74. Some Remarks on the Class of Riemann Surfaces with (W)-property

By Naondo JIN

Department of Mathematics, Gakushuin University (Communicated by Kiyosi ITÔ, M. J. A., Oct. 12, 1993)

Introduction. In the classification theory we know that some classes of Riemann surfaces are characterized in terms of the subspaces of real square integrable harmonic differentials. For example, $\Gamma_{he}(R) \cap {}^*\Gamma_{he}(R) = \{0\}$ (resp. $\Gamma_{he}(R) \cap {}^*\Gamma_{hse}(R) = \{0\}$) if and only if $R \in O_{AD}$ (resp. $R \in O_{KD}$). (See §1 for notations.) In the papers [3,6] M. Watanabe (neé Mori) introduced the following condition, which we call here (W)-property,

 $\Gamma_{he}(R) \cap {}^*\Gamma_{hse}(R) \subset {}^*\Gamma_{he}(R)$

or equivalently

$$\Gamma_{ho}(R) \cap {}^*\Gamma_{ho}(R) = \Gamma_{hse}(R) \cap {}^*\Gamma_{ho}(R)$$

for a Riemann surface R. She obtained other equivalent conditions and interesting consequences.

In the paper [1] we have given a new characterization of (W)-property in terms of specific period reproducing differentials.

In the present paper we shall consider the class of Riemann surfaces with (W)-property, which we denote by P_{W} , in the context of the classification theory.

1. Preliminaries. For the sake of convenience we recall some definitions. Let $\Gamma_{h}(R)$ be the Hilbert space of real square integrable harmonic differentials on a Riemann surface R, where the inner product is given by

$$(\omega_1, \omega_2) = (\omega_1, \omega_2)_R = \int \int_R \omega_1 \wedge {}^*\omega_2,$$

 ${}^*\omega_2$ being the conjugate differential of ω_2 . Let $\Gamma_{he}(R)$ (resp. $\Gamma_{hse}(R)$) be the subspace of $\Gamma_h(R)$ whose elements ω are exact (resp. semiexact) on R, that is

 $\int_{\gamma} \omega = 0 \text{ for every (resp. every dividing) 1-cycle } \gamma \text{ on } R.$

Given a closed subspace Γ_y of Γ_h , the orthogonal complement of Γ_y in Γ_h is denoted by Γ_y^{\perp} . For the spaces $\Gamma_{ho} = ({}^*\Gamma_{he})^{\perp}$ and $\Gamma_{hm} = ({}^*\Gamma_{hse})^{\perp}$, the following inclusion relations hold

 $\Gamma_h \supset \Gamma_{hse} \supset \Gamma_{he} \supset \Gamma_{hm}; \Gamma_{hse} \supset \Gamma_{ho} \supset \Gamma_{hm}.$

The Γ_{hm} is known as the space of harmonic measure differentials. For a given 1-cycle c on R and a closed subspace Γ_y of Γ_h there exists uniquely the period reproducing differential $\sigma_y(c)$ in Γ_y such that

$$\int_{c} \omega = (\omega, \sigma_{y}(c))_{R} \text{ for every } \omega \in \Gamma_{y}.$$

We are interested in $\sigma_{hse}(c)$ and $\sigma_{ho}(c)$.

Let HD(R) be the class of real-valued harmonic functions on R with finite Dirichlet integral and ReAD(R) (resp. KD(R)) be the subclass of HD(R) whose elements u have the following property;

 $\int_{\gamma}^{*} du = 0 \text{ for every (resp. every dividing) 1-cycle } \gamma \text{ on } R$

where $^{*}du$ is the conjugate differential of du. We know that

 $\{du : u \in HD(R)\} = \Gamma_{he}(R)$

 $\{du : u \in KD(R)\} = \Gamma_{he}(R) \cap {}^*\Gamma_{hse}(R)$ $\{du : u \in ReAD(R)\} = \Gamma_{he}(R) \cap {}^*\Gamma_{he}(R).$

We say a Riemann surface R belongs to the class O_{AD} (resp. O_{KD}) if and only if ReAD(R) (resp. KD(R)) implies only constant functions.

2. The class P_w . 2.1 Results. Our result in [1] is the following theorem.

Theorem A. Let R be an arbitrary Riemann surface, and $\sigma_{hse}(c)$ and $\sigma_{ho}(c)$ as above for an 1-cycle c on R.

Then the following properties are equivalent;

(I) R has (W)-property.

