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1. Introduetion and preliminary lemmas. Let n be a natural number
> 1 and G be a cyclic group of order n generated by a. We consider in this
note the cyclic extension L/F of fields with the Galois group G. Let a L.

I+T+...+-The well-known Hilbert theorem 90 asserts that a --1 if and
only if there exists b L such that a bl-a_nNow let t be an indetermi-
nate and set Dn {f(t) Z[t] If(t) divides t 1}. For f(t) D, we
shall denote f (t) (t 1)/f(t). Obviously one sees f (t) Dn and

f +/-) (t) f (t). We define now:
(1. 1) f(t) D is called of H-type if the following holds"

For any cyclic extension L/F and any a L, a
<a) 1 if and only if there

exists b L b)such that a
If there is no fear of confusion, we shall abbreviate f(t) or f(a) to f It is ob-
vious that a b implies 1, so that the above definition can be simpli-
fied as follows:

(1.2) f is of H-type, if a)= 1 implies the existence of b with

a bf+/-

f= tn- 1 is trivially of H-type, and Hilbert theorem 90 says that f=
1 + t+ + tn- is of H-type. W. Hilrlimann [2] has proved an interesting

result ("Cyclotomic Hilbert theorem 90") saying that the n-th cyclotomic
polynomial n(t) is also of H-type.

The aim of this paper is to determine the set of all polynomials
( Dn) of H-type, which will be denoted with H. The result of [2] will be
stated as

Lemma 1. q)n Hn.
We denote the greatest common divisor and the least common multiple of f,
g g[t] by (f, g) and {f, g), respectively. If f, g Dn we have clearly
(f, g), {f, g) D..

Lemma 2. If f, g Dn are of H-type, then (f, g)and {f,g} are of
H-type.

Proof We denote fo= (f,g) and f=fofx, g=fog and t"- 1
fofgxh. We shall show fo (f, g) is of H-type. For any a L such that

a 1, one sees az 1. Since f is of H-type, there exists b L such that
a bg‘h. Then az= (bh)= 1. Since, g is of H-type, there exists c L
such that b= czh. Hence a= (b)ga= cAg= c. In the same way as
above, one sees that {f, g} is also of H-type.

For the case re[n, we define an injection zrn/,n from Dm to D by putting

7Cnlm(f(t)) =f(tt), where 1= n/m. We shall abbreviate 7nlm(f(t)) tO
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f(t) when no confusion is to fear. Then from the fact (f-)+/- (f s), we have
the following

Lemma 3. If f Dm is of H-type, then f-- rn/m(f) Dn is also of
H-type.

For a subset {ht, ha,... ,hr} c Hn, (ht, ha,... ,hr} will denote the set
consisting of all the polynomials which are obtained by applying the opera-
tions (,), {, } on h, ha,...,hr finite number of times. From Lemma 2, one
sees that (h, ha,...,hr} is also a subset of Hn. Hn will denote the set
(Tr/d(), (t- 1)+/-, where d runs over all din. Then, from Lemmas 1, 2,
3, we have H c Hn and the induction on the number of distinct prime fac-
tors of n yields the following proposition.

Proposition 1. f Hn if and only if f satisfies the following condition. If
divides ffor some d n, then for any d" such that d d’l n, , divides f.
Our main theorem claims that H H..
2. A proposition on the norm group. In this section, we assume that n

is a composite number and decomposes into n ml(m, > 1) and fix for
a while. We denote the invariant field associated with (a l) by K. For any

f Z[G], vy denotes the G-endomorphism of L defined by y(x) xf(a)

We denote by q(t) (or briefly by q(t)) the polynomial IIl a(t). Then we

have the following proposition.
Proposition 2. With the above notation, we have

Ker q II K,
where K runs over all the maximal subfields contained in K.

Without loss of generality, we may assume Pl"’’Pr, where p,’"
are distinct primes. Let lj be the number l/pj and K be the intermediate
fields corresponding to (a). Then the maximal subfields contained in K are
K, Kr. When r 1, we have q(t) t- 1 and K F and the above
proposition is obvious. Next, we recall the following elementary fact.

If (a, b) c, using an analogy of the Euclidean algorithm, we see that
there exist h’(t), g’(t) Z[t] such that- 1 t- 1 t- 1t-1)h’(t) + (t-1)g’(t) t-l"
From this fact, one can prove the following lemma using the induction on
r_>2.

Lemma 4. Let gi(t) be the polynomial q(t)/(t’- 1) D(1 <- i-< r).
Then there exist h i(t) [] such that

gi(t)hi(t) 1 (r >_ 2).
i=1

Proof When r= 2, we have l=pp2, gt(t)- q)Pl
q,.(t)

t’ 1
(t) t71 g,.(t)

t" 1
t- 1 so that there exist h(t), h,.(t) Z[t] such that hg +

haga 1 by the abovecremark.
Next, assume that the lemma holds for the case r- 1 -> 2, so that for lr

pt’"p_t, there exist ht(t),...,h_t(t) with
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- t 1Z h,(t) 1.
= q,(t) (t/’ 1)

Substituting t to t*, we obtain- t 1
hi(ttr) 1.

