83. Group Rings and the Norm Groups

By Shin-ichi Katayama
Tokushima University
(Communicated by Shokichi IyANAGA, M. J. A., Nov. 12, 1993)

1. Introduction and preliminary lemmas. Let n be a natural number >1 and G be a cyclic group of order n generated by σ. We consider in this note the cyclic extension L / F of fields with the Galois group G. Let $a \in L^{\times}$. The well-known Hilbert theorem 90 asserts that $a^{1+\sigma+\cdots+\sigma^{n-1}}=1$ if and only if there exists $b \in L^{\times}$such that $a=b^{1-\sigma}$. Now let t be an indeterminate and set $D_{n}=\left\{f(t) \in \boldsymbol{Z}[t] \mid f(t)\right.$ divides $\left.t^{n}-1\right\}$. For $f(t) \in D_{n}$, we shall denote $f^{\perp}(t)=\left(t^{n}-1\right) / f(t)$. Obviously one sees $f^{\perp}(t) \in D_{n}$ and $\left(f^{\perp}\right)^{\perp}(t)=f(t)$. We define now:
(1. 1) $f(t) \in D_{n}$ is called of H-type if the following holds:

For any cyclic extension L / F and any $a \in L^{\times}, a^{f(\sigma)}=1$ if and only if there exists $b \in L^{\times}$such that $a=b^{f^{\perp}(\sigma)}$.
If there is no fear of confusion, we shall abbreviate $f(t)$ or $f(\sigma)$ to f. It is obvious that $a=b^{f^{\perp}}$ implies $a^{f}=1$, so that the above definition can be simplified as follows:
(1.2) f is of H-type, if $a^{f(\sigma)}=1$ implies the existence of b with $a=b^{f^{\perp}(\sigma)}$.
$f=t^{n}-1$ is trivially of H-type, and Hilbert theorem 90 says that $f=$ $1+t+\cdots+t^{n-1}$ is of H-type. W. Hürlimann [2] has proved an interesting result ("Cyclotomic Hilbert theorem 90") saying that the n-th cyclotomic polynomial $\Phi_{n}(t)$ is also of H-type.

The aim of this paper is to determine the set of all polynomials ($\in D_{n}$) of H-type, which will be denoted with H_{n}. The result of [2] will be stated as

Lemma 1. $\Phi_{n} \in H_{n}$.
We denote the greatest common divisor and the least common multiple of f, $g \in \boldsymbol{Z}[t]$ by (f, g) and $\{f, g\}$, respectively. If $f, g \in D_{n}$ we have clearly $(f, g),\{f, g\} \in D_{n}$.

Lemma 2. If $f, g \in D_{n}$ are of H-type, then (f, g) and $\{f, g\}$ are of H-type.

Proof. We denote $f_{0}=(f, g)$ and $f=f_{0} f_{1}, g=f_{0} g_{1}$ and $t^{n}-1$ $=f_{0} f_{1} g_{1} h$. We shall show $f_{0}=(f, g)$ is of H-type. For any $a \in L^{\times}$such that $a^{f_{0}}=1$, one sees $a^{f}=1$. Since f is of H-type, there exists $b \in L^{\times}$such that $a=b^{g_{1} h}$. Then $a^{f_{0}}=\left(b^{h}\right)^{g}=1$. Since, g is of H-type, there exists $c \in L^{\times}$ such that $b^{h}=c^{f_{1} h}$. Hence $a=\left(b^{h}\right)^{g_{1}}=c^{f_{1} g_{1} h}=c^{f^{\frac{1}{0}}}$. In the same way as above, one sees that $\{f, g\}$ is also of H-type.

For the case $m \mid n$, we define an injection $\pi_{n / m}$ from D_{m} to D_{n} by putting $\pi_{n / m}(f(t))=f\left(t^{l}\right)$, where $l=n / m$. We shall abbreviate $\pi_{n / m}(f(t))$ to
$\bar{f}(t)$ when no confusion is to fear. Then from the fact $(\bar{f})^{\perp}=\left(\overline{f^{\perp}}\right)$, we have the following

Lemma 3. If $f \in D_{m}$ is of H-type, then $\bar{f}=\pi_{n / m}(f) \in D_{n}$ is also of H-type.