(II) $\| \sigma_{hse}(c) \|_{R} = \| \sigma_{ho}(c) \|_{R}$ (equivalently $\sigma_{hse}(c) = \sigma_{ho}(c)$) for every 1-cycle c on R, where $\| \omega \|_{R}$ is the Dirichlet norm of $\omega \in \Gamma_{h}(R)$.

Furthermore, if R is of finite positive genus, the next properties are also equivalent;

(III) R belongs to the class O_{AD} .

(IV) $\| \sigma_{hse}(c) \|_{R} = \| \sigma_{ho}(c) \|_{R}$ (equivalently $\sigma_{hse}(c) = \sigma_{ho}(c)$) for some nondividing 1-cycle c on R.

By Theorem A we know that $O_{AD} = O_{KD} = P_W$ holds for Riemann surfaces of finite genus. In case of infinite genus we show the next proposition;

Proposition 1. For Riemann surfaces of infinite genus,

$$O_{KD} = O_{AD} \cap P_{W}$$

holds and there is no inclusion relation between O_{AD} and P_{W} .

If R is of finite positive genus, the condition (IV) in Theorem A is equivalent to (W)-property. But in infinite case the condition (IV) is not sufficient, that is;

Proposition 2. There exists a Riemann surface R of infinite genus on which there are non-dividing 1-cycles c_1 and c_2 having next properties;

 $\| \sigma_{hse}(c_1) \|_{R} = \| \sigma_{ho}(c_1) \|_{R}, \| \sigma_{hse}(c_2) \|_{R} \neq \| \sigma_{ho}(c_2) \|_{R}.$

For Riemann surfaces of finite genus $P_{\rm W} = O_{\rm KD}$ is quasiconformally invariant.

We show that this property is not valid in case of infinite genus.

Proposition 3. The class P_w is not quasiconformally invariant.

2.2. Proofs. Proof of Proposition 1. If a Riemann surface R belongs to O_{AD} and P_{W} , then $\Gamma_{he} \cap {}^{*}\Gamma_{he} = \{0\}$ and $\Gamma_{he} \cap {}^{*}\Gamma_{hse} \subset {}^{*}\Gamma_{he}$ holds for R. Therefore $\Gamma_{he} \cap {}^{*}\Gamma_{hse} = \{0\}$ and R belongs to O_{KD} .

Conversely if R belongs to O_{KD} , then

 $\Gamma_{he} \cap {}^*\Gamma_{he} \subset \Gamma_{he} \cap {}^*\Gamma_{hse} = \{0\} \subset {}^*\Gamma_{he}.$

Hence $R \in O_{AD} \cap P_{W}$.

We know that the class O_{KD} is a proper subset of the class O_{AD} (cf.

Sario Nakai [5] Theorem II 15D, I 10B Myrberg's example).

We construct a Riemann surface which belongs to $P_W \setminus O_{AD}$.

We recall Sakai's example,"Example 1.5" in [4]. For the sake of convenience we reconstruct Sakai's example and we shall show that this Riemann surface belongs to $P_W \setminus O_{AD}$.

Example 1 (Example 1.5 [4]). Let U be the unit disc. Set

$$l_{n,m} = \left\{ z = re^{i\theta}; 1 - \frac{1}{2^n} \le r \le \left(1 - \frac{1}{2^n}\right) + \frac{1}{2^{n+2}}, \ \theta = \frac{2\pi}{[8\pi(2^n - 1)]}m \right\}$$
$$(n = 1, 2, \dots; m = 1, 2, \dots; [8\pi(2^n - 1)])$$

where [] denotes Gauss' symbol. Let $U_i(i = 1, 2)$ be two copies of $U \setminus \bigcup_{n,m}$ $l_{n,m}$, and join U_1 with U_2 crosswisely along every slit $l_{n,m}$. This gives a two sheeted ramified covering surface R_1 of U with a natural projection map π_1 of R_1 onto U. It is easily seen that R_1 does not belong to the class O_{AD} . It has been shown in [4] that if $\pi_1(p) = \pi_1(q)$, then u(p) = u(q) for every $u \in$ $HD(R_1)$. In other words we can identify $HD(R_1)$ with HD(U) by the projection map π_1 , that is for every $u \in HD(R_1)$ there exists $\tilde{u} \in HD(U)$ such that $u(p) = \tilde{u} \circ \pi_1(p)$.

Let c be an arbitrary 1-cycle on R_1 .

