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10. Prime Ideals in Noncommutative Valuation Rings
in Finite Dimensional Central Simple Algebras

By Hidetoshi MARUBAYASHI, *’ Haruo MIYAMOTO,* *) and Akira UEDA™ * *)

(Communicated by Shokichi IYANAGA, M. J. A, Feb. 12, 1993)

1. Introduction. In [2], Dubrovin introduced a notion of non-
commutative valuation rings in simple Artinian rings, and proved some
elementary properties of them. He obtained in [3] more detailed results
concerning valuation rings in finite dimensional central simple algebras over
fields.

In this paper, we investigate prime ideals in non-commutative valuation
rings in the case of algebras. The key result is Proposition 9 which states
that, for any ideal A of a valuation ring R, N A" is a prime ideal of R. Us-
ing this result, we characterize branched and unbranched prime ideals.

2. Throughout this paper, let V be a valuation domain with the
quotient field K, and let R be a valuation ring in the sense of [2] in a finite
dimensional central simple K-algebra > with its center V and KR = >.

First, we shall list the elementary properties of a non-commutative
valuation ring R which are used frequently.

(A) R-ideals are linearly ordered by inclusion and the Jacobson radical

J(R) is the unique maximal ideal of R (§2 Theorem 4 (1) and §1 Theorem 4

of [2]).

(B) Each overring S of R is also a valuation ring, and J(S) is a prime ideal

of R (Theorem 4 (2) of [2, §2]).

(C) For any R-ideal 4, 0,(A4) = 0,(4), where 0,(4) = {g € Z | Aq < A},

the right order of A, and O,(A) = {g € X | qA S A}, the left order of A

(Corollary to Proposition 4 of [3, §2]).

(D) For any non-zero element x € R, there is some regular z € R such that

RxR = 2T = Tz, where T = O,(RxR) = O,(RxR) (Proposition 3 of

[3, §2)).

(E) For any prime ideal P of R, C(P) = {c € R| [c + P] is regular mod

P} is a regular Ore set of R and so there exists the localization of R with

respect to C(P). We denote this by Rp. Let p = P N V. Then we have Rp =

R,, where R, denotes the localization of R with respect to V — p (Theorem 1

of [3, §2)).

(F) The mapping P— R, is an inclusion reversing bijection between the set

of prime ideals of R and the set of overrings of R. The inverse mapping is

S— J(S). (Corollary to Theorem 4 of [2, §2] and Theorem 1 (3) of [3, §2].
Now we shall investigate prime ideals of R. For any ideal A of R, we
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define YA = N {P: prime ideal of R| P 2 A}, the radical of A. The follow-
ing is trivial from Property (A).

Lemma 1. If A is an ideal of R, then VA is a prime ideal of R.

Lemma 2. Let P be a prime ideal of R. Then R, = 0,(P) = 0,(P).

Proof. First we note that O, (P) = O, (P) by Property (C). From
Property (F), we have P = J(R,), and so P is an ideal of R,. Hence we have
R; < O,(P). Conversely, since O,(P) 2 R 2 P and P is an ideal of O,(P),
we have R 2 J (O, (P)) 2 P by Properties (B) and (A). It follows from
Properties (E) and (F) that R, = R, 2 R v = Ry, = O0,(P). Hence
R,= 0,(P).

From Lemma 2, we have

Lemma 3. Let P, and P, be prime ideals of R such that P, S P,. Then we
have O,(P) =2 O,(P,).

An ideal @ of R is called a primary ideal if TRy S @ and x € @, then
Yy €v/Q, and if xRy < Q and £ € /@, then y € Q. If YQ = P, then we say
that @ is a P-primary ideal. A prime ideal P of R is said to be branched if
there exists a P-primary ideal @ of R such that @ # P. In other case, P is
called an unbranched prime ideal.

Lemma 4. For any ideal A of R, we have O,(A) < O,(YA). If A is a
primary ideal, then the equality holds.

Proof. By property (A), we have 0,(A) 2 0,(YA) or 0,(4) < 0,(yA).
Assume that O,(4) D 0,(/A). Then we have J(0,(4)) < J(O,(YA)) =
J(Ry7) = VA by Property (F), Lemmas 1 and 2. On the other hand, by Prop-
erty (C), A is an ideal of O,(4), and so we have A S J(O,(A)) by Property
(A). It follows that vA < J(O,(A)), since, by Property (B), J(0,(A)) is a
prime ideal of R. Thus we have vA S J(0,(A4)) < J(0,(YA)) = YA, a con-
tradiction. Hence O,(4) S O, (yA). Next assume that A is a primary ideal,
and let P=vA and p=P N V. For any element ¢ =ac™ ' € A,, where a € A
and ¢ € V— p, we have gRc = qcR = aR S A. On the other hand, ¢ € P
and ¢ € A, € P,= P < R. Since A is a P-primary ideal, we have ¢ € A
and so A, = A, that is, A is an ideal of R,. Hence, by Lemma 2, we have
0,(/A) = R, € 0,(A).

