8. Bernstein-Gelfand-Gelfand Resolution for Generalized Kac-Moody Algebras

By Satoshi Naito
Department of Mathematics, Shizuoka University
(Communicated by Kiyosi Itô, M. J. A., Feb. 12, 1993)

Notation. Let $A=\left(a_{i j}\right)_{i, j \in I}$ be a real $n \times n$ matrix satisfying the following conditions: (1) $a_{i i}=2$, or $a_{i i} \leq 0$; (2) $a_{i j} \leq 0(i \neq j)$, and $a_{i j} \in \boldsymbol{Z}$ if $a_{i i}=2$; (3) $a_{i j}=0 \Leftrightarrow a_{j i}=0$. We call such a matrix a GGCM. Let $\mathfrak{g}(A)$ be a generalized Kac-Moody algebra ($=$ GKM algebra), over the complex number field \boldsymbol{C}, with Cartan subalgebra \mathfrak{h}, the set of simple roots $\Pi=\left\{\alpha_{i}\right\}_{i \in I}$, and the set of simple coroots $\Pi^{\vee}=\left\{\alpha_{i}^{\vee}\right\}_{i \in I}$. Then, we have the root space decomposition: $\mathfrak{g}(A)=\mathfrak{h} \oplus \sum_{\alpha \in \Delta}^{\oplus} \mathfrak{g}_{\alpha}$, where \mathfrak{g}_{α} is the root space attached to a root $\alpha \in \Delta=\Delta^{+} \cup \Delta^{-} \subset \mathfrak{h}^{*}$.

Let J be a finite type subset of the index set I, that is, a subset of I such that the submatrix $A_{J}:=\left(a_{i j}\right)_{i, j \in J}$ of $A=\left(a_{i j}\right)_{i, j \in I}$ is a direct sum of generalized Cartan matrices of finite type. Corresponding to such a subset J of I, we define the following Lie subalgebras of $\mathfrak{g}(A)$ and subset of the Weyl group W :

$$
\begin{gathered}
\mathfrak{u}^{ \pm}:=\sum_{\alpha \in \Delta^{+}(J)}^{\oplus} \mathfrak{g}_{ \pm \alpha}, \mathfrak{m}:=\mathfrak{h} \oplus \sum_{\alpha \in \Delta_{J}^{+}}^{\oplus}\left(\mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{-\alpha}\right), \mathfrak{p}:=\mathfrak{m} \oplus \mathfrak{u}^{+}, \\
W(J):=\left\{w \in W \mid \Delta^{+} \cap w\left(\Delta^{-}\right) \subset \Delta^{+}(J)\right\},
\end{gathered}
$$

where $\Delta_{J}^{+}:=\Delta^{+} \cap\left(\sum_{i \in J} \boldsymbol{Z}_{\geq 0} \alpha_{i}\right), \Delta^{+}(J):=\Delta^{+} \backslash \Delta_{J}^{+}$.
§1. The existence of the weak BGG resolution for GKM algebras. Let J be a finite type subset of I. We put $P^{+}:=\left\{\mu \in \mathfrak{h}^{*} \mid\left\langle\mu, \alpha_{i}^{\vee}\right\rangle \geq 0(i \in I)\right.$, $\left\langle\mu, \alpha_{i}^{\vee}\right\rangle \in \boldsymbol{Z}_{\geq 0}$ if $\left.a_{i i}=2\right\}, P_{J}^{+}:=\left\{\mu \in \mathfrak{h}^{*} \mid\left\langle\mu, \alpha_{j}^{\vee}\right\rangle \in \boldsymbol{Z}_{\geq 0}(j \in J)\right\}$. Let $L(\Lambda)\left(\Lambda \in P^{+}\right)$be the irreducible highest weight $g(A)$-module with highest weight $\Lambda, L_{\mathrm{m}}(\lambda)\left(\lambda \in P_{J}^{+}\right)$the irreducible highest weight m-module with highest weight λ, and $V_{\mathfrak{m}}(\lambda)=U(g(A)) \otimes_{U(\mathfrak{p})} L_{\mathfrak{m}}(\lambda)\left(\lambda \in P_{J}^{+}\right)$the generalized Verma module with highest weight λ. Note that the Verma modules $V(\lambda)\left(\lambda \in \mathfrak{h}^{*}\right)$ are precisely the generalized Verma modules $V_{\mathfrak{h}}(\lambda)$ for the case $J=\emptyset$.