Since $\pi_1(c)$, the projection of c, is also an 1-cycle on U, we obtain

$$\int_c^* du = \int_{\pi_1(c)}^* d\tilde{u} = 0$$

for every $u \in HD(R_1)$. This implies that $\Gamma_{he}(R_1) = \Gamma_{he}(R_1) \cap {}^*\Gamma_{he}(R_1)$ holds on R_1 . Therefore R_1 has (W)-property, and we have shown that $R_1 \in$ $P_W \setminus O_{AD}$.

To prove Proposition 2 the following lemma is needed.

Lemma 1 [1, Lemma 2]. Let R be a Riemann surface and c be a non-dividing 1-cycle. Then $\| \sigma_{hse}(c) \|_{R} = \| \sigma_{ho}(c) \|_{R}$ if and only if $\int_{c}^{s} du = 0$ holds for every $u \in KD(R)$.

Proof of Proposition 2. We construct an example of a Riemann surface $R_{
m 2}$ on which there exist non-dividing 1-cycles $c_{
m 1}$ and $c_{
m 2}$ with the property

 $\| \sigma_{hse}(c_1) \|_{R_2} = \| \sigma_{ho}(c_1) \|_{R_2}, \| \sigma_{hse}(c_2) \|_{R_2} \neq \| \sigma_{ho}(c_2) \|_{R_2}.$ Example 2. We use the same notations as in Example 1. Let l_+ (resp. l_{-}) be a closed interval $\left[\frac{1}{6}, \frac{1}{3}\right]\left(\text{resp. }\left[\frac{-1}{3}, \frac{-1}{6}\right]\right)$ on U. Let U' be a Riemann surface constructed by identifying the upper edge of the slit l_+ with the lower edge of the slit l_{-} and vice versa on $U \setminus (l_{+} \cup l_{-})$. Let $U'_{i}(i = 1, i)$ 2) be two copies of U' and join U'_1 with U'_2 crosswisely along every slit $l_{n,m}$. This gives a two sheeted ramified covering surface R_2 of U' with a natural projection map π_2 of R_2 onto U'. Then using the same arguments in the proof of Example 1.5 in [4], we can show that if $\pi_2(p) = \pi_2(q)$, then u(p) = u(q) for every $u \in HD(R_2)$. Hence we can identify $HD(R_2)$ with HD(U'), that is for every $u \in HD(R_2)$ there exists $\tilde{u} \in HD(U')$ such that $u(p) = \tilde{u} \circ \pi_2(p)$. Since R_2 has just one ideal boundary component, it holds that $HD(R_2) = KD(R_2)$. By the same reason HD(U') = KD(U').

Now we define non-dividing 1-cycles c_1 , c_2 as follows $c_1 = \frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right]$ on U'_1

$$c_{1} - \left\{ |z| - \frac{1}{16} \right\} \text{ on } U_{1}$$

$$c_{2} = \left\{ \left| z + \frac{1}{8} \right| = \frac{1}{8}, \ \Im z \ge 0 \right\} \cup \left\{ \left| z - \frac{1}{8} \right| = \frac{1}{8}, \ \Im z \le 0 \right\} \text{ on } U_{1}'$$
First we show that $\|\sigma_{1}(c)\|_{1} = \|\sigma_{1}(c)\|_{1}$. By Lemma 1 its

First we show that $\|\sigma_{hse}(c_1)\|_{R_2} = \|\sigma_{ho}(c_1)\|_{R_2}$. By Lemma 1 it suffices to show that $\int_{c_1}^{*} du = 0$ holds for every $u \in KD(R_2)$. Since $\pi_2(c_1)$ is a dividing 1-cycle on U', for every $u \in KD(R_2) = HD(R_2)$

$$\int_{c_1}^{}^{}^{}* du = \int_{\pi_2(c_1)}^{}^{}* d\tilde{u} = 0$$

holds. Hence we obtain that $\| \sigma_{hse}(c_1) \|_{R_2} = \| \sigma_{ho}(c_1) \|_{R_2}$.

