83. Group Rings and the Norm Groups

By Shin-ichi KATAYAMA

Tokushima University (Communicated by Shokichi IYANAGA, M. J. A., Nov. 12, 1993)

1. Introduction and preliminary lemmas. Let *n* be a natural number > 1 and *G* be a cyclic group of order *n* generated by σ . We consider in this note the cyclic extension L/F of fields with the Galois group *G*. Let $a \in L^{\times}$. The well-known Hilbert theorem 90 asserts that $a^{1+\sigma+\dots+\sigma^{n-1}} = 1$ if and only if there exists $b \in L^{\times}$ such that $a = b^{1-\sigma}$. Now let *t* be an indeterminate and set $D_n = \{f(t) \in \mathbb{Z}[t] \mid f(t) \text{ divides } t^n - 1\}$. For $f(t) \in D_n$, we shall denote $f^{\perp}(t) = (t^n - 1)/f(t)$. Obviously one sees $f^{\perp}(t) \in D_n$ and $(f^{\perp})^{\perp}(t) = f(t)$. We define now:

(1. 1) $f(t) \in D_n$ is called of *H*-type if the following holds:

For any cyclic extension L/F and any $a \in L^{\times}$, $a^{f(\sigma)} = 1$ if and only if there exists $b \in L^{\times}$ such that $a = b^{f^{\perp}(\sigma)}$.

If there is no fear of confusion, we shall abbreviate f(t) or $f(\sigma)$ to f. It is obvious that $a = b^{f^{\perp}}$ implies $a^{f} = 1$, so that the above definition can be simplified as follows:

(1.2) f is of *H*-type, if $a^{f(\sigma)} = 1$ implies the existence of b with $a = b^{f^{\perp}(\sigma)}$.

 $f = t^n - 1$ is trivially of *H*-type, and Hilbert theorem 90 says that $f = 1 + t + \cdots + t^{n-1}$ is of *H*-type. W. Hürlimann [2] has proved an interesting result ("Cyclotomic Hilbert theorem 90") saying that the *n*-th cyclotomic polynomial $\Phi_n(t)$ is also of *H*-type.

The aim of this paper is to determine the set of all polynomials $(\in D_n)$ of *H*-type, which will be denoted with H_n . The result of [2] will be stated as

Lemma 1. $\Phi_n \in H_n$.

We denote the greatest common divisor and the least common multiple of f, $g \in \mathbb{Z}[t]$ by (f, g) and $\{f, g\}$, respectively. If $f, g \in D_n$ we have clearly $(f, g), \{f, g\} \in D_n$.

Lemma 2. If $f, g \in D_n$ are of H-type, then (f, g) and $\{f, g\}$ are of H-type.

Proof. We denote $f_0 = (f, g)$ and $f = f_0 f_1$, $g = f_0 g_1$ and $t^n - 1 = f_0 f_1 g_1 h$. We shall show $f_0 = (f, g)$ is of *H*-type. For any $a \in L^{\times}$ such that $a^{f_0} = 1$, one sees $a^f = 1$. Since f is of *H*-type, there exists $b \in L^{\times}$ such that $a = b^{g_1 h}$. Then $a^{f_0} = (b^h)^g = 1$. Since, g is of *H*-type, there exists $c \in L^{\times}$ such that $b^h = c^{f_1 h}$. Hence $a = (b^h)^{g_1} = c^{f_1 g_1 h} = c^{f_1 h}$. In the same way as above, one sees that $\{f, g\}$ is also of *H*-type.

For the case $m \mid n$, we define an injection $\pi_{n/m}$ from D_m to D_n by putting $\pi_{n/m}(f(t)) = f(t^l)$, where l = n/m. We shall abbreviate $\pi_{n/m}(f(t))$ to

 $\bar{f}(t)$ when no confusion is to fear. Then from the fact $(\bar{f})^{\perp} = (\bar{f}^{\perp})$, we have the following

Lemma 3. If $f \in D_m$ is of H-type, then $\overline{f} = \pi_{n/m}(f) \in D_n$ is also of H-type.