=1 #,(t,) (t
,

1)
Since #,(t’) #(t)#,(t), we obtain

r-1

g(t)h(t’) #,(t).
h(t’) (t" 1)

Putting h(t) #,(t) (t- 1) Z[t], we have

"- t 1
g(t)h(t) t-- 1=1

In the same way as above, for any l, there exist h(t) Z[t] such that

t’ 1
g(t)h(t) t--1 Since (l,... ,l)= 1, one can choose h(t)

Z[t] such that

&(t)h(t) 1.

Now we shall prove Proposition 2 for the case r 2> 2. From the fact
r(tl’ 1)I q(t), it is obvious that Ker II= K. Conversely if x Ker

al-I (a), put x x) (1 K K r). Then x x 1. Hence we have x

K. From Lemma 4, there exist h(t) Z[t] such that &(t)h(t) 1.
Hence we have

x=x x Ki
i=l i=l

which completes the proof of Proposition 2.
Lemma 5. Let A be an elementary abelian group (Z/m and A be the

subgroup {(x,... ,x) x x Z/mZ when j k rood l}. Ao denotes the
subgroup generated by A,. ,Ar. Then we have Ao A.

Proof Let A’ be Z and A be the subgroup {(x,...,x)lx x Z
when j k rood l}. A will denote the subgroup generated by A,...,Ar.
Then the rankzA rank M’. Here M’ is the following matrix of (l

Ell Ell
M’ El2 El2 were El is the l l unit matrix.

E,
If rank M" < 1, then it is obvious that A A’. So we may consider only the
case ll + + lr >-- l. One can take 1 suitable row vectors vl,...,vl of M’

such that the x matrix T’= has the same rank rank T’= rank

M’. Let be the primitive /-th root of 1. Then one sees

/)-type.
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0

Hence the determinant T’ 0. Therefore, we get rank M" rank T" ( I.
Finally, similar argument modulo m implies rankz/mzAo < rankz/,nA- l,
which completes the proof.

Proposition 3. With the above notation, we have
(i) If L is an unramified local number field, K (II K) N/L, where

K runs over all the maximal subfields of K.
(ii) If L is a global number field, K /(II K) N/L is an infinite abe-

lian group, where K runs over all the maximal subfields of K.
Sketch of proof. From local class field theory, one can easily verify the

result (i). Let v be a place of F which is extended to l distinct places v(K) in
K and every v(K) is inert in L/K. We denote the l extensions of v to L by
v(L) and the restrictions of v(K) to K by v(K). We note that Chebotarev’s
density theorem assures the existance of infinitely many places v F which
satisfy the above conditions. We denote the completions of F, K, K, L by
F, (K),), K), L). We abbreviate

ri (K) (K), H K,(g), H L,v(L)
v(K) Iv v(K)

to (K) v, Kv Lv. Then, from local class field theory, we have Kv/(II
(K)) NacL: - A/Ao, where A, Ao are those in the above lemma. Hence
K (H(K)) N/L. Therefore the idele groups K (K)A, LA satisfies

K :# (II (K)A) NL/ILA and more precisely KA/(H (K)A) NL/KLA is an in-
finite abelian group. Combining global class field theory and Hasse’s norm
theorem, one obtains that K/(H K) NL/KL is an infinite abelian group.

3. Proof of the main theorem. Suppose f is of H-type and f Ho.
Then one can choose a H-type polynomial g (f, Ho)( Ho)such as
g(t) q(t)(1 < l <n) or g(t) (t- 1)+/-q,(t), where l-- lu0 (Pi is
prime).

First consider the case g . From the assumption that g is of H-type,
we have Ker (LX)" () "Since g (a) q(a)(a 1) we have x

g’()

---’’L/K, for any x L. Hence we have the equality Kerg
(L) ’ (N,L)
On the other hand, from the fact g(t) l(t- 1), we have Ker K

Hence, from Lemma 1, we have Kerg {z
Hence we have the equality (NL/cL))= (K)). Hence, from Proposi-
tion 2, we have K (H K) Nz/L, where K runs over all the maximal
subfields of K, which contradicts Proposition 3.

Next consider the case g(t) (t- 1)+/-q)l(t)is of H-type. Then
+/- tg (t)= (--1)/q),(t). From the assumption that g(t)is of H-type, we

have Kere (L)
On the other hand, from the fact that xe<)= NL/(X%)) and Hilbert

theorem 90, there exists y L which satisfies x.1() =Y-z =(y+/- (o)),(o)
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for any x Kergg. Then x/y+/-() K1, where K1 is the invariant fields
associated with (al). Since (x/yg+/-(a)) ’()= 1 there exists z K such

(a)zqll(a) (a)
that x y from Lemma 1. Conversely, if x y z%() for some

L and z K one sees x Ker. Hence we have shown Ker(L)+/-()(K)%t)then c "-’g+/-()
Hence we have (KI) %() . ) that is, for any z

o’--IK, there exists y L such that z%()= yl (). Since y
ah-1(zq"()) %()- z 1, we have y K .

(a)
Conversely for any y K y" (Nif/gy) qh(a) - (K) qh(a). Hence

we have shown (K)%() (N/K)%().
From Proposition 2, we have K= (II,K,)N/KK , where K, runs

over all the maximal subfields of K1, which contradicts Proposition 3.
Therefore we have shown the following theorem

Theorem. With the above notation, we have Hn.
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