From now on throughout this paper, we assume that the GGCM $A=\left(a_{i j}\right)_{i, j \in I}$ is symmetrizable. Then, there exists a positive diagonal matrix D such that $D^{-1} A$ is symmetric.

Let $\Pi^{r e}:=\left\{\alpha_{i} \in \Pi \mid a_{i i}=2\right\}$ be the set of real simple roots, and $\Pi^{i m}:=\left\{\alpha_{i} \in \Pi \mid a_{i i} \leq 0\right\}$ the set of imaginary simple roots of $\mathfrak{g}(A)$. For $\Lambda \in P^{+}$, we denote by $\&(\Lambda)$ the set of sums of distinct, pairwise perpendicular, imaginary simple roots $\alpha_{i} \in \Pi^{i m}$ with $\left\langle\Lambda, \alpha_{i}^{\vee}\right\rangle=0$. Here, for α_{i}, $\alpha_{j} \in \Pi^{i m}(i \neq j), \alpha_{i}$ and α_{j} are said to be perpendicular if $a_{i j}=a_{j i}=0$. We simply write $\&$ for $\&(0), 0 \in \mathfrak{h}^{*}$.

We have the following lemma for the relative Ext bifunctor $\operatorname{Ext}_{(\mathrm{g}(A), \mathfrak{m})}^{1}$
(cf. [6]), defined in the category $\mathscr{C}(\mathfrak{g}(A), \mathfrak{m})$ of all $\mathfrak{g}(A)$-modules which decompose into direct sums of finite dimensional irreducible \mathfrak{m}-modules.

Lemma 1.1. Let $\Lambda \in P^{+}, w_{i} \in W(J)$, and $\beta_{i} \in \&(\Lambda)(i=1,2)$. If
$\operatorname{Ext}_{(\mathrm{g}(A), \mathfrak{m})}^{1}\left(V_{\mathrm{m}}\left(w_{1}\left(\Lambda+\rho-\beta_{1}\right)-\rho\right), V_{\mathfrak{m}}\left(w_{2}\left(\Lambda+\rho-\beta_{2}\right)-\rho\right)\right) \neq 0$, then we have $\ell\left(w_{1}\right)+h t\left(\beta_{1}\right) \lesseqgtr \ell\left(w_{2}\right)+h t\left(\beta_{2}\right)$.
Here, ρ is a fixed element of \mathfrak{h}^{*} such that $\left\langle\rho, \alpha_{i}^{\vee}\right\rangle=(1 / 2) \cdot a_{i i}(i \in I)$, $\ell(w)(w \in W)$ is the length of w, and for $\beta=\sum_{i \in I} k_{i} \alpha_{i}\left(k_{i} \in \boldsymbol{Z}_{\geq 0}\right)$, we put $h t(\beta)=\sum_{i \in I} k_{i}$.

From now on, we write $(w, \beta) \circ \Lambda=w(\Lambda+\rho-\beta)-\rho$ for (w, β) $\in W \times \mathscr{S}(\Lambda)$.

By the arguments similar to the ones in [3], [7], and [8], using Lemma 1.1, we can prove the following theorem, which generalizes a classical result of Bernstein-Gelfand-Gelfand (= BGG) to GKM algebras (cf. [1]).

Theorem 1.2 (Existence of the weak BGG resolution). Let $A=\left(a_{i j}\right)_{i, j \in I}$ be a symmetrizable GGCM. Then, for the irreducible highest weight module $L(\Lambda)$ with highest weight $\Lambda \in P^{+}$over the GKM algebra $g(A)$, there exists a $\mathfrak{g}(A)$-module exact sequence:

$$
\begin{aligned}
& 0 \leftarrow L(\Lambda) \stackrel{\partial_{0}}{\leftarrow} C_{0}(\Lambda) \stackrel{\partial_{1}}{\sum^{\oplus}} C_{1}(\Lambda) \stackrel{\partial_{2}}{\leftarrow} C_{2}(\Lambda) \stackrel{\partial_{3}}{\leftarrow} \cdots, \\
& \text { where } C_{p}(\Lambda)=\sum_{w \in W(J), \beta \in \mathscr{A}(\Lambda)}^{\oplus} V_{\mathrm{m}}((w, \beta) \circ \Lambda)(p \geq 0) \text {. }
\end{aligned}
$$

§2. Homology vanishing theorems. Here, as before, we assume that J is a finite type subset of I. From Theorem 1.2, we obtain the following extension of Kostant's homology theorem to GKM algebras.