Remark 5. The equality in Lemma 4 does not hold in general. For ex-
ample, let V be a valuation domain with rank 2, and let 0 # P, C P, be
prime ideals of V. Then by Theorem 17.3 (e) of [5, p. 190], P, and P, are
branched, and so P; = yaV for some a(# 0) € V. Assume that O, (aV) =
O, (VaV)(= Rp). Then aV is an ideal of R,, and so aV is a P,-primary
ideal by the next Lemma 6. Hence, by Theorem 17.3 (a) of [5], we have
aV-xV = aV for any x € V— P, and so xV = V, that is, x is a unit of V.
It follows that P, is a maximal ideal of V, a contradiction. Thus we have
0,(aV) € 0,(/aV).

Lemma 6. Let @ S P be ideals of R and assume that P is prime. Then
the following are equivalent.

(1) @ is a P-primary ideal.
(2) V@ = P and Q is an ideal of Rp.
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Proof. (1) = (2): Assume that @ is a P-primary ideal. Then VY@ = P

by the definition. By Lemmas 2 and 4, 0,(Q) = 0,(yQ) = 0,(P) = R, and
so @ is an ideal of Rp.
(2) = (1): Assume that the condition (2) holds and xRy & @, where
z,y € R. If x € P, then we have RpxRp, € P, and so RprR, = R, because
P is the unique maximal ideal of R, by Properties (A) and (F). Since  is an
ideal of R, and R,= R, by Property (E), where p = P N V, we have @ 2
RprRy = RpxRpy = Rpy 2 y. Similarly, if y € P, then x € Q. Hence Q is a
P-primary ideal.

Corollary 7. If Q, and Q, are P-primary ideals of R, then @Q,Q, is also a
P-primary ideal (see [5]).

Proof. 1t is clear that v@,®Q, = P and @,Q, is an Rp-ideal. Hence it is
P-primary by Lemma 6.

Lemma 8. Let Q be a P-primary ideal of R. Then for any ring T such
that R € T C R,, Q is a P-primary ideal as an ideal of T.

Proof. TFirst we note that @ is an ideal of T by Lemma 6. Let I’, J” be
ideals of T, and assume that J' € P. If I'J’ S Q, then we have (I’ N R)
(JNR)SQand J' N REZP, because J'= (' N R)R;, = (J ' N R)T
by Property (F). Hence I’ N RS Q,andso I'’= (I"N R)T < QT = Q.

Proposition 9.  For any ideal A of R, P, = N A" is a prime ideal.

Proof. (i) First, we assume that A is a primary ideal. Let x, y be
elements of R such that x € P, and y &€ P,. Then x € A" and y € A” for
some integers #, m > 0, and so RtR D A" and RyR D A™ by Property (A).
By Property (D), RxR = 2,1, = T,z and RyR = 2,T, = T,2,, where T, =
O,(RzR), T, = O,(RyR) and z,, z, € R. Now we have T, 2 T, or T, & T,
by Property (A). We may assume that 7; 2 T,. Then A e A" RyR =
ATz, S 2,T,T,2, 1f A"Tyz, = 2,T,T,z,, then A"T, = 2, T, T, = z,T,, because
z, is a regular element. Further we have VA = \/T € yRxR , and so
0,(4" = 0,(yA) 2 0,(/RzR) 2 O,(RzR) = T, 2 T, by Corollary 7 and
Lemmas 3 and 4. Thus we have A" = A"T, = z,T,, a contradiction. Hence
A"T,z, C 2,T\T,z,, and so A" C 2,T,T,z, = RxRyR, and we have xRy <
P,. Thus P, is a prime ideal.

(ii) In general case, let P = yA. If P is not idempotent, then A D P* for some
k > 0, because if A S P" for all # > 0, then AS N P" C P = A, and by
case (i), N P" is a prime ideal, a contradiction. Hence A Z P* for some k.
Then by Property (A), we have A D P* It follows that N P" 2 N A" 2
N P 2 N P" and so P,= N A"= N P"is a prime ideal by case (i). If P
is idempotent and P = A, then Py,= N A" = N P" = P is a prime ideal. If
P is idempotent and P = YA D A, then for any element x € P — A, we have
RxR Z A, and so A ©€ RxR S RpxR, & P. If P = RpxR,, then by Property
(D) and Lemma 2, P = zR, for some 2z € P, so we have P?# P, a contradic-
tion. Hence P DO RprRp. Put @ = RpxR,. Then @ is an Rp-ideal and
Y@ = P, because PO Q@ D A and P=+y/A. So Q is a P-primary ideal by
Lemma 6. Further, if AC Q" for all # > 0, then PO N Q"2 A and N Q"
is a prime ideal by case (i). This is a contradiction, since P = yA . Hence
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A2 Q" for some k>0 and so N Q" 2nNA"2nQ"2n Q". Thus
P,= N A"= N Q" is a prime ideal.
Lemma 10. Let A be an ideal of R.
(1) IfA* = A*** Jor some k > 0, then A is an idempotent prime ideal.
(2) Let P be a prime ideal of R such that P C A. Then P < N A",
(3) If B is an ideal of R and A € VB, then A" < B for some n > 0.

