58. Normal Band Compositions of Semigroups^{*)}

By Miroslav CIRIĆ and Stojan BOGDANOVIĆ

University of Niš, Yugoslavia (Communicated by Shokichi IYANAGA, M. J. A., Sept. 13, 1993)

Abstract: In this paper we give a construction of bands of arbitrary semigroups and we apply this result to study of normal bands of semigroups, and especially for normal bands of monoids. We generalize some well-known results concerning normal bands of monoids and groups.

In this paper we consider band compositions in the general case. Using a general construction for a semilattice of semigroups, we give a construction for a band of arbitrary semigroups. This construction is a very simple consequence of Theorem A, but we give some important applications of this construction: We give a description of normal bands of arbitrary semigroups, especially of normal bands of monoids, and as consequences we obtain some well-known results concerning normal bands of monoids and groups. Note that in our considerations, the conditions (5) and (6) in Theorem A have the important role.

Throughout this paper, $S = (B; S_i)$ means that a semigroup S is a band B of semigroups S_i , $i \in B$. Let $S = (B; S_i)$, where each S_i is a monoid with the identity e_i , S is a systematic band B of S_i , $i \in B$, if $ij = j \Rightarrow$ $e_i e_j = e_i$ and $ji = j \Rightarrow e_i e_i = e_i$ (M. Yamada [14]). S is a proper band of S_i if $\{e_i \mid i \in B\}$ is a subsemigroup of S (B.M. Schein [11]). Let S be an ideal of a semigroup D. A congruence σ on D is an S-congruence on D if its restriction on S is the equality relation on S. An ideal extension D of a semigroup S is a dense extension of S if the equality relation is the unique S-congruence on D.

Theorem A [9]. Let Y be a semilattice. For each $\alpha \in Y$ we associate a semigroup S_{α} and an extension D_{α} of S_{α} such that $D_{\alpha} \cap D_{\beta} = \emptyset$ if $\alpha \neq \beta$. For every pair α , $\beta \in Y$ such that $\alpha \geq \beta$ let $\phi_{\alpha,\beta} : S_{\alpha} \to D_{\beta}$ be a mapping satisfying:

(1) $\phi_{\alpha,\alpha}$ is the identity mapping on S_{α} ;

(2) $(S_{\alpha}\phi_{\alpha,\alpha\beta})(S_{\beta}\phi_{\beta,\alpha\beta}) \subseteq S_{\alpha\beta};$

(3) $[(a\phi_{\alpha,\alpha\beta})(b\phi_{\beta,\alpha\beta})]\phi_{\alpha\beta,\gamma} = (a\phi_{\alpha,\gamma})(b\phi_{\beta,\gamma}),$ for all α , β , $\gamma \in Y$ such that $\alpha\beta > \gamma$ and all $a \in S_{\alpha}, b \in S_{\beta}.$

Define a multiplication * on $S = \bigcup_{\alpha \in Y} S_{\alpha}$ with:

 $a * b = (a \phi_{\alpha, \alpha \beta}) (b \phi_{\beta, \alpha \beta}), \quad (a \in S_{\alpha}, b \in S_{\beta}).$ (4)

Then S is a semilattice Y of semigroups S_{α} , in notation $S = (Y; S_{\alpha}, \phi_{\alpha,\beta}, D_{\alpha})$. Conversely, every semigroup S which is a semilattice Y of semigroups S_{α} can

be so constructed. In addition, D_{α} can be chosen to satisfy:

- (5) $D_{\alpha} = \{ b\phi_{\beta,\alpha} \mid \beta \geq \alpha, b \in S_{\beta}, \beta \in Y \};$
- (6) D_{α} is a dense extension of S_{α} .

Supported by Grant 0401A of RFNS through Math. Inst. SANU.