To prove $\| \sigma_{hse}(c_2) \|_{R_2} \neq \| \sigma_{ho}(c_2) \|_{R_2}$ we show that there exists $u_0 \in KD(R_2)$ such that $\int_{c_2}^{*} du_0 \neq 0$. We know that the harmonic function $\tilde{u}_0(z) = y$, where $z = x + iy \in U \setminus (l_+ \cup l_-)$, can be extended to the harmonic function on U' again denoted by \tilde{u}_0 . Set $u_0 = \tilde{u}_0 \circ \pi_2$. It is easily seen that $u_0 \in KD(R_2)$ and

$$\int_{c_2} {}^* d\tilde{u}_0 = \int_{\pi_2(c_2)} {}^* d\tilde{u}_0 = \frac{1}{z}.$$

Remark. Marden [2] considered the condition $\|\sigma_h(c)\|_R = \|\sigma_{ho}(c)\|_R$ and he proposed an open problem to construct a Riemann surface on which there exist non-dividing 1-cycles c_1 and c_2 with the condition;

 $\| \sigma_h(c_1) \|_R = \| \sigma_{ho}(c_1) \|_R$ and $\| \sigma_h(c_2) \|_R \neq \| \sigma_{ho}(c_2) \|_R$. Since the Riemann surface R_2 of Example 2 has only one ideal boundary component, $\Gamma_h(R) = \Gamma_{hse}(R)$. Hence this Riemann surface R_2 of Example 2 is an answer to Marden's problem.

Proof of Proposition 3. We construct quasiconformally equivalent two Riemann surfaces, one belongs to the class P_W and the other does not belong to P_W .

Example 3. Let U_1 , l_{\pm} and $l_{n,m}$ the same as in Examples 1 and 2. Set

$$U_{1}^{\star} = U \setminus l_{+} \setminus \bigcup_{n,m} l_{n,m} \quad U_{1}^{\star \star} = U_{1}^{\star}$$
$$U_{2}^{\star} = U_{1}^{\star} \quad U_{2}^{\star \star} = U \setminus l_{-} \setminus \bigcup_{n,m} l_{n,m}.$$

We obtain a Riemann surface R_3 by joining U_1^{\star} with U_2^{\star} crosswisely along every slit $l_{n,m}$ and l_+ . This Riemann surface R_3 belongs to the class P_W (cf. Example 1). We joint $U_1^{\star\star}$ and $U_2^{\star\star}$ identifying the upper edge of the slit l_+ of $U_1^{\star\star}$ with the lower edge of the slit l_- of $U_2^{\star\star}$ and vice versa, and every common $l_{n,m}$ similarly. This gives a Riemann surface R_4 . We can easily find out a quasiconformal mapping of R_3 onto R_4 .

Now it suffices to show that there exist a non-dividing 1-cycle c_4 and a harmonic function $v_0 \in KD(R_4)$ such that $\int_{c_4}^{*} dv_0 \neq 0$.

No. 8]

N. Jin

Let L_1 and L_2 be closed intervals $\begin{bmatrix} \frac{1}{3}, \frac{1}{2} \end{bmatrix}$ and $\begin{bmatrix} -1 \\ 6 \end{bmatrix}$ on $U_2^{\star\star}$. Then $c_4 = L_1 \cup L_2$ is a non-dividing 1-cycle on R_4 . Set $v_0(z) = y$ for $z = x + iy \in U_1^{\star\star} \cup U_2^{\star\star}$. This function v_0 can be ex-

Set $v_0(z) = y$ for $z = x + iy \in U_1^{\uparrow \uparrow} \cup U_2^{\uparrow \uparrow}$. This function v_0 can be extended to be harmonic on R_4 , again denoted by v_0 . It is easily seen that v_0 belongs to the class $KD(R_4)$. And we have

$$\int_{c_4}^{} {}^*dv_0 = -\int_{\frac{1}{3}}^{\frac{1}{2}} dx + \int_{-\frac{1}{6}}^{\frac{1}{2}} dx = \frac{1}{2} \neq 0.$$

This completes the proof.

References

- Jin, N., and Kusunoki, Y.: On a class of Riemann surfaces characterized by period reproducing differentials. Pitman Research Notes in Math., vol. 212, 13-20 (1989).
- Marden, A.: The weakly reproducing differentials on open Riemann surfaces. Ann. Acad. Sci. Fenn. A-I., 359, 1-35 (1965).
- [3] Mori, M.: Contributions to the theory of differentials on open Riemann surfaces.
 J. Math. Kyoto Univ., 4, 77-97 (1964).
- [4] Sakai, M.: On the vanishing of the span of a Riemann surface. Duke Math. J., 41, 497-510 (1974).
- [5] Sario, L., and Nakai, M.: Classification Theory of Riemann Surfaces. Springer, Berlin, Heidelberg, New York (1970).
- [6] Watanabe, M.: A remark on the Weierstrass points on open Riemann surfaces. J. Math. Kyoto Univ., 5, 185-192 (1966).