Proof. (1) Put Py= N A" 1f A* = A", then P, = A*. By Proposition
9, P, is a prime ideal. Hence P, 2 A, and so A = P, is a prime ideal. Fur-
ther, since A = A*, A is idempotent.

(2) If A” < P for some # > 0, then A S P and we have A C A, a contradic-
tion. Hence A" Z P for any # > 0, and so A” 2 P for any # > 0 by Property
(A). Thus P< N A",

(3) If A" Z B for any # > 0, then A” D B and so B< N A" Since N A" is
a prime ideal, by Proposition 9, it follows that VB & N A" € A, that is,
A C A, a contradiction. Hence A" S B for some # > 0.

Lemma 11. Let S be a set of prime ideals of R and let P = U , _ P’
Then
(1) 0,(P) = N, 450,(P).

(2) P is a prime ideal.

Proof. (1) Let P’ € . Since YyP2P2P’, we have O,(P) <
0,(/P) < O,(P’) by Lemmas 3 and 4. Hence O,(P) < N 0,(P’). Converse-
ly, let x € N O, (P’) and let a € P. Since a € P’ for some P’ € 4, it
follows that ax € P’x S P’ & P, and so Px S P. Hence x € 0,(P).

(2) Let x, y € P and let P’ € 8. Then x, y & P’. Hence, by Properties (A)
and (D), P"C RxR = 2T, = T\z;, and P’ C RyR = 2,T, = T,z,, where
T,= O0,(RxR), T, = O,(RyR) and z,, z, € R. We may assume that T, 2
T, by Property (A). Then, since P’ is a prime ideal of R, we have
P’ 2 RxR - RyR = 2,T,T,z2, = z,T,2, = T,z,2,, Hence z;z, € P’, because
T,= O,(RzR) € O,(/RzR) S O,(P’) by Lemmas 3 and 4. Thus 2,2, € P,
and so xRy Z P.
Now, concerning branched and unbranched ideals, we have the following.
Theorem 12. Let P be a prime ideal of R, and let Py = N P”.
(1) If P is branched and P # P?, then

(i) {P*| k> 0} is the full set of P-primary ideals of R,

(i1) P = 2T = Tz for some z € P, where T = O,(P),

(i11) there is no prime ideal P’ such that P D P’ D P, and P, is a prime
ideal.

(2) If P is branched and P = P2, then

(1) for any P-primary ideal Q (# P), N Q" = N {Q,| Q,: P-primary
ideal},

(ii) @ := N {Q,| Q,: P-primary ideal} is a prime ideal,

(111) there is no prime ideal P’ such that P O P’ D Q,.

(iv) P= U {Q,| Q,: P-primary with Q, #+ P}.

(3) The following are equivalent:

(1) P is branched.
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(ii) P = VA for some ideal A(# P).

(111) P = YRaR for some a € R.

(1v) P is not the union of prime ideals P’ such that P’ C P.

(v ) There is a prime ideal M such that M © P and there are no prime
ideals P’ such as M < P’ C P.

(4) P is unbranched if and only if P = U {P,| P,(C P): prime ideal}.

Proof. (1) By Corollary 7, P is a P-primary ideal for any k > 0.
Conversely, let Q be any P-primary ideal of R. Then we have P°C P =
V@. By Lemma 10 (3), we have (P?)” S Q for some integer # > 0. Let k be
the smallest integer such as P* < Q. Then P* ' € Q and so there is some
y € P — Q. From Property (D), there exists z € R such that RyR = zT
= Tz where T= O,(RyR). As YyRyR = P, T< 0, RyR) = 0,(Q) by
Lemma 4. Put A = Qz™'. Then A € 27z " = T, and so A is an ideal of T. On
the other hand, @ = AzT and zT < Q. It follows from Lemma 8 that P 2 A.
Hence Q = AzT S PRyR < PP*'=P* and so @ = P* Thus (i) is
proved. (ii) follows from Lemma 8 of [2, §2]. To prove (iii), let P’ by any
prime ideal such that P/ C P. Then by Lemma 10 (2), we have P & N P"
= P,. Hence there is no prime ideal P’ between P and P,, and P, is a prime
ideal by Proposition 9.