If we assume $\alpha = \beta$ in (3), then $\phi_{\alpha,r}$ is a homomorphism for all $\alpha, \gamma \in Y$ such that $\alpha \geq \gamma$. If each $\phi_{\alpha,\beta}$ maps S_{α} into S_{β} , i.e. if $S_{\alpha}\phi_{\alpha,\beta} \subseteq S_{\beta}$, or if $D_{\alpha} = S_{\alpha}$, for each $\alpha \in Y$, then we write $S = (Y; S_{\alpha}, \phi_{\alpha,\beta})$. In this case the condition (2) can be omitted. If $S = (Y; S_{\alpha}, \phi_{\alpha,\beta})$ and if $\{\phi_{\alpha,\beta} \mid \alpha \geq \beta\}$ is a *transitive system of homomorphisms*, i.e. if $\phi_{\alpha,\beta}\phi_{\beta,r} = \phi_{\alpha,r}$, for $\alpha \geq \beta \geq \gamma$, then S is a *strong semilattice* of semigroups S_{α} and we write $S = [Y; S_{\alpha}, \phi_{\alpha,\beta}]$.

For undefined notions and notations we refer to [9] and [10].

A very important problem in the theory of semigroups is the following: Given a family $\{S_i \mid i \in B\}$ of semigroups indexed by a band B, how to define a multiplication on $S = \bigcup_{i \in B} S_i$ such that $S = (B; S_i)$, i.e. such that $S_i S_j \subseteq S_{ij}$, for all $i, j \in B$? In such a case, we say that S is a band composition of semigroups S_i . Band compositions have been considered merely in various special cases. Left, right and matrix compositions of semigroups were studied by R. Yoshida [15], [16], M. Petrich [10] and S. Schwarz [12]. A composition of a semilattice of arbitrary semigroups is given by Theorem A ([9]). Some special types of such compositions were studied by G. Lallement [6] and M. Petrich [8]. Strong semilattices of semigroups were first defined and studied by A.H. Clifford [5], and then by M. Yamada and N. Kimura [13], M. Petrich [7], M. Yamada [14]. Some band compositions were considered by the authors [2], and compositions of bands of monoids were considered by B.M. Schein [11], M. Yamada [14] and by the authors [1], [3]. Band compositions obtained from spined products of some semigroups will be presented in the next paper of the authors [4].

Theorem 1. Let a band B be a semilattice Y of rectangular bands B_{α} , $\alpha \in Y$. To each $i \in B$ we associate a semigroup S_i such that $S_i \cap S_j = \emptyset$ if $i \neq j$. Then a semigroup S is a band B of semigroups S_i , $i \in B$, if and only if the following conditions hold:

(7) $S = (Y; S_{\alpha}, \phi_{\alpha,\beta}, D_{\alpha});$

(8) each S_{α} is a matrix B_{α} of semigroups S_i , $i \in B_{\alpha}$, and D_{α} is an ideal extension of S_{α} ;

(9) $(S_i\phi_{\alpha,\alpha\beta})(S_j\phi_{\beta,\alpha\beta}) \subseteq S_{ij}$, for all $i \in B_{\alpha}$, $j \in B_{\beta}$.

Proof. Let S be a band B of semigroups S_i , $i \in B$. Then S is a semilattice Y of semigroups S_{α} and for every $\alpha \in Y$, S_{α} is a matrix B_{α} of semigroups S_i , $i \in B_{\alpha}$. By Theorem A, we see (7) and (8), and by (4) we obtain (9).

Conversely, let (7), (8) and (9) hold. Then by (9) and by the definition of multiplication in B we obtain that S is a band B of semigroups S_i , $i \in B$.

A band B is *normal* if it is a strong semilattice of rectangular bands, or, equivalently, if it satisfies the identity axya = ayxa ([10]).

Theorem 2. Let S be a semigroup constructed as in Theorem 1. Then each D_{α} can be chosen to satisfy:

(A1) D_{α} is a matrix B_{α} of semigroups D_i , $i \in B_{\alpha}$;

(A2) each S_i is contained in D_i ;

if and only if B is a normal band.

Proof. Let S be a band composition constructed as in Theorem 1 and

let π be the related band congruence.

