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Abstract: In this paper, we apply the results in part of this paper to

boundary value problems for a class of partial differential equations. First,

we generalize the Fujita lemma, which is concerned with the properties of

solutions of the equation Au -+-f(u) 0 with strictly convex function f, to

the case where f is a convex function. The second example is a bifurcation

problem for the semilinear elliptic equation of the form Au
under the Dirichlet boundary conditions. We discuss properties of a

bifurcation branch of solutions. The third example is a nonlinear (but posi-

tively homogeneous)eigenvalue problem.
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1. Introduction. In part of the present series of papers, we have ex-

tended the Perron-Frobenius theorem to nonlinear mappings on an infinite

dimensional space. We have studied the properties of eigenvalues and the
corresponding eigenvectors.

In this paper we apply the results in part to a class of partial differen-
tial equations.

The author would like to thank Professors Ikuko Sawashima and
Hiroshi Matano for helpful advice and constant encouragement.

2. Generalized Fujita lemma. In what follows, the numbered
’theorems’ and ’remarks’ as well as the hypotheses A1, A2, A3,"’, refer to
those prese,nted in part I.

Example 1. Let /2 c i1
n
be a bounded domain with smooth boundary

OD. We consider the Dirichlet boundary value problem"

IAu4-f(x, u) 0 in D,
(1 1) [ u cp on

where (p is a continuous function on 9/2. Here f(x, u) ,.Q R- R is local-
ly H61der continuous in x, u, and locally uniformly Lipschitz continuous in
u, that is, for any bounded closed interval [a, b] c R, there exists some

constant C > 0 such that

f(x, u) f(x, v)
su9 sup < Cu v

Hereafter we consider only classical solutions. (It is easily shown that
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any bounded weak solution is classical.) For two solutions u and v, we write
u <-- v if v(x) u(x) >_ O(x 2), u < v if u--< v and u=/= v, and u << v if
v(x) u(x) > 0(x 1"2) and v/n(x) 0u/r(x) < 0(x Y2). Here
/n(x) denotes the outer normal derivative at x .

We have the following"
Proposition 1. Suppose that u f(x, u) is concave for each x [2. Let

ul, u2, ua be solutions of (1.1) satisfying ul < u. and ul < ua. Then either (i),
(ii) or (iii) bolas.

(i) Ul<<U--ua
(ii) ul << u2 << ua and u2 u + (1 )u for some (0, 1). Fur-

thermore, for any r [0, 1 ],
f(x, ru(x) + (1 r)ua(x)) rf(x, u(x)) + (1 r) f(x, ua(x))

(hence ru(x) + (1 r)ua(x) is a solution of(1.1)).
(iii) u << u << ua and u #u + (1 ?)ua for some (0, 1). The

same statement as (ii) holds with u, u exchanged each other.
Remark. The statement of the proposition remains true with the rela-

tions <--, < and << replaced by >--, > and >>, respectively, if the concavity
assumption on u --f(x, u) is replaced by the convexity assumption. To see
this, simply replace u by u, f(x, u) by --f(x, u).

Outline of the proof. Put g(x w) f(x, w+ u (x) f(x u (x)
and let us consider the following problem"

IAw+g(x, w) 0 in /2,
(1.2) t w 0 on
Obviously u is a solution of (1.1) if and only if u u is a solution of (1.2).

Since u, u2 and us are continuous functions, there exists some constant
k 0 such that g(x, w) kw is strictly increasing in w [0, (x)] for
each x . Here (x) max{u(x) u(x), ua(x) u(x)}. Clearly the
function g: 0.

Let E L
and V C() VI Co(.O). Here Co() denotes the space of continuous func-
tions on 2 vanishing on the boundary 2. Note that the positive cones in the
space L(/2) or Co(.O) have empty interior, whereas CI(.Q) FI Co() has a
positive cone with nonempty interior. On the other hand, the norm in
L(2) or COCO) has the monotonicity as defined in (4.1) of part I, while that
of C1() Co() does not have such a property.

Set
g(x, w) + kw if w_< (x)g(x, w)

g(x, (x)) + k(x) if w> (x)
and define the mapping T’E+-- V+ by

Tw (-- A) + k)-lg(x, w(x)).
Here AD denotes the Laplace operator under the Dirichlet boundary condi-
tions. Taking p > n and using the Sobolev embedding theorem and the max-
imum principle, we find that T’E+-+ V+ satisfies the hypotheses B1, A2’,
A3 and the property defined in Remark 9 in part i. Note that w is a solution
of (1.2) satisfying 0 _< w __. if and only if w is an eigenvector of T corres-
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ponding to 1. Applying the generalized version of Theorems 5, 6 and Re-
mark 9 to this case, we obtain the conclusion of the proposition.

The following is an immediate consequence of Proposition 1 and the
subsequent remark.

Corollary (a generalized Fujita lemma). Suppose that u f(x, u) is con-
cave for each x 2 or convex for each x . Let Ul, u2, u3 be solution of (1.1)
satisfying u <-- u2 <-- u3, Then either (a), (b) or (c) holds.

(a) u- u- u.
(b) u1- u. << u orul << u u3.

(c) u << u. << u and statement (ii) of Proposition 1 holds.
3. Bifurcation problem. Example 2. Next we consider the following

problem
Au+ 2f(v) 0 in Q,

(2.1) Av + ,g(u) 0 in ,
u-- v= 0 on 8/2.

Here f R--+ R is a locally H61der continuous function satisfying
(F.1) f(0) 0, f. "= lim {f(o)/O} > 0,

o,o
(F.2) 0 <-- f(eeu) <_ eef(u) for any c > 1, u > 0,
(F.3) f(u) is nondecreasing in u > 0.

We also assume that g" R--* R satisfies precisely the same conditions as
above and denote those conditions by (G.1), (G.2), (G.3).

