46. Some New Examples of Eigenmaps from S^{m} into S^{n}

By Keisuke Ueno
Mathematical Institute, Tôhoku University
(Communicated by Heisuke Hironaka, M. J. A., June 8, 1993)

1. Introduction. Recently, H. Gauchman and G. Toth introduced a method of constructing new examples of eigenmaps between spheres from known old ones ([1]). As a consequence, they proved the following theorem by applying it to those λ_{2}-eigenmaps obtained in [2]-[4].

Theorem A. For $m \geq 5$, there exist full λ_{2}-eigenmaps

$$
f: S^{m} \rightarrow S^{\frac{m(m+3)}{2}-r},
$$

where $r=1,2,3,4,5,7,11,12,13,16$.
Here a map $f: S^{m} \rightarrow S^{n}$ is said to be λ_{2}-eigenmap if all components of f are spherical harmonics of degree 2 , and is called full if its image is not contained in any totally hypersphere of S^{n}.

Theorem A implies, in particular, that full λ_{2}-eigenmaps $f: S^{5} \rightarrow S^{n}$ exist for $n=4,7,8,9,13,15,16,17,18,19$. However, in their approach the existence of full λ_{2}-eigenmaps $f: S^{5} \rightarrow S^{n}$ is missing for $n=3,5,6,10$, $11,12,14$ (for $n=2$ the non-existence is proved in [1]).

The aim of this note is to show the following theorem which supplements Theorem A.

Theorem B. Let $k \geq 1$. Then the following hold.
(i) There exist full λ_{2}-eigenmaps $f: S^{2 k+1} \rightarrow S^{l}$ for $k^{2}+3 k \leq l \leq 2 k^{2}+4 k$ $+2, l=k^{2}+3 k-2$.
(ii) There exist full λ_{2}-eigenmaps $f: S^{2 k+2} \rightarrow S^{l}$ for $k^{2}+5 k+3 \leq l \leq 2 k^{2}$ $+6 k+5, l=k^{2}+5 k-2+2 s(k-1)(0 \leq s \leq k+1)$ or $l=k^{2}+5 k+1$.

Our method of proof is different from that of H. Gauchman and G. Toth and, in fact, makes an essential use of orthogonal multiplications $\boldsymbol{R}^{2} \times \boldsymbol{R}^{n} \rightarrow$ \boldsymbol{R}^{r} in constructing these maps. As a corollary of Theorem B, we obtain for instance

Corollary. There exist full λ_{2}-eigenmaps $f: S^{5} \rightarrow S^{n}$ for $n=10,11$, 12,14.

This corollary combined with a result in H. Gauchman and G. Toth then implies that Theorem A is true for r such that $1 \leq r \leq 13$ or $r=16$.
2. Existence of orthogonal multiplication for $m=2$. An orthogonal multiplication $F: \boldsymbol{R}^{m} \times \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{r}$ is by definition a bilinear map such that $\|F(x, y)\|=\|x\| \cdot\|y\|$, where $\|\cdot\|$ denotes the Euclidean norm. F is said to be full if the image of F spans \boldsymbol{R}^{r}.

It is well-known that if $F: \boldsymbol{R}^{n} \times \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{r}$ is an orthogonal multiplication, then the Hopf map defined by

$$
f_{F}(x, y):=\left(\|x\|^{2}-\|y\|^{2}, 2 F(x, y)\right), \quad x, y \in \boldsymbol{R}^{n}
$$

gives rise to a λ_{2}-eigenmap from $S^{2 n-1}$ into S^{r}. Note that from its definition the Hopf map is defined only on odd dimensional spheres. However, for even dimensional spheres S^{k} we can construct λ_{2}-eigenmaps $f: S^{k} \rightarrow S^{l}$ by orthogonal multiplications as follows.