Assume $a, x, y \in S$, $a \in S_{\alpha}, x \in S_{\beta}, y \in S_{\gamma}, \alpha, \beta, \gamma \in Y$. Let $\delta = \alpha\beta\gamma$, and let $a\phi_{\alpha,\delta} \in D_i, x \in \phi_{\beta}, \delta \in D_j, y\phi_{\gamma,\delta} \in D_k, i, j, k \in B_{\delta}$. By (4), (3) and by (A1) we obtain

(10) $a \ast x \ast y \ast a = (a\phi_{\alpha,\beta}) (x\phi_{\beta,\delta}) (y\phi_{\gamma,\delta}) (a\phi_{\alpha,\delta}) \in D_i D_i D_k D_i \subseteq D_i,$

(11) $a * y * x * a = (a\phi_{\alpha,\delta})(y\phi_{\gamma,\delta})(x\phi_{\beta,\delta})(a\phi_{\alpha,\delta}) \in D_i D_k D_j D_i \subseteq D_i.$

Thus, by (10) and (11) we have that a * x * y * a, $a * y * x * a \in D_i \cap S = S_i$, so $a * x * y * a \pi a * y * x * a$, whence $B \cong S/\pi$ is a normal band.

Conversely, let $B = [Y; B_{\alpha}, \theta_{\alpha,\beta}]$ be a normal band and each D_{α} be chosen to satisfy (5). Let $a \in S_i$, $b \in S_j$, where $i \in B_{\alpha}$, $j \in B_{\beta}$, α , β , $\gamma \in Y$, α , $\beta \geq \gamma$. Then

(12) $a\phi_{\alpha,\gamma} = b\phi_{\beta,\gamma} \Longrightarrow i\theta_{\alpha,\gamma} = j\theta_{\beta,\gamma}.$

Indeed, let $a\phi_{\alpha,r} = b\phi_{\beta,r}$ and let $x \in S_{i\theta_{\alpha,r}}$. Then $a * x \in S_i * S_{i\theta_{\alpha,r}} \subseteq S_{i(i\theta_{\alpha,r})}$, $b * x \in S_j * S_{i\theta_{\alpha,r}} \subseteq S_{i(i\theta_{\alpha,r})}$, so by $a * x = (a\phi_{\alpha,r})x = (b\phi_{\beta,r})x = b * x$ we obtain that $(j\theta_{\beta,r})(i\theta_{\alpha,r}) = j(i\theta_{\alpha,r}) = i\theta_{\alpha,r}$. Similarly we obtain that $(i\theta_{\alpha,r})(j\theta_{\beta,r}) = i\theta_{\alpha,r}$, so $i\theta_{\alpha,r} = j\theta_{\beta,r}$. Thus, (12) holds. Assume that

 $D_{k} = \{a\phi_{\alpha,r} \mid \alpha \geq \gamma, a \in S_{i}, i \in B_{\alpha}, i\theta_{\alpha,r} = k\}, \quad \gamma \in Y, k \in B_{r}.$ By (12) it follows that these sets are pairwise disjoint. It is clear that $D_{r} = \bigcup \{D_{k} \mid k \in B_{r}\}, S_{k} \subseteq D_{k}$, for all $k \in B_{r}$ and $S_{i}\phi_{\alpha,r} \subseteq D_{i\theta_{\alpha,r}}$, for all $\alpha \geq \gamma$, $i \in B_{\alpha}$.

Assume $a \in S_i$, $b \in S_j$, $\alpha, \beta \ge \gamma, \alpha, \beta, \gamma \in Y$, $i \in B_{\alpha}, j \in B_{\beta}$. Then $a * b \in S_{ij}$, so by (3) it follows that

 $\begin{array}{l} (a\phi_{\alpha,\gamma}) (b\phi_{\beta,\gamma}) = ((a\phi_{\alpha,\alpha\beta}) (b\phi_{\beta,\alpha\beta})) \phi_{\alpha\beta,\gamma} = (a \ast b) \phi_{\alpha\beta,\gamma} \in S_{ij} \phi_{\alpha\beta,\gamma} \subseteq D_{(ij)\theta_{\alpha\beta,\gamma}}.\\ \text{Since} \quad (ij) \theta_{\alpha\beta,\gamma} = ((i\theta_{\alpha,\alpha\beta}) (j\theta_{\beta,\alpha\beta})) \theta_{\alpha\beta,\gamma} = (i\theta_{\alpha,\gamma}) (j\theta_{\beta,\gamma}), \quad \text{then} \quad D_{i\theta_{\alpha,\gamma}} D_{j\theta_{\beta,\gamma}} \subseteq D_{(i\theta_{\alpha,\gamma}) (j\theta_{\beta,\gamma})}, \text{so each } D_{\gamma} \text{ is a matrix } B_{\gamma} \text{ of semigroups } D_k, \ k \in B_{\gamma}. \end{array}$

It is known that if S is a semilattice Y of monoids S_{α} , then this semilattice is composed as $(Y; S_{\alpha}, \phi_{\alpha,\beta})$ (since monoids have not proper dense extensions). This result can be generalized in the following way.

