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1. For an integer k --> 2, let Ek(At) be the number of natural numbers
n _< X such that n is not representable as the sum of a prime and a k-th
power. In 1937, Davenport and Heilbronn [3] proved that Ek(X)--
O(X(log X) -ck) with a positive constant c depending only on k, in other
words, almost all natural numbers are representable as the sum of a prime
and a k-th power. After their result, some articles established sharper
bounds for E(X), and, at present, the best result is E (X) O(X1-) with
a positive constant 6 depending only on /c, which was proved by A. I.
Vinogradov [9] and Brtinner, Perelli, and Pintz [1] for k 2, and by Plaksin

[7] and Zaccagnini [10] for k >- 3. On the difference of the situations between
the cases /c 2 and k --> 3, we relate in 4 briefly.

On the other hand, let Rk(n) be the number of representations of n as
the sum of a prime and a/c-th power, p,,(d) p,,,(d) be the number of solu-
tions m of the congruence m--n------0(mod d) with 1 <_ m _< d, and let I
be the set of all natural numbers n such that the polynomial :c --n is ir-
reducible in Q[x], where Q is the rational number field. As for the asympto-
tic behavior of R(n), it is conjectured that

1/k

Rk (n) (n) log n’
as n tends to the infinity, providing n I, where

(n) II-(1- P"(P)- 1)p--1
and hereafter the letter p stands for prime numbers. For /c 2, this was
conjectured by Hardy and Littlewood [4, Conjecture HI, and Miech [6] proved
that

v o(lg log nR(n)=(n)logn(l+ , logn ))
for all but O(X(logX) -) natural numbers n- X with any fixed A > 0.
For each /c _> 3, we can also establish an asymptotic formula for R(n) valid
for almost all n"

Theorem. For a fixed integer tc >_ 3, and for any fixed A > O, we have
1/1

n ((loglogn))(1) Rk(n) ((n) logn 1+ O logn

for n N X with at most O(X(log X) -) exceptions.
Because of the possible existence of the Siegel zeros, Miech’s result and

our result seem the best possible for the present. The proof of our Theorem
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is described in [5] in detail.

2. Our proof is in the frame work of the circle method of Hardy and
Littlewood, as in the articles cited in the preceding section. The most impor-
tant part of our argument is the treatment of the sum Nk(n, Q), introduced
below, which is the singular series in our problem. In the articles [3], [7] and
[10], the singular series Nk(n, Q) is approximated, for almost all n, by a

finite product of the form YIp(1- (p,(p) 1)/(p- 1)) with a suitable
parameter P. In contrast with this, we shall approximate ((n, ) by an in-

finite product ((n) for almost all n.
Let A > 0 be any fixed constant, B be a suitable constant depending

only on A and k, and let Q1 (logX) B. We put

(n, Q)= 2
lJ(q)

i-[(pn(p 1),
q 0(q) lq

where g and qo denote the Mbius function and Euler’s totient function.
respectively. By standard application of the circle method, we have

n
1 + 0 +/(n),(2) R(n) (R)k(n, Q1) log n log n

with
(3) I/(n) << X+-(log X) -aa.

nNX
Making use of (8) in Lemma 2. below, we obtain easily
(4) Z: (n, v/X) -((n, Q)I << X(log X) -aa.

nX

In view of (2), (3) and (4). we have
n

1 + O. + O(X-(log X)(5) R(n) ((n, (-X) log n log n
for n -< X with at most O(X(log X) -a) exceptions.

3. In order to investigate (k(n, (X), we define the function

Zn(S) l’I-(1- On(P)--1 )
(p-- 1)pS-

where s= a+ it is a complex variable, as usual. We write b 1 +
(log X) - and To exp(v/log X)/2, and apply Perron’s formula (see [2, p.
105 Lemma], for example). Then we have routinely for n _< X

1
Zn(s) ds + 0(6) ( (n, /-X) 2rci -’o-iro s 1 To

So we need some information about Z,(s) near the line a 1.
On the other hand. let (s) and ,(s) be the Riemann zeta function and

the Dedekind zeta function of the field Q(n/). respectively, and let N(n ;c, T)
be the number of zeros of ,(s)/(s) in region a --> c and tl --< T. Here we
note that ,(s)/(s) is an entire function (see [81).