Proposition 2.1. Let $\Lambda \in P^{+}$. Then, as \mathfrak{m}-modules,

$$
H_{p}\left(\mathfrak{u}^{-}, L(\Lambda)\right) \cong \sum_{\substack{w \in W(J), \beta \in \mathcal{B}(\Lambda) \\ \ell(w)+h t(\beta)=p}}^{\infty} L_{\mathfrak{m}}((w, \beta) \circ \Lambda)(p \geq 0)
$$

Here, the sum is a direct sum of inequivalent irreducible (highest weight) m -modules.

From Proposition 2.1, we can derive the following proposition on Lie algebra homology by the same argument as in [5]. For the notation, see [6].

Proposition 2.2. Let $\Lambda \in P^{+}, \mu \in P_{J}^{+}$. If $\mu \neq(w, \beta) \circ \Lambda$ for any $w \in$ $W(J), \beta \in \&(\Lambda)$, then

$$
\begin{gathered}
\operatorname{Tor}_{n}^{\mathrm{g}(A)}\left(L^{*}(\Lambda), V_{\mathfrak{m}}(\mu)\right)=0(n \geq 0) \\
\operatorname{Tor}_{n}^{(\mathrm{g}(A), \mathfrak{m})}\left(L^{*}(\Lambda), V_{\mathrm{m}}(\mu)\right)=0(n \geq 0)
\end{gathered}
$$

Here, $L^{*}(\Lambda)$ is the irreducible lowest weight $\mathfrak{g}(A)$-module with lowest weight $-\Lambda$.

By Theorem 1.2 and Proposition 2.2, we get the following theorem.
Theorem 2.3. Let $\Lambda_{1}, \Lambda_{2} \in P^{+}$. Assume that $\Lambda_{1}-\Lambda_{2} \neq \beta_{1}-\beta_{2}$ for any $\beta_{i} \in \mathscr{\&}\left(\Lambda_{i}\right)(i=1,2)$. Then, we have

$$
\begin{gathered}
\operatorname{Tor}_{n}^{g(A)}\left(L^{*}\left(\Lambda_{1}\right), L\left(\Lambda_{2}\right)\right)=0(n \geq 0) \\
\operatorname{Tor}_{n}^{(\mathrm{g}(A), \mathfrak{m})}\left(L^{*}\left(\Lambda_{1}\right), L\left(\Lambda_{2}\right)\right)=0(n \geq 0)
\end{gathered}
$$

Corollary 2.4. Let $\Lambda \in P^{+}$. Assume that $\Lambda \neq \beta_{1}-\beta_{2}$ for any $\beta_{1} \in$ $\&(\Lambda), \beta_{2} \in \&$. Then,

$$
\begin{gathered}
H_{n}(\mathfrak{g}(A), L(\Lambda))=0(n \geq 0) \\
H_{n}(\mathfrak{g}(A), \mathfrak{m}, L(\Lambda))=0(n \geq 0)
\end{gathered}
$$

For the relative Lie algebra homology $H_{n}(g(A), \mathfrak{m}, \mathbf{C})(n \geq 0)$ with \mathbf{C} the trivial one dimensional $\mathfrak{g}(A)$-module, we have the following, as a generalization of [6, Corollary 6.7].