Theorem 3. A semigroup S is normal band of monoids if and only if $S = (Y; S_{\alpha}, \phi_{\alpha,\beta})$ such that each S_{α} is a matrix of monoids.

Proof. Let $B = [Y; B_{\alpha}, \theta_{\alpha,\beta}]$, where B_{α} are rectangular bands and let S be a normal band B of monoids S_i , $i \in B_{\alpha}$, $\alpha \in Y$, constructed as in Theorem 1, with (5) and (6), and let (A1) and (A2) from Theorem 2 hold. For $i \in B_{\alpha}$, let e_i be the identity element of S_i .

Assume $\alpha \in Y$. Define a relation σ on D_{α} by

 $a \sigma b \Leftrightarrow a, b \in D_i, i \in B_{\alpha}$, and $ae_i = be_i$.

It is clear that σ is an equivalence relation. Let $a \sigma b$ and $x \in D_j$. Note, firstly, that $ae_i = e_i(ae_i) = (e_ia)e_i = e_ia$, for all $a \in D_i$ since e_ia , $ae_i \in S_i$. Assume that $a, b \in D_i$ for some $i \in B_{\alpha}$. Then $ax, bx \in D_{ij}$, whence

 $(ax)e_{ij} = e_{ij}(ax) = (e_{ij}a)e_ix = e_{ij}(ae_i)x = e_{ij}(be_i)x = (bx)e_{ij}$, so σ is a right congruence. Similarly we prove that σ is a left congruence, so σ is a congruence.

Let $a, b \in S_{\alpha}$ and let $a \sigma b$. Then $a, b \in S_i$, for some $i \in B_{\alpha}$, whence $a = ae_i = be_i = b$. Thus, σ is a S_{α} -congruence. Since D_{α} is a dense extension of S_{α} (by the hypothesis (6)), then σ is the equality relation on D_{α} .

Assume $a \in D_i$, for some $i \in B_{\alpha}$. Then by $a \sigma ae_i$ it follows that $a = ae_i \in S_i$. Therefore $D_{\alpha} = S_{\alpha}$.

Conversely, let $S = (Y; S_{\alpha}, \phi_{\alpha,\beta})$ and let each S_{α} be a matrix B_{α} of monoids S_i , $i \in B_{\alpha}$. Assume $\alpha, \beta \in Y$ such that $\alpha \geq \beta$. Let us prove that (13) $(\forall i \in B_{\alpha}) (\exists_j j \in B_{\beta}) S_i \phi_{\alpha,\beta} \subseteq S_j$.

Assume $i \in B_{\alpha}$ and assume that e is an identity element of S_i . Let $j \in B_{\beta}$ such that $e\phi_{\alpha,\beta} \in S_j$. Then for every $a \in S_i$ we obtain that

$$a\phi_{\alpha,\beta} = (eae)\phi_{\alpha,\beta} = (e\phi_{\alpha,\beta})(a\phi_{\alpha,\beta})(e\phi_{\alpha,\beta}) \in S_j S_\beta S_j \subseteq S_j.$$

Thus, $S_i \phi_{\alpha,\beta} \subseteq S_j$, and since S_k are pairwise disjoint, then (13) holds. Therefore, the mapping $\theta_{\alpha,\beta}$ of B_{α} into B_{β} given by:

$$\theta_{\alpha,\beta} = j \Leftrightarrow S_i \phi_{\alpha,\beta} \subseteq S_j$$

is well defined. It is not hard to verify that $\{\theta_{\alpha,\beta} \mid \alpha \geq \beta, \alpha, \beta \in Y\}$ constitutes a transitive system. If $B = [Y; \beta_{\alpha}, \theta_{\alpha,\beta}]$, then B is a normal band and for $a \in S_i$, $b \in S_i$, we have that

$$ab = (a\phi_{\alpha,\alpha\beta})(b\phi_{\beta,\alpha\beta}) \in (S_i\phi_{\alpha,\alpha\beta})(S_j\phi_{\beta,\alpha\beta}) \subseteq S_{i\theta_{\alpha,\alpha\beta}}S_{j\theta_{\beta,\alpha\beta}}$$
$$\subseteq S_{(i\theta_{\alpha,\alpha\beta})(i\theta_{\beta,\alpha\beta})} = S_{ij},$$

so S is a band B of monoids S_i ($\alpha \in Y$, $i \in B_{\alpha}$).