(2) By Corollary 7, Q" is a P-primary ideal, and so N Q"2 N Q,.
Conversely, for any P-primary ideal @,, we have @ € P = /@,. By Lemma
10 (3), @, 2 Q" for some # >0, and so N @, 2 N Q". Hence we have
N @, = N Q". From this fact and Proposition 9, (ii) follows. To prove (iii),
let P’ be a prime ideal such that P’ C P. Then, for any P-primary ideal @,,
we have @, € P’, because Y@, = P. Hence P’ S @,, and so P’ S N Q, =
Q,. To prove (iv), let @ = U {Q,| @,: P-primary with @, ¥ P}. Then it is
P-primary by Lemma 6. Assume that P D Q. Then, for any element x € P
with x € @, we have P 2 @, = RpxR, D Q. Since @, is P-primary by Lem-
ma 6, it must be equal to P. Then P = RpxRp, = zR, = R,z by Property (D)
and Lemma 2, which contradicts to P = P* Thus P = Q.

(3) (1) = (11) is clear.

(i) = (ii1): For a € P — A, we have A 2 RaR, and so A € RaR S P by
Property (A). Hence P = YA € yRaR < P, and so P = VRaR.

(111) = (iv): Assume that P = +vRaR . For any prime ideal P’ such as
P'C P, wehavea € P’,and soa € P — U {P’: prime ideal | P’ C P}.

(iv) = (v): By Lemma 11, U {P’: prime ideal | P’ € P} is a prime ideal. So
we may take this prime ideal as M.

(v) = (1):If Pis not idempotent, then by Corollary 7, P’is a P-primary
ideal which is different from P. In the case P is idempotent, let x € P — M
and put @ = RxR. Then we have @, & P, because P = J(R,). By Property
(D), there is a 2 € R, such that @, = RprRp,= 2T = Tz, where T =
O, (RpzR;,), and so Qp is not idempotent, hence @, € P. Further, since
Q £ M, we have M € Q, C P by Property (A), and hence Y@, = P. Thus
@Qp is a P-primary ideal of R which is different from P by Lemma 6.

(4) follows immediately from (3).
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Corollary 13. Let P be a prime ideal R and letp = P N V. Then
(1) p is branched if and only if P is branched.

(2) p is idempotent if and only if P is idempotent. In this case, we have P = pR.

Proof. (1) Assume that p is unbranched. Then p = U {p,|p, (S p):

prime ideal} by Theorem 12 (4). By Theorem 1 (2) of [3, §3], there is a
prime ideal P, of R such that P, N V=p, and P, € P. Then U P, is a
prime ideal of R by Lemma 11, and (U P,) N V= U (P, N V) = U p,
Hence U P, = P by Theorem 1 (2) of [3, §2], and so P is unbranched by
Theorem 12 (4). The converse is proved similarly.
(2) If p is idempotent, then pR is an idempotent ideal of R, and so pR is a
prime ideal of R by Lemma 10 (1). Further, since p=PN V2
pR NV 2p, we have P = pR by Theorem 1 (2) of [3, §2], and hence P is
idempotent. Conversely assume that P is idempotent. Then, by Theorem 1 (6)
of [3, §2], we have P = pR, and so pR =P = P = sz. Hence we have
p= pz by following Lemma 14.

Lemma 14. Let A and B be ideals of V. If 4 R = BR, then o = B.

Proof. Let a(#0) € o. Then a = X, [b,7; where b, € B, 7, € R.
Since V is a valuation domain, we have b,V + - -+ b,V = bV for some
b€ B. Let b,= by, where v; € V. Then a= X, [br, = 2, [bvyr, =
b (X, tvr), and so b la= X, vy, € KN R=V. Hence a = b(Z, jv;7)
€ bV € B, and so we have f S B. The converse inclusion is proved simi-
larly.

Finally, we give an example of a non-commutative valuation ring R such
that there exists some prime ideal P of R with P D pR, where p = P N V.

Example 15 (see Lemma 1.3 of [4]). Let V = Z,, the localization of the
ring of integers Z with respect to 2Z and let K = @, the field of rational
numbers. Let 2 =D, =K®Ki® Kj D Kij, where i°=—1,j"=r1,
= —jiand T=p,* " P, Py, * *,P; being distinct primes = 3 (mod 4). In
the case 7= —1(mod4), R=VOViD VD Vt where t= 1A+ i+
+4j)/2, is a maximal order with J(R) = (1 +{)R, and R/J(R) is a
division ring by Lemma 1.3 of [4]. Further we have J(R)® = 2R and J(R) N
V=2V, and so J(R) D J(R)* = (J(R) N V)R. On the other hand, by Corol-
lary to Proposition 3.3 of [1], R is a local Dedekind ring, and so R is a
non-commutative valuation ring.
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