Theorem 2.5. $\quad H_{2 s+1}(g(A), m, \mathbf{C})=0(s \geq 0)$, and $\operatorname{dim}_{\mathbf{C}} H_{2 s}(\mathrm{~g}(A), \mathrm{m}, \mathbf{C})(s \geq 0)$
$=$ the number of elements of the set $\{(w, \beta) \in W(J) \times \& \mid \ell(w)+$ $h t(\beta)=s\}$
$=$ the number of m -irreducible components
in the Lie algebra homology $H_{s}\left(\mathfrak{u}^{-}, \mathbf{C}\right)$.
§3. Verma module embeddings. Let $\Delta^{r e}:=W \cdot \Pi^{r e}$ be the set of real roots, and $\Delta^{i m}:=\Delta \backslash \Delta^{r e}$ the set of imaginary roots. For $\alpha \in \Delta^{r e}$, we define a reflection r_{α} with respect to α by $r_{\alpha}(\lambda)=\lambda-\left\langle\lambda, \alpha^{\vee}\right\rangle \alpha\left(\lambda \in \mathfrak{h}^{*}\right)$, where α^{\vee} is the dual real root of α.

Definition (Bruhat ordering). Let $w_{1}, w_{2} \in W$. We write $w_{1} \leftarrow w_{2}$ if there exists some $\gamma \in \Delta^{r e} \cap \Delta^{+}$such that $w_{1}=r_{r} w_{2}$ and $\ell\left(w_{1}\right)=\ell\left(w_{2}\right)+1$. Moreover, for $w, w^{\prime} \in W$, we write $w \leqslant w^{\prime}$ if $w=w^{\prime}$ or if there exist $w_{1}, \ldots, w_{r} \in W$ such that

$$
w=w_{0} \leftarrow w_{1} \leftarrow \cdots \leftarrow w_{r} \leftarrow w_{r+1}=w^{\prime}
$$

Definition. Let $\beta_{1}, \beta_{2} \in \mathscr{\&}$. We write $\beta_{1} \leftarrow \beta_{2}$ if there exists some $\alpha_{j} \in$ $\Pi^{i m}$ such that $\beta_{1}=\beta_{2}+\alpha_{j}$. Moreover, for $\beta=\sum_{k \in K} \alpha_{k}, \beta^{\prime}=\sum_{l \in L} \alpha_{l} \in \&$, we write $\beta \geqslant \beta^{\prime}$ if $K \supset L$.

Definition. For $\left(w_{1}, \beta_{1}\right),\left(w_{2}, \beta_{2}\right) \in W \times \&$, we write $\left(w_{1}, \beta_{1}\right) \leftarrow\left(w_{2}, \beta_{2}\right)$ if $w_{1} \leftarrow w_{2}$ and $\beta_{1}=\beta_{2}$, or if $w_{1}=w_{2}$ and $\beta_{1} \leftarrow \beta_{2}$.
Remark. Let $\left(w_{1}, \beta_{1}\right),\left(w_{2}, \beta_{2}\right) \in W \times \mathscr{S}$. Then, the number of elements $(w, \beta) \in W \times \&$ such that $\left(w_{1}, \beta_{1}\right) \leftarrow(w, \beta) \leftarrow\left(w_{2}, \beta_{2}\right)$ is 0 or 2 .

We can prove the following generalization of one of Verma's classical results, using the theory of Enright's completion functors.

Proposition 3.1. Fix $\Lambda \in P^{+}$. Let $\left(w_{1}, \beta_{1}\right),\left(w_{2}, \beta_{2}\right) \in W \times \&(\Lambda)$. Then, we have

$$
\operatorname{dim}_{\mathbf{C}} \operatorname{Hom}_{\mathrm{g}(A)}\left(V\left(\left(w_{1}, \beta_{1}\right) \circ \Lambda\right), V\left(\left(w_{2}, \beta_{2}\right) \circ \Lambda\right)\right) \leq 1
$$

In the case where the equality holds in Proposition 3.1, we write

$$
V\left(\left(w_{1}, \beta_{1}\right) \circ \Lambda\right) \subset V\left(\left(w_{2}, \beta_{2}\right) \circ \Lambda\right) .
$$

Proposition 3.2. Let $\Lambda \in P^{+},\left(w_{1}, \beta_{1}\right),\left(w_{2}, \beta_{2}\right) \in W \times \&(\Lambda)$. Then, $V\left(\left(w_{1}, \beta_{1}\right) \circ \Lambda\right) \subset V\left(\left(w_{2}, \beta_{2}\right) \circ \Lambda\right)$

$$
\begin{aligned}
& \Leftrightarrow \quad w_{1} \leqslant w_{2}, \beta_{1} \geqslant \beta_{2} \\
& \Leftrightarrow \quad\left[V\left(\left(w_{2}, \beta_{2}\right) \circ \Lambda\right): L\left(\left(w_{1}, \beta_{1}\right) \circ \Lambda\right)\right] \neq 0 .
\end{aligned}
$$