Remark 1. Let $S = (B; S_i)$, B be a normal band and each S_i be a monoid with the identity e_i , and let $B = [Y; B_{\alpha}, \theta_{\alpha,\beta}]$, Y be a semilattice, B_{α} rectangular bands. By Theorem 3 it follows that this is equivalent to $S = (Y; S_{\alpha}, \phi_{\alpha,\beta})$, where $S_{\alpha} = (B_{\alpha}; S_i)$. Moreover, it can be proved that each $\phi_{\alpha,\beta}$, $\alpha, \beta \in Y$, $\alpha \geq \beta$, is uniquely determined with $a\phi_{\alpha,\beta} = ae_{i\theta_{\alpha,\beta}}$, for $a \in S_i$, $i \in B_{\alpha}$.

Example. The semilattice composition from Theorem 3 may not be strong. This is shown by the following example: let $Y = \{0,1,2\}, 0 > 1 > 2$, be a semilattice, and let $S_{\alpha} = \{e_{\alpha}, a_{\alpha}\}$ be monoids in which the multiplication is given by $e_{\alpha}^2 = e_{\alpha}, e_{\alpha}a_{\alpha} = a_{\alpha}e_{\alpha} = a_{\alpha}^2 = a_{\alpha}, \alpha \in Y$. Define homomorphisms $\phi_{\alpha,\beta}, \alpha > \beta$, by

$$\phi_{0,1} = \begin{pmatrix} e_0 & a_0 \\ a_1 & a_1 \end{pmatrix}, \quad \phi_{0,2} = \begin{pmatrix} e_0 & a_0 \\ e_2 & a_2 \end{pmatrix}, \quad \phi_{1,2} = \begin{pmatrix} e_1 & a_1 \\ a_2 & a_2 \end{pmatrix},$$

 $\phi_{\alpha,\alpha}, \alpha \in Y$, satisfying (1). Then $S = (Y; S_{\alpha}, \phi_{\alpha,\beta})$ is a semilattice of monoids S_{α} and it is not a strong semilattice of monoids S_{α} , since $(e_0\phi_{0,1})\phi_{1,2} \neq e_0\phi_{0,2}$.

Let $S = (B; S_i)$, where B is a band and each S_i is a monoid with the identity e_i . Then S is a weakly systematic band of monoids S_i if for $i, j, k \in B$, $i \ge j \ge k \Rightarrow e_i e_j e_k = e_i e_k$.

By the following theorem we describe strong semilattices of matrices of monoids.

Theorem 4. A semigroup S is a strong semilattice of matrices of monoids if and only if S is a weakly systematic normal band of monoids.

Proof. Let $S = [Y; S_{\alpha}, \phi_{\alpha,\beta}]$. By Theorem 3 we obtain that S is a normal band of monoids. Let us use notations of Remark 1. Assume $i, j, k \in B$ such that $i \geq j \geq k$. Then $i \in B_{\alpha}, j \in B_{\beta}, k \in B_{\gamma}, \alpha \geq \beta \geq \gamma$ and $j = i\theta_{\alpha,\beta}, k = i\theta_{\alpha,\gamma}$, whence

 $e_i e_j e_k = e_i e_{i\theta_{\alpha,\beta}} e_{i\theta_{\alpha,\gamma}} = e_i e_{i\theta_{\alpha,\beta}} e_{i\theta_{\alpha,\beta}\theta_{\beta,\gamma}} = e_i \phi_{\alpha,\beta} \phi_{\beta,\gamma} = e_i \phi_{\alpha,\gamma} = e_i e_{i\theta_{\alpha,\gamma}} = e_i e_k.$

Conversely, let S be a weakly systematic normal band of monoids and let us use notations of Remark 1. If α , β , $\gamma \in Y$, $\alpha \geq \beta \geq \gamma$ and $a \in S_i$, $i \in B_{\alpha}$, then