The Euler product for (s) is written as

n(S) II II (1 p-S)-,.p,
p lf

with the number a.(f, p) of prime ideals p in Q(n1/) such that the norm of
is pz. In particular, we see

an(l, P) Pn(P)
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providing n Ik and p Y kn. By observing the Euler product for (s)/
n(S), we have

(s)Zn(S) n(S) n(S)’n(S),

where

{ ( On(P)-1)] rI II (1 p-fS) -an(f’p)n(S) 1"I (1 p-)-O,()+ 1
pS-l(p 1) Z<e<k

and
,,%(s) II (1--

Plkn

It is quite easy to treat the functions n(s) and n(S) near the line a 1.
Thus we can regard Zn(s) as (s) / n(S) essentially.

Next, for a constant 0 < c< 1-- (log(k-- 1))/(log(k+ 1)), we
assume that N(n;1- c, 2To) 0, and put 7 c/32. Then the function
Zn(s) is analytic in the region a > 1 c, tl <- 2To, and Hadamard’s three
circle theorem gives

max Z (s) << exp (Co (log X) /4),
1--TaI+T

ItlTo
where Co > 0 is a constant. Therefore, on the integral in the right-hand side
of (6), we see
1 ;b+iro X s-1

( f f )Zn (s) ds ( (n) + 1 1-r-iT
+

1-r+iT
+

b+iT

2zci .b_iT S- 1 k
iTo *"l-r-iTo ’l-r/+iToZ

((n) + O(T-l/z).
Hence we have the following:

Lemma 1. Assume that n <_ X, and N(n;1 c, exp(v/logX)) 0
with some positive contsant c. Then we have

1 X)
We also obtain

@(n) Zn(1) >> (log 3n) -by the known upper estimate for the residue of n(S) at s 1. Therefore we
conclude from (5) that the asymptotic formula (1) holds for n _< X satisfying
n I and N(n;1 c, exp(v/logX)) 0 with some c > 0.

{}4. It is easily seen that the number of the natural numbers n <_ X
with n Ik is O(/X). So, it suffices for the proof of our Theorem to show
that there exist positive constants c and 6, depending only on k, such that
(7) Y. N(n;1 c, exp(v/logX)) << X-*.

nX
nI

At this stage, we find the most important difference between k 2 and
k _> 3. When k 2, the function n(S)/(s) is the Dirichlet L function for
a certain real primitive character, unless n is a square. Therefore Bombieri’s
zero density theorem for L functions is effectual for the treatment of the
singular series @z(n, -X) (see Miech [6]). For k -> 3, however, we can not
utilize such a known result. We shall prove a zero density theorem for
n(S) /(s)’s. To this end, we use the following Lemma 2.
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Lemma 2. We put fl(m) 12(m)IIl(pn(p) 1). Let be any fixed
positive constant, and let {am} be any sequence of complex numbers. Then we
have

(8) amen(m) << (X + NM)M 2 am
n<X M-N<mM M-N<mM

Further, assume that M2(r+1) <_ Xr(r-l)

for a fixed natural number r. Then we
have

Z Z amiSh(m) X+ Z am[2 +
nX mM mM

max M max [am
MM Ml<m2M

Through the same argument as in the study of the zero density of
Dirichlet L functions, except that we employ the above Lemma 2 instead of
the large sieve inequality, we obtain the following zero density estimate for

(s) / (s)’s.
Lemma 3. Let T 1, and let a- 1 (r(r-- 1)) - with a natural

number r. Suppose that
log(k- 1) Cr+--ea r(r-1)a > log(k+ 1) and (X X

Then we have for a a < 1
N(n a, << (X---+*

nX
nI

with any fixed > O.
We apply Lemma 3 with T exp(log X), r k + 1, a 1-

(k(k + 1)) -, then we have (7), as required, for c (2k(k + 1)) - and
(2k + 2k + 4) - for example.
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