For a subset $\left\{h_{1}, h_{2}, \ldots, h_{r}\right\} \subset H_{n},\left\langle h_{1}, h_{2}, \ldots, h_{r}\right\rangle$ will denote the set consisting of all the polynomials which are obtained by applying the operations (,), $\{$,$\} on h_{1}, h_{2}, \ldots, h_{r}$ finite number of times. From Lemma 2, one sees that $\left\langle h_{1}, h_{2}, \ldots, h_{r}\right\rangle$ is also a subset of $H_{n} . H_{n}^{0}$ will denote the set $\left\langle\pi_{n / d}\left(\Phi_{d}\right),\left(t^{d}-1\right)^{\perp}\right\rangle$, where d runs over all $d \mid n$. Then, from Lemmas 1,2 , 3, we have $H_{n}^{0} \subset H_{n}$ and the induction on the number of distinct prime factors of n yields the following proposition.

Proposition 1. $f \in H_{n}^{0}$ if and only if f satisfies the following condition. If Φ_{d} divides f for some $d \mid n$, then for any d^{\prime} such that $d\left|d^{\prime}\right| n, \Phi_{d^{\prime}}$ divides f.

Our main theorem claims that $H_{n}^{0}=H_{n}$.
2. A proposition on the norm group. In this section, we assume that n is a composite number and decomposes into $n=m l(m, l>1)$ and fix l for a while. We denote the invariant field associated with $\left\langle\sigma^{l}\right\rangle$ by K. For any $f \in \boldsymbol{Z}[G], \Psi_{f}$ denotes the G-endomorphism of L^{\times}defined by $\Psi_{f}(x)=x^{f(\sigma)}$ We denote by $q_{l}(t)$ (or briefly by $q(t)$) the polynomial $\Pi_{d \mid l}^{\prime} \Phi_{d}(t)$. Then we have the following proposition.

Proposition 2. With the above notation, we have

$$
\operatorname{Ker} \Psi_{q}=\prod_{\lambda} K_{\lambda}^{\times}
$$

where K_{λ} runs over all the maximal subfields contained in K.
Without loss of generality, we may assume $l=p_{1} \cdots p_{r}$, where $p_{1}, \cdots p_{r}$ are distinct primes. Let l_{j} be the number l / p_{j} and K_{j} be the intermediate fields corresponding to $\left\langle\sigma^{l^{j}}\right\rangle$. Then the maximal subfields contained in K are K_{1}, \ldots, K_{r}. When $r=1$, we have $q(t)=t-1$ and $K_{1}=F$ and the above proposition is obvious. Next, we recall the following elementary fact.

If $(a, b)=c$, using an analogy of the Euclidean algorithm, we see that there exist $h^{\prime}(t), g^{\prime}(t) \in \boldsymbol{Z}[t]$ such that

$$
\left(\frac{t^{a}-1}{t-1}\right) h^{\prime}(t)+\left(\frac{t^{b}-1}{t-1}\right) g^{\prime}(t)=\frac{t^{c}-1}{t-1}
$$

From this fact, one can prove the following lemma using the induction on $r \geq 2$.

Lemma 4. Let $g_{i}(t)$ be the polynomial $q(t) /\left(t^{l_{i}}-1\right) \in D_{n}(1 \leq i \leq r)$. Then there exist $h_{i}(t) \in \boldsymbol{Z}[t]$ such that

$$
\sum_{i=1}^{r} g_{i}(t) h_{i}(t)=1(r \geq 2) .
$$

Proof. When $r=2$, we have $l=p_{1} p_{2}, g_{1}(t)=\Phi_{p_{1}}(t)=\frac{t^{p_{1}}-1}{t-1}, g_{2}(t)$ $=\Phi_{p_{2}}(t)=\frac{t^{p_{2}}-1}{t-1}$, so that there exist $h_{1}(t), h_{2}(t) \in \boldsymbol{Z}[t]$ such that $h_{1} g_{1}+$ $h_{2} g_{2}=1$ by the above remark.

Next, assume that the lemma holds for the case $r-1 \geq 2$, so that for l_{r} $=p_{1} \cdots p_{r-1}$, there exist $h_{1}(t), \ldots, h_{r-1}(t)$ with

$$
\sum_{i=1}^{r-1} \frac{t^{l_{r}}-1}{\Phi_{l_{r}}(t)\left(t^{l_{r} / p_{i}}-1\right)} h_{i}(t)=1
$$

Substituting t to $t^{p_{r}}$, we obtain

$$
\sum_{i=1}^{r-1} \frac{t^{l}-1}{\Phi_{l_{r}}\left(t^{p_{r}}\right)\left(t^{l_{i}}-1\right)} h_{i}\left(t^{p_{r}}\right)=1
$$

