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79. On a Conjecture on Pythagorean Numbers. 111

By Kei TAKAKUWA

Department of Mathematics, Gakushuin University
(Communicated by Shokichi IYANAGA, M.J. A., Nov. 12, 1993)

We shall consider here the following diophantine equation on [, m, n € N
(1) 4ad® — ' + day” = @’ + "
where a, y € N, with (a,y) =1, 2a > y, y = 1(mod. 4), whence [ is
even, which is easily seen considering (1) mod. 4.

Proposition 1. If a is odd, then n is even.

Proof. From (1) we have (4ay)” = 2y")" (mod. 44 — y?). By the

assumptions on a, ¥,
2m _m m

2 a 2n 2n "

<_E__y_2>=1=<__2_y__2.>=(_1),
" 4a” —y 4a" — y

where <¥> is the Jacobi symbol. Hence # is even.

Proposition 2. If a is odd, then m + 1.

Proof. Since (4a° — y»' =1 (mod. 8) and (4a’ + " = 1 (mod. 8),
we have (4ay)™ = 0 (mod. 8) from (1). Hence m # 1.

Proposition 3. Let a = 2 (mod. 4). Then

1) Ify = 1(mod. 8), m + 1.

2) Ify = 5(mod. 8), m # 1 © n is even.

Proof. 1) From (1) we have (4ay)™ = 0(mod. 16). Since 4 does not di-
vide @, we have m ¥ 1.

2) Since y° = 9 (mod. 16), we have (4ay)” = 9" — 1 (mod. 16). Then
m# 1 (4ay)” = 0(mod. 16) © 9" = 1 (mod. 16) & x is even.

Proposition 4. If a = 0(mod. 4) and y = 5 (mod. 8), then n and m are
even.

Proof. From (1) we have 2y»)” = (2y*"(mod. 2a — y). By 2a — y =

— 5 (mod. 8),
<2a%— y> =-1L

so (= 1)" = (= 1)". Hence n = m (mod. 2).

From (1) we have 1 = 9" (mod. 16), so # is even. Hence m is also even.

Theorem 1. Let a be odd, y = p odd prime, and p = 5 (mod. 8) in (1). If
m is even, then (I, m, n) = (2,2,2).

Proof. By Prop. 1, n is even. Put I = 2I', n = 2u’, and (4da” + p5)" +
(4a® —p)" = A, 4d’ +p>)" — 4a’ —p»" = B. Clearly (4, B) =2.
From (1) we have
(2) 2”"a"p™ = AB.

Now there are four possibilities on choice of A, B in (2):
(2.1) A= 2b"p", B =2""¢",
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(2.2) A=2b", B = 271",
(2.3) A=2"""p", B =2c",
(2.4) A=2"""  B=2"p",

where a = bc, (b, ¢) = 1.
Case (21. B=1—(—1)" =0 (mod. 4), hence I’ is even. B =
— (= 2pD)" = 277" (mod. 44° + p°). By the assumptions on a, p,
2\l 2m—-1 m
( (2 21’2) )=1=<22 c2>=_1,
4a” + p 4a” + p
which is a contradiction. Thus (2.1) does not occur. In the same way (2.2)

does not occur either. (Note (_2_17_2> =1)
a +p

Case 2.3. A=1+ (—1)" =0 (mod. 4), hence ' is odd. A = 5" +
3" =0 (mod. 8). As I’ is odd, # is odd. A= (4a*+ )" + Wa*—p»"' =0
(mod. ), so 2a)"™' = — 1 (mod. p). From #' = I’ (mod. 2) we can write
|l — n| = 4t with t € N, so (2a)' has order 8 (mod. p). Hence 8 divides
p— 1 ie. p = 1(mod. 8), which is a contradiction. Thus (2.3) does not
cceur.

Case (2.4). In the same way as in (2.3), I” and #” are odd.

Assume m > 3. A=13" —5" = 0 (mod. 16). By 13' = 13 (mod.16),
13° = 5 (mod. 16), 5' = 5 (mod. 16), 5° = 13 (mod. 16), we have # =
I+ 2 (mod. 4). And #/, I’ are odd. Thus
(I) I’’=1 (mod. 4), #» = 3 (mod. 4),

(I1) I”’=3 (mod. 4), #» =1 (mod. 4).

I: B=2"p" = a*+p)°— Ua®*—p» =13"+5=5+5=10
(mod. 16). (Note that (4a” £ p*)* = (4 £ 9)* = 1 (mod. 16).) So ¢"p" =5
(mod. 8).

(II): In the same way as in (I), we have ¢"p” = 5 (mod 8).

Hence m is odd, which is a contradiction. Thus m = 2. Then A = (44°
+ 9" + @’ —pH =20 < 8a"= (4a® +p)) + 4a® — p), so I'=w
= 1. Therefore (I, m, n) = (2,2,2).