Let ’= E E, + E+ E+ and g-- V V with E, E+, V de-
fined in Example 1.

In what follows we consider the number / in (2.1) to be an unspecified
constant, therefore each solution of (2.1) will be written in the form of a pair
(,,(u, v)). Obviously (,(0, 0)) is a solution of (2.1) for all , R, which
we call a "trivial solution". We say (,,(u, v))is a "positive solution" if
(u, v) > 0.

The pair (2,(u, v))is a positive solution of (2.1) if and only if
(u, v) > 0, and satisfies

T(u, v) (u, v),
where T is defined by

T(u, v) ((-- A,)-f(v), (- A,)-g(u)).
By the same way as that of Example 1, we find that T" ’+--+ lTz+ satisfies
the hypotheses B1, A2’, A3 and the property defined in Remark 9. Applying
the generalized version of Theorem 6 and Remarks 8, 9 to this case, we
obtain the following"

Proposition 2. (i) Positive solutions of (2.1) bifurcate at (*,(0, 0)) from
/(f,g,, where / is the smallest eigenvaluethe trivial solutions. Here /

of- AD. There is no other bifurcation point. Moreover, there exist mappings
’(0, oo)-+ R+ and (u, v)’(O, oo)-- + such that {(/(p), (u(p), v(p)))
P (0, oo)} coincides with the set of all positive solutions of (2.1). Fur-

thermore, / is a nondecreasing, subhomogeneous and continuous function, while
(u, v) is continuous and satisfies u(p) [IL + v(o)[I. o.
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(ii) In addition to condition (F.2), assume further that f satisfies
(F.2’) there exists some c > 0 such that 0 <-- f(au) < cf(u) for any a > 1,

u (0, c),
or that g satisfies the same condition as above in addition to (G.2). Then , (p) is

strictly increasing in p and hence (u, v) is parametrizable by
Remark. Proposition 2 deals with properties of a bifurcation branch of

positive solutions of (2.1). Our method, of course, is also applicable to the
single equation

Au + ,af (u) 0 in
(2 2) [ u = 0 on
which can be handled more easily than the system (2.1). The results for
these problems are to some extent known, particularly those for (2.2). But
our proof has an advantage in that it requires weaker regularity, monotonic-
ity and subhomogeneity assumptions than those results found in the litera-
ture (such as [6], [7]).

4. Nonlinear eigenvalue problem. Example 3.a. We consider the follow-
ing problem"

Au+/(uV v+ sv) 0 in /2,
(3.1) dv + k(a(u A v) + sbu) 0 in

u v 0 on
where a, b, s > 0 are constants. Here we use the notation

(u V v) (x) max{u(x), v(x)} and (u / v) (x) min{u(x), v(x)}.
The pair (,,(u, v)) is a positive solution of (3.1) if and only if (u, v)

> 0, and satisfies
,T(u, v) (u, v),

where T is defined by
T(u, v) ((-- d) -(u V v + sv), (-- dz) -(a(u A v) + sbu)).

The same argument as that of Example 2 shows that T" #+--+ + satisfies
the hypotheses B1, A2, A3 and B4. Applying the generalized version of
Theorem 4 to this case, we obtain the following"

Proposition 3. The equation (3.1) has a positive solution (,,(u, v)) such
that , 1/r(T) > O. Furthermore, (u, v) is unique up to multiplication by a

positive constant. There is no other positive solution.

Example 3.b. It is interesting to study what happens when we let
tend to 0 in (3.1). The limit equation does no longer satisfy condition B4,
therefore the existence of a positive eigenfunction does not follow from our
general theory. In order to answer the above question in a more general
framework, let us consider the following problem’

Au +/(S(u) V S,.(v)) 0 in

(3.2) dv + /(Sa(u)
u- v 0 in

Here S(u)(x) a(x)u(x), where a" X2--+ lg is a continuous function satis-
fying a(x) > 0 for any x /2(i 1, 2, 3, 4).

Define T’#+--+ g+ by
T(u, v) ((--Az)-(S(u) V &(v)), (--A)-(S(u) A S(v))),
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and denote the composed mappings (-- AD) -1o S by Ti for i-- 1, 2, 3, 4.
Each T:E+-’ V+ satisfies the hypotheses B1, A2, A3 and B4, and T satis-
fies the hypotheses B1, A2, A3. Note, however, that T does not necessarily
satisfy B4.

In what follows by a "solution" we mean a normalized solution satis-
fying IIv / v IIv 1, We have the following:

Proposition 4. The equation (3.2) has a positive solution (1/r(T), (u, 0))
for some u (V+) i, where r(" denotes the quantity defined in (2.2) of part I.

(i) Assume r(Tx) < r(T4). Then there exists some (8, ) >> 0 such that
(1/r(T), (8, t))is a solution. Moreover, the pairs (1/r(Tx), (u, 0))and
(1/r(T), (, )) are the only two positive solutions.

(ii) Assume r(Tx) r(T4). Then there exist some (V+) and 0 < c’
< 1 such that (1/r(Tx), ((1 c)u, c)) is a solution for any 0 <- c <- c’.
There is no other positive solution.

(iii) Assume r(T) > r(T4). Then (1/r(T), (u, 0)) is a unique positive
solution.

Remark. Put ax(x) a2(x) 1 and a3(x) a4(x) a with constant
a > 0. Proposition 4 shows that the normalized positive solution of Example
3.a converges to (8, )., or (u, 0) as s tends to 0 if a > 1, or a < 1, respec-
tively. In the case where a-- 1, by a simple calculation, we also find that it
converges to ((1 c)u, c) with c = c’ 1/2, or c v//(1 -+- V) if b ->
1, or b < 1, respectively. Here , , u are those in Proposition 4.
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