Here, for $\lambda, \mu \in \mathfrak{h}^{*},[V(\lambda): L(\mu)]$ denotes the multiplicity of $L(\mu)$ in $V(\lambda)$.
Now, let J be a finite type subset of I, and $\lambda \in P_{J}^{+}$. The generalized Verma module $V_{m}(\lambda)$ with highest weight λ is a quotient of the Verma module $V(\lambda)$ with highest weight λ. We denote by $K(\lambda)$ the kernel of the natural quotient map of $V(\lambda)$ onto $V_{\mathfrak{m}}(\lambda)$. If for $\lambda, \mu \in P_{J}^{+}, f: V(\lambda) \rightarrow$ $V(\mu)$ is a nonzero $\mathfrak{g}(A)$-module map, then we can easily see that $f(K(\lambda)) \subset$ $K(\mu)$ by a classical result of Harish-Chandra. Therefore, f naturally deter-
mines a $\mathfrak{g}(A)$-module map $\hat{f}: V_{\mathfrak{m}}(\lambda) \rightarrow V_{\mathfrak{m}}(\mu)$ such that $\hat{f}(v+K(\lambda))=$ $f(v)+K(\mu)(v \in V(\lambda))$. We call this map the standard map associated to f.

Then, by Proposition 3.2, we can prove the following.
Proposition 3.3. Let $\Lambda \in P^{+}$, and let $\left(w_{1}, \beta_{1}\right),\left(w_{2}, \beta_{2}\right) \in W(J) \times \&(\Lambda)$ be such that $\ell\left(w_{1}\right)+h t\left(\beta_{1}\right)=\ell\left(w_{2}\right)+h t\left(\beta_{2}\right)+1$. Then, there exists a nonzero $\mathfrak{g}(A)$-module map $V_{\mathfrak{m}}\left(\left(w_{1}, \beta_{1}\right) \circ \Lambda\right) \rightarrow V_{\mathfrak{m}}\left(\left(w_{2}, \beta_{2}\right) \circ \Lambda\right)$ if and only if $\left(w_{1}, \beta_{1}\right) \leftarrow\left(w_{2}, \beta_{2}\right)$. In this case, the standard map associated to the inclusion of $V\left(\left(w_{1}, \beta_{1}\right) \circ \Lambda\right)$ into $V\left(\left(w_{2}, \beta_{2}\right) \circ \Lambda\right)$ is also nonzero.
§4. Construction of the strong BGG resolution. Theorem 1.2 gives no informations about the $\mathfrak{g}(A)$-module maps $\partial_{p}(p \geq 0)$. Here, we give an explicit construction of the strong BGG resolution, which is equivalent to the weak BGG resolution in Theorem 1.2.

Definition. Let us call a quadruple $\left\{\left(w_{1}, \beta_{1}\right),\left(w_{2}, \beta_{2}\right),\left(w_{3}, \beta_{3}\right)\right.$, $\left.\left(w_{4}, \beta_{4}\right)\right\}$ of elements of $W \times \&$ a square if $\left(w_{1}, \beta_{1}\right) \leftarrow\left(w_{i}, \beta_{i}\right) \leftarrow\left(w_{4}, \beta_{4}\right)(i=2,3), \quad\left(w_{2}, \beta_{2}\right) \neq\left(w_{3}, \beta_{3}\right)$.
Lemma 4.1. To each arrow $\left(w_{1}, \beta_{1}\right) \leftarrow\left(w_{2}, \beta_{2}\right)$, we can associate a number $c\left(\left(w_{1}, \beta_{1}\right),\left(w_{2}, \beta_{2}\right)\right) \in\{1,-1\}$ such that the product of all numbers associated to the four arrows of any square $\left\{\left(w_{1}, \beta_{1}\right),\left(w_{2}, \beta_{2}\right),\left(w_{3}, \beta_{3}\right),\left(w_{4}, \beta_{4}\right)\right\}$ is equal to -1 .