Theorem 2. Let a be odd, Yy = p odd prime, and p = 1(mod. 8) in (1). In
the following cases, (I, m, n) = (2,2,2).

(i) m is even.

(ii) It does not occur that a = a,a,, (a,, a,) = 1 and a, = 5(mod. 8).

Proof. From Propositions 1,2 # is even and m ¥ 1. Now let I’, n’, A,
B, b and ¢ be as above, then (A, B) = 2. Then there are four possibilities
on choice of A, B in (2):

(2.5) A= 2b"p", B =2"""1",
(2.6) A=2p", B = 2",
(2.7) A=2"""  B=2"p",
(2.8) A=2"""p", B=2".

Case (25). B=1— (— 1)" =0 (mod. 4), hence I’ is even. B =
— (25" = 2""7'¢" (mod. 4a° + p°). By the assumptions on a, p,
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. (zpz)l’ 22m—-lcm

<—3—7>=1= ——r*—z)=—1»
da + p 4a” + p

which is a contradiction. Thus (2.5) does not occur. In the same way (2.6)

does not occur either. (Note <TP__2> =1)

da + p
Case 2.7. A=1+ (—1)" =0 (mod. 4), hence I’ is odd. A = 5" +
3 = 0 (mod. 8), hence #’ is odd.
Assume m = 3. Then A=5" + 3" =0 (mod. 16). By 3' = 3 (mod. 16),

3° = — 5 (mod. 16), 5" = 5(mod. 16), 5° = — 3 (mod. 16), we have #’ =
"+ 2 (mod. 4). And #/, I’ are odd. Thus

1) =1 (mod. 4), » = 3 (mod. 4),

(IT) I’=3 (mod. 4), » =1 (mod. 4).

(I: B=2c"p" = (4a” + p*)° — 4a® — p*) = 5° — 3 = 10 (mod. 16).
(Note that (4a”* £ p*)* = (4 £ 1)* = 1 (mod. 16).) So ¢” = 5 (mod. 8).

(II): In the same way as in (I), we have ¢” = 5 (mod. 8).

Hence m is odd and ¢ = 5 (mod. 8), which is a contradiction. Therefore
m =2 Then A= 4d"+p»" + 4d" — p»" = 2°0> < 84" = (4d” + )
+ (4a® — p*), so ' =w = 1. Thus (I, m, n) = (2,2,2).

Case (2.8). In the same way as in (2.7), we have m = 2. Then (4 + B)/2
= (4a’ + p)" = 4b°p* + * < 4d*p° + 4.

Now (4a® + p*)° = 64a° + 124°p* + 48a’p® + p° > 44’p* + o = (4d°
+ 3", so w’ < 3. Hence n’ = 1. Then 4a” + p° = 4b°c" + p°> = 4b’p" + ¢,
so 4b’(c® — p*) = ¢ — p°. Therefore 4b°> =1, which is a contradiction.
Thus (2.8) does not occur.

Corollary 1. Let a be odd and y = p odd prime in (1). If @ # 0 (mod. 3)
and a  p (mod. 3), then (I, m, n) = (2,2,2).

Proof. p+ 3 by p=1(mod. 4). And a*=p° =1 (mod. 3) from a # 0
(mod. 3). Moreover ap = — 1 (mod. 3) from a # p (mod. 3). Then from
(1) we have (— 1)" = (— 1)” (mod. 3), so # = m (mod. 2). Since # is even
from Proposition 1, m is even. Then from Theorems 1,2, we have (I, m, n)
= (2,2,2).

Corollary 2. Let y = p be odd prime, and p =5 (mod. 8) in (1). Ifa=1
(mod. 4), then (I, m, n) = (2,2,2).

Proof. From (1) we have (2p°)” = (2p”)" (mod. 2a — p). By 2a — p =
5 (mod. 8) we have

2
<2a — p) =1

so (—1)" = (— 1)" Since % is even from Proposition 1, m is even. Then
from Theorem 1 we have (I, m, n) = (2,2,2).

Corollary 3. Lety = p be odd prime, and p = 1(mod. 8) in (1). Ifa = 3
(mod. 4), then (I, m, n) = (2,2,2).

Proof. In the same way as Corollary 2.

Theorem 3. Let a be even, a = 2°ay, (s = 1) with (2, a) =1,y =p
odd prime, and p =5 (mod. 8) in (1). Suppose that 2a + p, 2a — p are
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primes. Moreover, when a = 2 (mod. 4), assume the following (i) or (ii).

(i) m 1is even.

(i) m # 1. And it does not occur that a, = a,a,, (a,, a,) =1,a, =1
(mod. 4) and a, * 1.