For a subset $\{h_1, h_2, \ldots, h_r\} \subset H_n$, $\langle h_1, h_2, \ldots, h_r \rangle$ will denote the set consisting of all the polynomials which are obtained by applying the operations $(,), \{,\}$ on h_1, h_2, \ldots, h_r finite number of times. From Lemma 2, one sees that $\langle h_1, h_2, \ldots, h_r \rangle$ is also a subset of H_n . H_n^0 will denote the set $\langle \pi_{n/d}(\Phi_d), (t^d - 1)^{\perp} \rangle$, where d runs over all $d \mid n$. Then, from Lemmas 1, 2, 3, we have $H_n^0 \subset H_n$ and the induction on the number of distinct prime factors of n yields the following proposition.

Proposition 1. $f \in H_n^0$ if and only if f satisfies the following condition. If Φ_d divides f for some $d \mid n$, then for any d' such that $d \mid d' \mid n$, $\Phi_{d'}$ divides f.

Our main theorem claims that $H_n^0 = H_n$.

2. A proposition on the norm group. In this section, we assume that n is a composite number and decomposes into n = ml(m, l > 1) and fix l for a while. We denote the invariant field associated with $\langle \sigma^l \rangle$ by K. For any $f \in \mathbb{Z}[G]$, Ψ_f denotes the G-endomorphism of L^{\times} defined by $\Psi_f(x) = x^{f(\sigma)}$. We denote by $q_l(t)$ (or briefly by q(t)) the polynomial $\Pi'_{d|l} \Phi_d(t)$. Then we have the following proposition.

Proposition 2. With the above notation, we have $Ker \Psi_q = \prod_{\lambda} K_{\lambda}^{\times},$

where K_{λ} runs over all the maximal subfields contained in K.

Without loss of generality, we may assume $l = p_1 \cdots p_r$, where $p_1, \cdots p_r$ are distinct primes. Let l_j be the number l/p_j and K_j be the intermediate fields corresponding to $\langle \sigma^{l_j} \rangle$. Then the maximal subfields contained in K are K_1, \ldots, K_r . When r = 1, we have q(t) = t - 1 and $K_1 = F$ and the above proposition is obvious. Next, we recall the following elementary fact.

If (a, b) = c, using an analogy of the Euclidean algorithm, we see that there exist h'(t), $g'(t) \in \mathbb{Z}[t]$ such that

$$\left(\frac{t^{a}-1}{t-1}\right)h'(t) + \left(\frac{t^{b}-1}{t-1}\right)g'(t) = \frac{t^{c}-1}{t-1}$$

From this fact, one can prove the following lemma using the induction on $r \ge 2$.

Lemma 4. Let $g_i(t)$ be the polynomial $q(t)/(t^{l_i}-1) \in D_n(1 \le i \le r)$. Then there exist $h_i(t) \in \mathbb{Z}[t]$ such that

$$\sum_{i=1}^{r} g_i(t) h_i(t) = 1 \ (r \ge 2).$$

Proof. When r = 2, we have $l = p_1 p_2$, $g_1(t) = \Phi_{p_1}(t) = \frac{t^{p_1} - 1}{t - 1}$, $g_2(t) = \Phi_{p_2}(t) = \frac{t^{p_2} - 1}{t - 1}$, so that there exist $h_1(t)$, $h_2(t) \in \mathbb{Z}[t]$ such that $h_1g_1 + h_2g_2 = 1$ by the above remark.

Next, assume that the lemma holds for the case $r-1 \ge 2$, so that for $l_r = p_1 \cdots p_{r-1}$, there exist $h_1(t), \ldots, h_{r-1}(t)$ with

$$\sum_{i=1}^{r-1} \frac{t^{i_r} - 1}{\Phi_{l_r}(t) \left(t^{l_r/p_i} - 1\right)} h_i(t) = 1.$$

Substituting t to t^{p_r} , we obtain

$$\sum_{i=1}^{r-1} \frac{t^{i} - 1}{\varPhi_{l_{r}}(t^{\flat_{r}})(t^{l_{i}} - 1)} h_{i}(t^{\flat_{r}}) = 1.$$