Let $\Lambda \in P^{+}$. Then, by Propositions 3.1 and 3.2 , we can fix an injection $\iota_{\left(w_{1}, \beta_{1}\right),\left(w_{2}, \beta_{2}\right)}: V\left(\left(w_{1}, \beta_{1}\right) \circ \Lambda\right) \rightarrow V\left(\left(w_{2}, \beta_{2}\right) \circ \Lambda\right)$, for each pair $\left(w_{1}, \beta_{1}\right)$, $\left(w_{2}, \beta_{2}\right) \in W \times \mathscr{S}(\Lambda)$ in such a way that $\iota_{\left(w_{2}, \beta_{2}\right),(1,0)}{ }^{\circ} \iota_{\left(w_{1}, \beta_{1}\right),\left(w_{2}, \beta_{2}\right)}=$ $\iota_{\left(w_{1}, \beta_{1}\right),(1,0)}$.

Now, we temporarily assume that $J=\emptyset$. Remark that, in this case,

$$
C_{p}(\Lambda)=\sum_{\substack{w \in W, \beta \in \&(\Lambda) \\ \ell(w)+h t(\beta)=p}}^{\oplus} V((w, \beta) \circ \Lambda)(p \geq 0)
$$

in the weak BGG resolution in Theorem 1.2. The next theorem gives an explicit construction of the strong BGG resolution.

Theorem 4.2. Let $\Lambda \in P^{+}$. For each $p \in \boldsymbol{Z}_{\geq 1}$, let $d_{p}: C_{p}(\Lambda) \rightarrow C_{p-1}(\Lambda)$ be the map defined by

$$
\begin{aligned}
& d_{p}:=\bigoplus_{\substack{\ell\left(w_{1}\right)+h t\left(\beta_{1}\right)=p \\
\ell\left(w_{2}\right)+h t\left(\beta_{2}\right)=p-1}} d_{\left(w_{1}, \beta_{1}\right),\left(w_{2}, \beta_{2}\right)}^{p} \cdot c_{\left(w_{1}, \beta_{1}\right),\left(w_{2}, \beta_{2}\right)}, \\
& \text { where } d_{\left(w_{1}, \beta_{1}\right),\left(w_{2}, \beta_{2}\right)}^{p}:= \begin{cases}c\left(\left(w_{1}, \beta_{1}\right),\left(w_{2}, \beta_{2}\right)\right) & \text { if }\left(w_{1}, \beta_{1}\right) \leftarrow\left(w_{2}, \beta_{2}\right) \\
0 & \text { otherwise, }\end{cases}
\end{aligned}
$$

and let $d_{0}: C_{0}(\Lambda)=V(\Lambda) \rightarrow L(\Lambda)$ be a canonical surjection. Then, we have the following $\mathfrak{g}(A)$-module exact sequence, which is equivalent to the weak BGG resolution in Theorem 1.2 for the case $J=\emptyset$:

$$
\begin{gathered}
0 \leftarrow L(\Lambda) \stackrel{d_{0}}{\leftarrow} C_{0}(\Lambda) \stackrel{d_{1}}{\stackrel{d_{1}}{\leftarrow}} C_{1}(\Lambda) \stackrel{d_{2}}{\leftarrow} C_{2}(\Lambda) \stackrel{d_{3}}{\leftarrow} \cdots, \\
\text { where } C_{p}(\Lambda) \\
\sum_{\substack{w \in W, \beta \in \mathcal{S}(\Lambda) \\
\ell(w)+h t(\beta)=p}}^{\leftarrow} V((w, \beta) \circ \Lambda)(p \geq 0) .
\end{gathered}
$$

