergeometric function

# (z;a) of type satisfies
;a) (z ;a)x(c ;a) for c H.(1.1) (gz,a) (det -g) #(z ) forg GL(r, C).

The first and the second properties in (1.1) are called the
H-homogeneity and the GL(r, -homogeneity for #(z ;a), respectively.

The CHG system M admits solutions in an integral representation. Let
us define a biholomorphic mapping
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by

a’Ha- II (C x Ca-x) c C"
k=l

2 (C) (C1) (1) (1) (1) 1) for,C,1-- I, ,C0
2k--1 (k) Ac-- c H c GL(n, C).

k=l i=1
For t- (to,...,t_:) C r

and for z- (Zo,...,z,_:) Zr,n, we set
(t, z> ((t, Zo>,...,(t, Zn_i>)

where

(t, zj) tiZij (0 j <_ n- 1).
i=O

Let (o be the (r- 1)-form defined by
r--1

oo (-- 1)tdto A"" A dt_ A dt+ A"" A dt_l.
i=O

Proposition 1.3 [7]. For an appropriate (r- 1)-dimensional cycle A in
C r, the integral

O(z ;C) Z(Q 1(t, z}) ;c)o9

gives a solution of the CHG system M.
There is a trivial symmetries for the CHG systems. To describe it we

change the manner of indexing of z Zr,n as

Z (Z (1) (1) (k) (k) (k) (k)
,...,z ), z (Zo ,z ,...,z_) (k- 1,...,/).

Let be the symmetric group on the set {1,...,1} and define the action of
on (2, c, z) by

a" 2 (,, ,,) a" a (a <,...,o ), a’z= (z (a(1)),...,z (t))).
Proposition 1.4. Let , be a diagram of weight n. Then the change of vari-

ables (a, z) - (a’, z’) (a" a, a" z) takes the CHG system M (a) to the sys-
tem Ma. (a"

This trivial result says that if the diagram /z is obtained from 2 by per-
muting its rows, the systems M and Mu are essentially the same.

2. Main results. Definition 2.1. Let/ and p be diagrams of weight n.
The diagram / is said to be adjacent to , if/J is obtained from / by making
some two rows of/ into a single row whose length is the sum of those of the
two rows of/. We denote this relation by the symbol

Example 2.2. For the diagrams of weight 4, the following figure de-
scribes all the relations of adjacency among them mudulo permutations of
rows in the diagrams.

Fig. 2
Let/2- (pl,...,/at_1) be adjacent to 2- (l,r ,l) of weight n. We may

suppose that/J 2,..., Ph- 2h_, tth 2h + 2h+1, Ph+ /h+2,... ,/Jl-1 21
for some 1 <_ h < l. We define a holomorphic mapping g g_. "C\ {0}-
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GL(n, C) by g(s) (gij(s))li,l, where gi(s) is a i x ), matrix given by

g(s) O, otherwise,
m-1).Dm(s) denoting diag (1, s, s Remark that det g(s) s"h+l.

Now we state our results. Let/2 be adjacent to 2. Define H_.,s by
H_., := {t;l(tu(c)g(8)) H c

where g(s) g_u(). Then we have
heorem 2.3 (confluence for H). It holds that

lim AdgH_,. H..
0

more precisely, for every c Ha.
Adg(s)cf(G(c)g(s)) g(s)c(G(c)g(s))g(s)- c

assO.
Theorem 2.4 (confluence for character). For every c H. and every col-

umn vector C, we have
lim X(e(G(c)g(e)) ;g(e) - fl) X(c ;fl).
0

Therefore, for t C and z Zr,, we have
lim Z(e[((t, zg(s))) g(s)- ) 2.(e2((t, z)) ).

As an immediate consequence of Proposition 1.3 and Theorem 2.4, we
obtain the following main theorem.

Theorem 2.5 (confluence for CHG system). The system M(zg(s)
g(s)-fl) tends to the system Mu (z ;fl) as s O.

Remark 2.6. If z Zr,n is a nonsingular point of the system M., then
zg(s) Zr,n is also a nonsingular point of the system M.

Example 2.7. Let us observe that the confluence of two singular points
of the equation (0.1) stated in the introduction is a simple example of our
general process of confluence. Let - (2, 22, a, 24) (1, 1, 1, 1) and

N (N, , ) (2, 1, 1) be two compositions of 4. We consider to be
adjacent to 2 in the sense that 2 + 2, a2 a, aa 24. Set

( 1 1 0 1 Zz,"0 -x 1 --1-

( 1 0 0 1 )Z,.
"0 i 1

Then, the equation (0.1) (or (0.3)) is the restriction of the system M(z’, (- 7
+fl.-fl.a-l.r-a-1)) (or M.(w’.’(- r. -1. a- l. r- a-1)))
on the 1-dimensional space z z(x) (or w w()). Note that

g(s) g_., (s) s
o i
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( 1 1 0 1
-0 e 1 1

g()- ’(-- 7,- 1, a- 1, 7"- a- 1)

’( 1--7+--
From Theorem 2.5, it follows that

limM wg(s) r +
s0

1
,a--l, 7--a-- 1

M,(w; (-- 7,-- 1, a-- 1, Y--a-- 1)).

Remark that the equation (0.2)is the restriction of Ma(wg(s)" ’( 1--r+ 7
s a-- 1, 7-- a-- 1 on to= to() and that

iVI(z(x) ,’’(-- r+3, --B, a-- 1, 7"-- a-- 1)

M(w()g(s) ( 1 1 ))r+-, s,-l,r-a-1
if and only if

1x-s, 5=7.
Thus the confluence process from (0.1) to (0.3) is equivalent to that from

M,(z(x) "t(-- 7 + fl --15 a-- 1 r-- a-- 1)) to M.(w() "t(- 7 1
a-l, 7"-a- 1)).
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