Since $\Phi_{l_{r}}\left(t^{p_{r}}\right)=\Phi_{l}(t) \Phi_{l_{r}}(t)$, we obtain

$$
\sum_{i=1}^{r-1} g_{i}(t) h_{i}\left(t^{p_{r}}\right)=\Phi_{l_{r}}(t)
$$

Putting $h_{i r}(t)=\frac{h_{i}\left(t^{p_{r}}\right)\left(t^{l_{r}}-1\right)}{\Phi_{l_{r}}(t)(t-1)} \in \boldsymbol{Z}[t]$, we have

$$
\sum_{i=1}^{r-1} g_{i}(t) h_{i r}(t)=\frac{t^{l_{r}}-1}{t-1}
$$

In the same way as above, for any l_{j}, there exist $h_{i j}(t) \in \boldsymbol{Z}[t]$ such that $\sum g_{i}(t) h_{i j}(t)=\frac{t^{l_{j}}-1}{t-1}$. Since $\left(l_{1}, \ldots, l_{r}\right)=1$, one can choose $h_{i}(t) \in$ $\boldsymbol{Z}[t]$ such that

$$
\sum_{i=1}^{r} g_{i}(t) h_{i}(t)=1 .
$$

Now we shall prove Proposition 2 for the case $r \geq 2$. From the fact $\left(t^{l_{i}}-1\right) \mid q(t)$, it is obvious that $\operatorname{Ker} \Psi_{q} \supset \Pi_{i=1}^{r} K_{i}^{\times}$. Conversely if $x \in \operatorname{Ker}$ Ψ_{q}, put $x_{i}=x^{g_{i}(\sigma)}(1 \leq i \leq r)$. Then $x_{i}^{\sigma_{i}-1}=x^{q(\sigma)}=1$. Hence we have x_{i} $\in K_{i}^{\times}$. From Lemma 4 , there exist $h_{i}(t) \in \boldsymbol{Z}[t]$ such that $\sum g_{i}(t) h_{i}(t)=1$. Hence we have

$$
x=x^{\Sigma g_{i}(\sigma) h_{i}(\sigma)}=\prod_{i=1}^{r} x_{i}^{h_{i}(\sigma)} \in \prod_{i=1}^{r} K_{i}^{\times},
$$

which completes the proof of Proposition 2.
Lemma 5. Let A be an elementary abelian group $(\boldsymbol{Z} / m \boldsymbol{Z})^{l}$ and A_{i} be the subgroup $\left\{\left(x_{1}, \ldots, x_{l}\right) \mid x_{j}=x_{k} \in \boldsymbol{Z} / m \boldsymbol{Z}\right.$ when $j \equiv k$ mod $\left.l_{i}\right\}$. A_{0} denotes the subgroup generated by A_{1}, \ldots, A_{r}. Then we have $A_{0} \neq A$.

Proof. Let A^{\prime} be \boldsymbol{Z}^{l} and A_{i}^{\prime} be the subgroup $\left\{\left(x_{1}, \ldots, x_{l}\right) \mid x_{j}=x_{k} \in \boldsymbol{Z}\right.$ when $\left.j \equiv k \bmod l_{i}\right\}$. A_{0}^{\prime} will denote the subgroup generated by $A_{1}^{\prime}, \ldots, A_{r}^{\prime}$. Then the $\operatorname{rank}_{\boldsymbol{Z}} A_{0}^{\prime}=\operatorname{rank} M^{\prime}$. Here M^{\prime} is the following matrix of $\left(l_{1}+\cdots\right.$ $+l_{r}, l$)-type.

$$
M^{\prime}=\left[\begin{array}{ccc}
E_{l_{1}} & \cdots & E_{l_{1}} \\
E_{l_{2}} & \cdots & E_{l_{2}} \\
\vdots & \cdots & \vdots \\
E_{l_{r}} & \cdots & E_{l_{r}}
\end{array}\right] \text {, were } E_{l_{i}} \text { is the } l_{i} \times l_{i} \text { unit matrix. }
$$

If $\operatorname{rank} M^{\prime}<l$, then it is obvious that $A_{0}^{\prime} \neq A^{\prime}$. So we may consider only the case $l_{1}+\cdots+l_{r} \geq l$. One can take l suitable row vectors v_{1}, \ldots, v_{l} of M^{\prime} such that the $l \times l$ matrix $T^{\prime}=\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{l}\end{array}\right]$ has the same rank $\operatorname{rank} T^{\prime}=\operatorname{rank}$ M^{\prime}. Let ζ be the primitive l-th root of 1 . Then one sees

$$
T^{\prime}\left(\begin{array}{c}
1 \\
\zeta \\
\vdots \\
\zeta^{l-1}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

Hence the determinant $\left|T^{\prime}\right|=0$. Therefore, we get $\operatorname{rank} M^{\prime}=\operatorname{rank} T^{\prime}<l$. Finally, similar argument modulo m implies $\operatorname{rank}_{\boldsymbol{Z} / m \boldsymbol{Z}} A_{0}<\operatorname{rank}_{\boldsymbol{Z} / m \boldsymbol{Z}} A=l$, which completes the proof.