Then (I, m, n) = (2,2,2).

Proof. By Propositions 3, 4, # is even. Now let I/, #', A and B be as in
the proof of Theorem 1, then (A, B) = 2. Then there are four possibilities
on choice of A, B in (2):

(2.9) A= 2p", B = 2"y,
(210) A= m(2+s)-—lbm’ B = zcmpm’
(2.11) A= m(2+s) lbm m’ B = 26

(2.12) A= 2bmﬁm, B = 2m(2+s) lcm,

where a, = be, (b, ©) = 1.

Case (29. B=1-— (— 1" =0 (mod. 4), hence !’ is even. Then
B=9"—1=0 (mod. 16), so # is even.

If @ =0 (mod. 4), m is even. (Proposition 4.) Now let ¢ = 2 (mod. 4).
Then A = 2 = 2b™(mod. 16), i.e. b” = 1 (mod. 8). If m is odd, then b =1
(mod. 8). And b #* 1 in this case. This is a contradiction. Hence m is even.

Let I’ = 21", n = 2n” and m = 2m’. Then

A+ B)/2 = (4a"+ p)")" = (b "t @ ’>
Then we have b = z° — y°, 27" lcm P = 2xy, @a*+ pH" =2+
y®, where x, y € N, with (x y) =1, x>y,x$y(mod 2). Also

(A— B)/2 = ((4a"—p)")" = ") = @"* 77" p™),
Then we have b™ = 2% + w? 2™ 97" p™ = 22w, (4a® — pI = 2* —
w’, where z, w € N, with (z, w) = 1, 2 > w, z # w (mod. 2). Accordingly,
(3) xz—-yz=z2+w2

XYy = zZw.

But positive integers x, ¥, 2z, w satisfying (3) do not exist by the lemma
which we have proved in [1]. Thus (2.9) does not occur.

Case (2.10). A=1+ (— 1" = 0(mod. 4), hence !’ is odd. Then A =
9" — 9 = 0 (mod. 16), so # is odd.

If a =0 (mod. 4), m is even. (Proposition 4.) Now let @ = 2 (mod. 4).
Then B = 2 = 2¢"p™ (mod. 16), i.e. ¢"p™ = 1 (mod. 8). If m is odd, then ¢
= 5 (mod. 8), which is a contradiction. Hence m is even. Put m = 2m’.
(A _ B)/2 — (402 _ pz)l’ — (zm’(2+s)—1bm’)2 _ (cm’pm’)z. So
(4) (261 + p)l’ (2a _ p)l’ — (2m’(2+s)—1bm’ + Cm’pm') (Zm’(2+s)—1bm’ _ Cm'pm’).
Since 2a + p and 2a — p are primes, and (2a + p, 2a — p) = 2" #V ™
+ cm,pm,, A c’”’p’”') = 1, we have either of two cases:

(4.1) {2m 7 (248)— b + Cm pm (4612 _ pz)l

2m 2+s)— lb _ cmp =1
2'”"“”‘11; (" = @a+ )
(4.2) {2m ‘Ero-lpm’ 'p = (22 __p)p.
Case (4.1). 2¢"p™ = (4a® — p9)" — 1 = — 1 (mod. 4a” — p*). By the

assumptions on &, p,
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(=1 - () -
4a® — 1')2 4q° — pz ’
which is a contradiction. Thus (4.1) does not occur.

Case (4.2). (a+p)" + 2a—p)" =2"*p™ Since I’ is odd, we
have

@Qa+p"+ Ca—p"=(Qa+p) + Ca—p)(Qa+p" =+
@2a—p"™H
= dazx, = 2"z,

where x,, x, are odd. So 2*"°z, = 2™ Thus 2+ s=m' (2 + s), so
m’ = 1. Hence m = 2. Then A= (4a’ + )" + (4d® — p»)" = 2*"*p* < 84°
= (4a’+p°) + @a" —p)),so ' = = 1. Thus (I, m, n) = (2,2,2).

Case (2.11). In the same way as in (2.10), both [” and #" are odd. So
I’ = n(mod. 2), ie. 4 divides |l —n|. Put |l —»n|= 4t with tE N. A=
2a)" + (2a)' = 0 (mod. p), so 2a)"™' = — 1 (mod. p). Then (2a)")* =
— 1(mod. p). Hence (2a)’ has order 8 (mod. p). So 8 divides p — 1, i.e.
p = 1(mod. 8), which is a contradiction. Thus (2.11) does not occur.

Case (2.12). In the same way as in (2.9), both /” and #" are even. So
’ = p/(mod. 2). Hence in the same way as in (2.11), it is proved that (2.12)
does not occur.

Remark. Lu Wen-duan [2] proved the conjecture of JeSmanowicz in
case y = 1.
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