 $a\phi_{\alpha,\beta}\phi_{\beta,\gamma} = ae_{i\theta_{\alpha,\beta}}e_{i\theta_{\alpha,\beta}}\theta_{\beta,\gamma} = ae_ie_{i\theta_{\alpha,\beta}}e_{i\theta_{\alpha,\gamma}} = ae_ie_{i\theta_{\alpha,\gamma}} = a\phi_{\alpha,\gamma}.$

Let $S = [Y; S_{\alpha}, \phi_{\alpha,\beta}]$, where $S_{\alpha} = (B_{\alpha}; S_i)$, B_{α} is a rectangular band and each S_i is a monoid with the identity e_i . S is a special strong semilattice of S_{α} if for $\alpha, \beta \in Y, \alpha \geq \beta \Rightarrow \{e_i \mid i \in B_{\alpha}\}\phi_{\alpha,\beta} \subseteq \{e_j \mid j \in B_{\beta}\}$ (M. Yamada [14]). In notations of Remark 1, this is equivalent with: $\alpha \geq \beta$, $i \in B_{\alpha} \Rightarrow$ $e_i e_{i\theta_{\alpha,\beta}} = e_{i\theta_{\alpha,\beta}}$, $\alpha, \beta \in Y$, or, equivalently, if for $i, j \in B$, $i \geq j \Rightarrow e_i e_j = e_j$.

By Theorems 3 and 4 and Remark 1 we obtain the following consequences.

Corollary 1 [14]. A semigroup S is a systematic normal band of monoids if and only if S is a special strong semilattice of systematic matrices of monoids.

Corollary 2. A semigroup S is a proper normal band of monoids if and only if S is a special strong semilattice of proper matrices of monoids.

Note that S is a proper matrix of monoids if and only if S is isomorphic to a direct product of a monoid and a rectangular band [11].

Corollary 3. A semigroup S is a normal band of unipotent monoids if and only if S is a strong semilattice of matrices of unipotent monoids.

Corollary 4 [9]. A semigroup S is a normal band of groups if and only if S is a strong semilattice of completely simple semigroups.

Corollary 5 [9]. A semigroup S is an orthodox normal band of groups if and only if S is a strong semilattice of rectangular groups.

Acknowledgements. The authors are indebted to the referee for several useful comments and suggestions concerning the presentation of this paper.

References

- [1] S. Bogdanović and M. Ćirić: Bands of monoids. Matem. Bilten, 9-10 (XXXV-XXXVI) (1985-1986); Skopje, 57-61 (1989).
- [2] M. Cirić and S. Bogdanović: Sturdy bands of semigroups. Collect. Math. Barcelona, 41 (3), 189-195 (1990).
- [3] —: Inflations of a band of monoids. Zb. rad. Fil. fak. Niš, Ser. Mat., 6, 141-149 (1992).
- [4] ——: Spined products of some semigroups (in preparation).
- [5] A.H. Clifford: Semigroups admitting relative inverses. Annals of Math., (2) 42, 1037-1049 (1941).
- [6] G. Lallement: Demi-groupes réguliers. Ann. Mat. Pure Appl., (4) 77, 47-129 (1967).
- M. Petrich: Regular semigroups satisfying certain conditions on idempotents and ideals. Trans. Amer. Math. Soc., 170, 245-267 (1972).
- [8] —: The structure of completely regular semigroups. ibid., 189, 211-236 (1974).
- [9] ——: Introduction to Semigroups. Merill, Ohio (1973).
- [10] ——: Lectures in Semigroups. Akad. Verlag, Berlin (1977).
- [11] B.M. Schein: Bands of monoids. Acta Sci. Math. Szeged, 36, 145-154 (1974).

- [12] Š. Schwarz: Right compositions of semigroups. Math. Slovaca, 36 (1), 3-14 (1988).
- [13] M. Yamada and N. Kimura: Note on idempotent semigroups. Ⅱ. Proc. Japan Acad., 34, 110-112 (1958).
- [14] M. Yamada: Some remarks on strong semilattices of certain special semigroups. Math. Japonica, 33 (5), 813-820 (1988).
- [15] R. Yoshida: *l*-compositions of semigroups. I. Mem. Res. Inst. Sci. Eng., Ritumeiken Univ., 14, 1-12 (1965).
- [16] : ditto. II. ibid., 15, 1-5 (1966).