Proposition 3. With the above notation, we have
(i) If L is an unramified local number field, $K^{\times}=\left(\Pi_{\lambda} K_{\lambda}^{\times}\right) N_{L / K} L^{\times}$, where K_{λ} runs over all the maximal subfields of K.
(ii) If L is a global number field, $K^{\times} /\left(\Pi_{\lambda} K_{\lambda}^{\times}\right) N_{L / K} L^{\times}$is an infinite abelian group, where K_{λ} runs over all the maximal subfields of K.

Sketch of proof. From local class field theory, one can easily verify the result (i). Let v be a place of F which is extended to l distinct places $v(K)$ in K and every $v(K)$ is inert in L / K. We denote the l extensions of v to L by $v(L)$ and the restrictions of $v(K)$ to K_{λ} by $v\left(K_{\lambda}\right)$. We note that Chebotarev's density theorem assures the existance of infinitely many places $v \in F$ which satisfy the above conditions. We denote the completions of F, K_{λ}, K, L by $F_{v},\left(K_{\lambda}\right)_{v\left(K_{\lambda}\right)}, K_{v(K)}, L_{v(L)}$. We abbreviate

$$
\prod_{v\left(K_{\lambda}\right) \mid v}\left(K_{\lambda}\right)_{v\left(K_{\lambda}\right)}^{\times}, \prod_{v(K) \mid v} K_{v(K)}^{\times}, \prod_{v(L) \mid v} L_{v(L)}^{\times}
$$

to $\left(K_{\lambda}\right)_{v}^{\times}, K_{v}^{\times}, L_{v}^{\times}$. Then, from local class field theory, we have $K_{v}^{\times} /\left(\Pi_{\lambda}\right.$ $\left.\left(K_{\lambda}\right)_{v}^{\times}\right) N_{L / K} L_{v}^{\times} \cong A / A_{0}$, where A, A_{0} are those in the above lemma. Hence $K_{v}^{\times} \neq\left(\Pi_{\lambda}\left(K_{\lambda}\right)_{v}^{\times}\right) N_{L / K} L_{v}^{\times}$. Therefore the idele groups $K_{A}^{\times},\left(K_{\lambda}\right)_{A}^{\times}, L_{A}^{\times}$satisfies $K_{A}^{\times} \neq\left(\Pi_{\lambda}\left(K_{\lambda}\right)_{A}^{\times}\right) N_{L / K} L_{A}^{\times}$and more precisely $K_{A}^{\times} /\left(\Pi_{\lambda}\left(K_{\lambda}\right)_{A}^{\times}\right) N_{L / K} L_{A}^{\times}$is an infinite abelian group. Combining global class field theory and Hasse's norm theorem, one obtains that $K^{\times} /\left(\Pi_{\lambda} K_{\lambda}^{\times}\right) N_{L / K} L^{\times}$is an infinite abelian group.
3. Proof of the main theorem. Suppose f is of H-type and $f \notin H_{0}$. Then one can choose a H-type polynomial $g \in\left\langle f, H_{0}\right\rangle\left(\notin H_{0}\right)$ such as $g(t)=\Phi_{l}(t)(1<l<n)$ or $g(t)=\left(t^{l}-1\right)^{\perp} \Phi_{l_{1}}(t)$, where $l=l_{1} p_{1} \quad\left(p_{1}\right.$ is prime).

First consider the case $g=\Phi_{l}$. From the assumption that g is of H-type, we have $\operatorname{Ker} \Psi_{g}=\left(L^{x}\right)^{g^{\perp}(\sigma)}$. Since $g^{\perp}(\sigma)=q_{l}(\sigma)\left(\sigma^{l}-1\right)^{\perp}$, we have $x^{g^{\perp}(\sigma)}$ $=\left(N_{L / K} x\right)^{q_{l}(\sigma)^{8}}$ for any $x \in L^{\times}$. Hence we have the equality $\operatorname{Ker} \Psi_{g}$ $=\left(L^{\times}\right)^{g}(\sigma)=\left(N_{L / K} L^{\times}\right)^{q_{I}(\sigma)}$

On the other hand, from the fact $g(t) \mid\left(t^{l}-1\right)$, we have $\operatorname{Ker} \Psi_{g} \subset K^{\times}$. Hence, from Lemma 1, we have $\operatorname{Ker} \Psi_{g}=\left\{x \in K^{\times} \mid x^{g(\sigma)}=1\right\}=\left(K^{\times}\right)^{q_{l}(\sigma)}$. Hence we have the equality $\left(N_{L / K} L^{\times}\right)^{q_{I}(\sigma)}=\left(K^{\times}\right)^{q_{l}(\sigma)}$. Hence, from Proposition 2, we have $K^{\times}=\left(\Pi_{\lambda} K_{\lambda}^{\times}\right) N_{L / K} L^{\times}$, where K_{λ} runs over all the maximal subfields of K, which contradicts Proposition 3.