We now return to the case where J is an arbitrary finite type subset of I. Let $\Lambda \in P^{+}$. Note that $(w, \beta) \circ \Lambda \in P_{J}^{+}$for $(w, \beta) \in W(J) \times \mathscr{S}(\Lambda)$. For each $p \in \boldsymbol{Z}_{\geq 1}$, let $\hat{d}_{p}: C_{p}(\Lambda) \rightarrow C_{p-1}(\Lambda)$ be the map defined by

$$
\hat{d}_{p}:=\underset{\substack{\ell\left(w_{1}\right)+h\left(\beta_{1}\right)=p \\ \ell\left(w_{2}\right)+h\left(\beta_{2}\right)=p-1}}{ } d_{\left(w_{1}, \beta_{1}\right),\left(w_{2}, \beta_{2}\right)}^{b} \cdot \hat{\iota}_{\left(w_{1}, \beta_{1}\right),\left(w_{2}, \beta_{2}\right)},
$$

where, for $\left(w_{1}, \beta_{1}\right),\left(w_{2}, \beta_{2}\right) \in W(J) \times \&(\Lambda), \hat{\iota}_{\left(w_{1}, \beta_{1}\right),\left(w_{2}, \beta_{2}\right)}: V_{\mathrm{m}}\left(\left(w_{1}, \beta_{1}\right)\right.$ 。 $\Lambda) \rightarrow V_{\mathrm{m}}\left(\left(w_{2}, \beta_{2}\right) \cdot \Lambda\right)$ is the standard map associated to the inclusion $\iota_{\left(w_{1}, \beta_{1}\right),\left(w_{2}, \beta_{2}\right)}: V\left(\left(w_{1}, \beta_{1}\right) \circ \Lambda\right) \rightarrow V\left(\left(w_{2}, \beta_{2}\right) \circ \Lambda\right)$, and the number $d_{\left(w_{1}, \beta_{1}\right),\left(w_{2}, \beta_{2}\right)}^{p}$ is as in Theorem 4.2, restricted to $W(J) \times \mathscr{S}(\Lambda)$. By the classical result of Harish-Chandra, we can easily see that there exists a surjective $g(A)$ module map $\hat{\eta}: V_{\mathrm{m}}(\Lambda) \rightarrow L(\Lambda)$, which takes a highest weight vector generating $V_{\mathfrak{m}}(\Lambda)$ to a highest weight vector of $L(\Lambda)$. Then, we can prove the following extension of Theorem 4.2 by exactly the same argument as the one for [7, Theorem 11.4] or [8, Theorem 9.12].

Theorem 4.3. Let $\Lambda \in P^{+}$, and J be an arbitrary finite type subset of I. Then, we have the following $\mathfrak{g}(A)$-module exact sequence, which is equivalent to the weak BGG resolution in Theorem 1.2:

$$
\left.0 \leftarrow L(\Lambda) \stackrel{\hat{n}}{\leftarrow} C_{0}(\Lambda) \underset{\substack{w \in W(J), \beta \in \mathcal{S}(\Lambda) \\ \ell(w)+h t(\beta)=p}}{ } C_{p}(\Lambda) C_{1}((w) \beta) \circ \Lambda\right)(p \geq 0) \text {. }
$$

References

[1] I. N. Bernstein, I. M. Gelfand, and S. I. Gelfand: Differential operators on the base affine space and a study of \mathfrak{g}-modules. Lie Groups and Their Representations (ed. I. M. Gelfand). Hilger, London, pp.21-64 (1975).
[2] R. Borcherds: Generalized Kac-Moody algebras. J. Algebra, 115, 501-512 (1988).
[3] H. Garland and J. Lepowsky: Lie algebra homology and the Macdonald-Kac formulas. Invent. Math., 34, 37-76 (1976).
[4] V. G. Kac: Infinite Dimensional Lie Algebras. 3rd ed., Cambridge Univ. Press, Cambridge (1990).
[5] S. Kumar: Extension of the category $\mathscr{O}^{\boldsymbol{g}}$ and a vanishing theorem for the Ext functor for Kac-Moody algebras. J. Algebra, 108, 472-491 (1987).
[6] J. Lepowsky: Generalized Verma modules, loop space cohomology and Macdonaldtype identities. Ann. Sci. Éc. Norm. Sup., 12, 169-234 (1979).
[7] A. Rocha-Caridi: Splitting criteria for \mathfrak{g}-modules induced from a parabolic and the Bernstein-Gelfand-Gelfand resolution of a finite dimensional, irreducible \mathfrak{g}-module. Trans. Amer. Math. Soc., 262, 335-366 (1980).
[8] A. Rocha-Caridi and N. R. Wallach: Projective modules over graded Lie algebras. I. Math. Z., 180, 151-177 (1982).