Since $\Phi_{l_r}(t^{p_r}) = \Phi_l(t) \Phi_{l_r}(t)$, we obtain $\sum_{i=1}^{r-1} g_i(t) h_i(t^{p_r}) = \Phi_{l_r}(t).$

Putting $h_{ir}(t) = \frac{h_i(t^{p_r})(t^{l_r}-1)}{\varPhi_{l_r}(t)(t-1)} \in \mathbb{Z}[t]$, we have $\sum_{i=1}^{r-1} g_i(t)h_{ir}(t) = \frac{t^{l_r}-1}{t-1}.$

In the same way as above, for any l_j , there exist $h_{ij}(t) \in \mathbb{Z}[t]$ such that $\sum g_i(t)h_{ij}(t) = \frac{t^{l_j} - 1}{t - 1}$. Since $(l_1, \ldots, l_r) = 1$, one can choose $h_i(t) \in \mathbb{Z}[t]$ such that

$$\sum_{i=1}^r g_i(t) h_i(t) = 1.$$

Now we shall prove Proposition 2 for the case $r \ge 2$. From the fact $(t^{l_i} - 1) | q(t)$, it is obvious that $Ker \Psi_q \supseteq \prod_{i=1}^r K_i^{\times}$. Conversely if $x \in Ker \Psi_q$, put $x_i = x^{g_i(\sigma)}$ $(1 \le i \le r)$. Then $x_i^{\sigma^{l_i-1}} = x^{q(\sigma)} = 1$. Hence we have $x_i \in K_i^{\times}$. From Lemma 4, there exist $h_i(t) \in \mathbb{Z}[t]$ such that $\sum g_i(t)h_i(t) = 1$. Hence we have

$$x = x^{\sum g_i(\sigma)h_i(\sigma)} = \prod_{i=1}^r x_i^{h_i(\sigma)} \in \prod_{i=1}^r K_i^{\times},$$

which completes the proof of Proposition 2.

Lemma 5. Let A be an elementary abelian group $(\mathbb{Z}/m\mathbb{Z})^{l}$ and A_{i} be the subgroup $\{(x_{1}, \ldots, x_{l}) \mid x_{j} = x_{k} \in \mathbb{Z}/m\mathbb{Z} \text{ when } j \equiv k \mod l_{i}\}$. A_{0} denotes the subgroup generated by A_{1}, \ldots, A_{r} . Then we have $A_{0} \neq A$.

Proof. Let A' be Z' and A'_i be the subgroup $\{(x_1, \ldots, x_l) \mid x_j = x_k \in Z$ when $j \equiv k \mod l_i\}$. A'_0 will denote the subgroup generated by A'_1, \ldots, A'_r . Then the $rank_Z A'_0 = rank M'$. Here M' is the following matrix of $(l_1 + \cdots + l_r, l)$ -type.

$$M' = \begin{bmatrix} E_{l_1} & \cdots & E_{l_1} \\ E_{l_2} & \cdots & E_{l_2} \\ \vdots & \cdots & \vdots \\ E_{l_r} & \cdots & E_{l_r} \end{bmatrix}, \text{ were } E_{l_i} \text{ is the } l_i \times l_i \text{ unit matrix.}$$

If rank M' < l, then it is obvious that $A'_0 \neq A'$. So we may consider only the case $l_1 + \cdots + l_r \geq l$. One can take l suitable row vectors v_1, \ldots, v_l of M' such that the $l \times l$ matrix $T' = \begin{bmatrix} v_1 \\ \vdots \\ v_l \end{bmatrix}$ has the same rank rank T' = rankM'. Let ζ be the primitive l-th root of 1. Then one sees

365

No. 9]

$$T'\begin{pmatrix}1\\\zeta\\\vdots\\\zeta^{l-1}\end{pmatrix} = \begin{pmatrix}0\\0\\\vdots\\0\end{pmatrix}.$$

Hence the determinant |T'| = 0. Therefore, we get rank $M' = \operatorname{rank} T' < l$. Finally, similar argument modulo *m* implies $\operatorname{rank}_{Z'mZ}A_0 < \operatorname{rank}_{Z/mZ}A = l$, which completes the proof.