Next consider the case $g(t)=\left(t^{l}-1\right)^{\perp} \Phi_{l_{1}}(t)$ is of H-type. Then $g^{\perp}(t)=\left(t^{l}-1\right) / \Phi_{l_{1}}(t)$. From the assumption that $g(t)$ is of H-type, we have $\operatorname{Ker} \Psi_{g}=\left(L^{\times}\right)^{g^{1}(\sigma)}$

On the other hand, from the fact that $x^{g(\sigma)}=N_{L / K}\left(x^{\Phi_{l_{1}}(\sigma)}\right)$ and Hilbert theorem 90 , there exists $y \in L^{\times}$which satisfies $x^{\Phi_{L_{1}(\sigma)}}=y^{\sigma^{t}-1}=\left(y^{g^{\perp}(\sigma)}\right)^{\Phi_{L_{1}}(\sigma)}$
for any $x \in \operatorname{Ker} \Psi_{g{ }^{\text {. }}}$ Then $x / y^{g^{\perp}(\sigma)} \in K_{1}^{\times}$, where K_{1} is the invariant fields associated with $\left\langle\sigma^{l_{1}}\right\rangle$. Since $\left(x / y^{g^{\perp}(\sigma)}\right)^{\Phi_{t_{1}}(\sigma)}=1$, there exists $z \in K_{1}^{\times}$such that $x=y^{g^{\perp}(\sigma)} z^{q_{l_{1}}(\sigma)}$ from Lemma 1. Conversely, if $x=y^{g^{\perp}(\sigma)} z^{q_{L_{1}}(\sigma)}$ for some $y \in L^{\times}$and $z \in K_{1}^{\times}$then one sees $x \in \operatorname{Ker} \Psi_{g}$. Hence we have shown $\operatorname{Ker} \Psi_{g}$ $=\left(L^{\times}\right)^{g^{\perp}(\sigma)}\left(K_{1}^{\times}\right)^{q_{l_{1}}(\sigma)}$. Hence we have $\left(K_{1}^{\times}\right)^{q_{L_{1}}^{(\sigma)}} \subset\left(L^{\times}\right)^{g^{\perp}(\sigma)}$, that is, for any z $\in K_{1}^{\times}$, there exists $y \in L^{\times}$such that $z^{q_{L_{1}}(\sigma)}=y^{g^{\perp}(\sigma)}$. Since $y^{\sigma^{i}-1}=$ $\left(z^{q_{l_{1}}(\sigma)}\right)^{\Phi_{L_{1}}(\sigma)}=z^{\sigma^{I_{1}-1}}=1$, we have $y \in K^{\times}$.

Conversely for any $y \in K^{\times}, y^{g^{\perp}(\sigma)}=\left(N_{K / K_{1}} y\right)^{q_{L_{1}}(\sigma)} \in\left(K_{1}^{\times}\right)^{q_{L_{1}}(\sigma)}$. Hence we have shown $\left(K_{1}^{\times}\right)^{q_{L_{1}}(\sigma)}=\left(N_{K / K_{1}} K^{\times}\right)^{q_{L_{1}}(\sigma)}$.

From Proposition 2, we have $K_{1}^{\times}=\left(\Pi_{\lambda^{\prime}} K_{\lambda^{\prime}}{ }^{\times}\right) N_{K / K_{1}} K^{\times}$, where $K_{\lambda^{\prime}}$ runs over all the maximal subfields of K_{1}^{\times}, which contradicts Proposition 3. Therefore we have shown the following theorem

Theorem. With the above notation, we have H_{n}^{0}.
Acknowledgement. I would express my heartly thanks to the referee for his many useful suggestions improving my first manuscript.

References

[1] S. Endo and T. Miyata: Quasi-permutation modules over finite groups. J. Math. Soc. Japan, 25, 397-421 (1973).
[2] W. Hürlimann: A cyclotomic Hilbert 90 theorem. Arch. Math., 43, 25-26 (1984).
[3] S. Iyanaga (ed.): The Theory of Numbers. North Holland, American Elsevier, New York (1975).