Proposition 3. With the above notation, we have

(i) If L is an unramified local number field, $K^{\times} = (\Pi_{\lambda} K_{\lambda}^{\times}) N_{L/K} L^{\times}$, where K_{λ} runs over all the maximal subfields of K.

(ii) If L is a global number field, $K^{\times}/(\prod_{\lambda} K_{\lambda}^{\times}) N_{L/K}L^{\times}$ is an infinite abelian group, where K_{λ} runs over all the maximal subfields of K.

Sketch of proof. From local class field theory, one can easily verify the result (i). Let v be a place of F which is extended to l distinct places v(K) in K and every v(K) is inert in L/K. We denote the l extensions of v to L by v(L) and the restrictions of v(K) to K_{λ} by $v(K_{\lambda})$. We note that Chebotarev's density theorem assures the existance of infinitely many places $v \in F$ which satisfy the above conditions. We denote the completions of F, K_{λ} , K, L by F_{v} , $(K_{\lambda})_{v(K_{\lambda})}$, $K_{v(K)}$, $L_{v(L)}$. We abbreviate

$$\prod_{(K_{\lambda})|v} (K_{\lambda})_{v(K_{\lambda})}^{\times}, \prod_{v(K)|v} K_{v(K)}^{\times}, \prod_{v(L)|v} L_{v(L)}^{\times}$$

to $(K_{\lambda})_{v}^{\times}, K_{v}^{\times}, L_{v}^{\times}$. Then, from local class field theory, we have $K_{v}^{\times}/(\Pi_{\lambda}(K_{\lambda})_{v}) N_{L/K}L_{v}^{\times} \cong A/A_{0}$, where A, A_{0} are those in the above lemma. Hence $K_{v}^{\times} \neq (\Pi_{\lambda}(K_{\lambda})_{v}^{\times}) N_{L/K}L_{v}^{\times}$. Therefore the idele groups $K_{A}^{\times}, (K_{\lambda})_{A}^{\times}, L_{A}^{\times}$ satisfies $K_{A}^{\times} \neq (\Pi_{\lambda}(K_{\lambda})_{A}^{\times}) N_{L/K}L_{A}^{\times}$ and more precisely $K_{A}^{\times}/(\Pi_{\lambda}(K_{\lambda})_{A}^{\times}) N_{L/K}L_{A}^{\times}$ is an infinite abelian group. Combining global class field theory and Hasse's norm theorem, one obtains that $K^{\times}/(\Pi_{\lambda}K_{\lambda}^{\times}) N_{L/K}L^{\times}$ is an infinite abelian group.

3. Proof of the main theorem. Suppose f is of H-type and $f \notin H_0$. Then one can choose a H-type polynomial $g \in \langle f, H_0 \rangle (\notin H_0)$ such as $g(t) = \Phi_l(t) (1 < l < n)$ or $g(t) = (t^l - 1)^{\perp} \Phi_{l_1}(t)$, where $l = l_1 p_1$ (p_1 is prime).

First consider the case $g = \Phi_l$. From the assumption that g is of H-type, we have $Ker\Psi_g = (L^x)^{g^{\perp}(\sigma)}$. Since $g^{\perp}(\sigma) = q_l(\sigma)(\sigma^l - 1)^{\perp}$, we have $x^{g^{\perp}(\sigma)} = (N_{L/K}x)^{q_l(\sigma)}$ for any $x \in L^x$. Hence we have the equality $Ker\Psi_g = (L^x)^{g^{\perp}(\sigma)} = (N_{L/K}L^x)^{q_l(\sigma)}$

On the other hand, from the fact $g(t) \mid (t^l - 1)$, we have $Ker \Psi_g \subset K^{\times}$. Hence, from Lemma 1, we have $Ker \Psi_g = \{x \in K^{\times} \mid x^{g(\sigma)} = 1\} = (K^{\times})^{q_l(\sigma)}$. Hence we have the equality $(N_{L/K}L^{\times})^{q_l(\sigma)} = (K^{\times})^{q_l(\sigma)}$. Hence, from Proposition 2, we have $K^{\times} = (\Pi_{\lambda} K_{\lambda}^{\times}) N_{L/K}L^{\times}$, where K_{λ} runs over all the maximal subfields of K, which contradicts Proposition 3.

Next consider the case $g(t) = (t^l - 1)^{\perp} \Phi_{l_1}(t)$ is of *H*-type. Then $g^{\perp}(t) = (t^l - 1)/\Phi_{l_1}(t)$. From the assumption that g(t) is of *H*-type, we have $Ker\Psi_g = (L^{\times})^{g^{\perp}(\sigma)}$

On the other hand, from the fact that $x^{g(\sigma)} = N_{L/K}(x^{\varphi_{l_1}(\sigma)})$ and Hilbert theorem 90, there exists $y \in L^{\times}$ which satisfies $x^{\varphi_{l_1}(\sigma)} = y^{\sigma^{l}-1} = (y^{g^{\perp}(\sigma)})^{\varphi_{l_1}(\sigma)}$

for any $x \in Ker\Psi_g$. Then $x/y^{g^{\perp}(\sigma)} \in K_1^{\times}$, where K_1 is the invariant fields associated with $\langle \sigma^{l_1} \rangle$. Since $(x/y^{g^{\perp}(\sigma)})^{\varphi_{l_1}(\sigma)} = 1$, there exists $z \in K_1^{\times}$ such that $x = y^{g^{\perp}(\sigma)} z^{q_{l_1}(\sigma)}$ from Lemma 1. Conversely, if $x = y^{g^{\perp}(\sigma)} z^{q_{l_1}(\sigma)}$ for some that $x - y = z^{n-1}$ from Lemma 1. Conversely, if $x - y = z^{n-1}$ for some $y \in L^{\times}$ and $z \in K_1^{\times}$ then one sees $x \in Ker \Psi_g$. Hence we have shown $Ker \Psi_g = (L^{\times})^{g^{\perp}(\sigma)}(K_1^{\times})^{q_{l_1}(\sigma)}$. Hence we have $(K_1^{\times})^{q_{l_1}(\sigma)} \subset (L^{\times})^{g^{\perp}(\sigma)}$, that is, for any $z \in K_1^{\times}$, there exists $y \in L^{\times}$ such that $z^{q_{l_1}(\sigma)} = y^{g^{\perp}-(\sigma)}$. Since $y^{\sigma^{l-1}} = (z^{q_{l_1}(\sigma)})^{\varphi_{l_1}(\sigma)} = z^{\sigma^{l-1}} = 1$, we have $y \in K^{\times}$. Conversely for any $y \in K^{\times}$, $y^{g^{\perp}(\sigma)} = (N_{K/K_1} y)^{q_{l_1}(\sigma)} \in (K_1^{\times})^{q_{l_1}(\sigma)}$. Hence we have shown $(K_1^{\times})^{q_{l_1}(\sigma)} = (N_{K/K_1} K^{\times})^{q_{l_1}(\sigma)}$.

From Proposition 2, we have $K_1^{\star} = (\prod_{\lambda'} K_{\lambda'}^{\star}) N_{K/K_1} K^{\star}$, where $K_{\lambda'}$ runs over all the maximal subfields of K_1^{\star} , which contradicts Proposition 3. Therefore we have shown the following theorem

Theorem. With the above notation, we have H_n^0 .

Acknowledgement. I would express my heartly thanks to the referee for his many useful suggestions improving my first manuscript.

References

- [1] S. Endo and T. Miyata: Quasi-permutation modules over finite groups. J. Math. Soc. Japan, 25, 397-421 (1973).
- [2] W. Hürlimann: A cyclotomic Hilbert 90 theorem. Arch. Math., 43, 25-26 (1984).
- [3] S. Iyanaga (ed.): The Theory of Numbers. North Holland, American Elsevier, New York (1975).