Given two λ_{2}-eigenmaps $g: S^{m-1} \rightarrow S^{p-1}, h: S^{n-1} \rightarrow S^{q-1}$ and an orthogonal multiplication $F: \boldsymbol{R}^{m} \times \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{r}$, we define

$$
\begin{equation*}
f(x, y):=(g(x), h(y), \sqrt{2} F(x, y)) \tag{1}
\end{equation*}
$$

where $x \in \boldsymbol{R}^{m}, y \in \boldsymbol{R}^{n}$. Then it follows from $\|g(x)\|=\|x\|^{2},\|h(y)\|=\|y\|^{2}$ and $\|F(x, y)\|=\|x\| \cdot\|y\|$ that

$$
\|f(x, y)\|^{2}=\left(\|x\|^{2}+\|y\|^{2}\right)^{2}
$$

which implies that f gives rise to a λ_{2}-eigenmap $f: S^{m+n-1} \rightarrow S^{p+q+r-1}$. Moreover, if g and h are full λ_{2}-eigenmaps and F is a full orthogonal multiplication, then f defines a full λ_{2}-eigenmap.

In this section, we shall prove the existence of orthogonal multiplications $F: \boldsymbol{R}^{m} \times \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{r}$ when $m=2$.

We assume $m \leq n$. Since $F: \boldsymbol{R}^{m} \times \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{r}$ is a bilinear map, we may write

$$
F(x, y)=\sum a_{i j} x_{i} y_{j}
$$

where $x=\left(x_{1}, \ldots, x_{m}\right) \in \boldsymbol{R}^{m}, y=\left(y_{1}, \ldots, y_{n}\right) \in \boldsymbol{R}^{n}$ and $a_{i j} \in \boldsymbol{R}^{r}$. Since $\|F(x, y)\|=\|x\| \cdot\|y\|$, we have

$$
\left\{\begin{array}{l}
\left\langle a_{i k}, a_{i i}\right\rangle=\delta_{k l} \tag{2}\\
\left\langle a_{i k}, a_{j k}\right\rangle=\delta_{i j} \\
\left\langle a_{i k}, a_{j l}\right\rangle+\left\langle a_{i l}, a_{j k}\right\rangle=0 \quad(i \neq j, k \neq l),
\end{array}\right.
$$

which imply that $\left\{a_{1 k}\right\}_{k=1}^{n}$ is an orthogonal system in \boldsymbol{R}^{r}, and hence $n \leq r$. Moreover, since F is full, we have $n \leq r \leq m n$.

Following the method due to M. Parker [2], who employed it in the case $m=n$, we now define an $m n \times m n$-matrix $G(F)$ by

$$
G(F):=\left[\begin{array}{cccc}
I_{n} & A_{12} & \cdots & A_{1 m} \\
A_{21} & I_{n} & \cdots & A_{2 m} \\
\vdots & \vdots & & \vdots \\
A_{m 1} & A_{m 2} & \cdots & I_{n}
\end{array}\right]
$$

where I_{n} denotes the $n \times n$ identity matrix and $A_{i j}$ the $n \times n$-matrix whose entries are

$$
\left(A_{i j}\right)_{k l}=\left\langle a_{i k}, a_{j l}\right\rangle, \quad 1 \leq k, l \leq n
$$

Owing to (2), $A_{i j}$ is a skew-symmetric matrix and $A_{j i}=-A_{i j}$.
Note that the determinant $\operatorname{det} \mathrm{G}(F)$ of $G(F)$ coincides with the Gram's determinant with respect to the system of vectors $\left\{a_{i j}\right\}$. Hence it holds that $\operatorname{rank} G(F)=r$.

We set $m=2$. Then $G(F)$ is a $2 n \times 2 n$-matrix given by

$$
G(F)=\left[\begin{array}{cc}
I_{n} & -A \\
A & I_{n}
\end{array}\right], \quad A=-A_{12}
$$

Proposition C. A full orthogonal multiplication $F: \boldsymbol{R}^{2} \times \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{r}$ exists if and only if r is even.

Proof. First, we prove that rank $G(F)(=r)$ is even whenever a full orthogonal multiplication exists. Recall that the characteristic polynomial of $G(F)$ is

$$
\operatorname{det}\left(G(F)-\mu I_{2 n}\right)=\operatorname{det}\left[\begin{array}{cc}
(1-\mu) I_{n} & -A \\
A & (1-\mu) I_{n}
\end{array}\right]
$$

Noting the formula

$$
\operatorname{det}\left[\begin{array}{cc}
A & -B \\
B & A
\end{array}\right]=|\operatorname{det}[A+\sqrt{-1} B]|^{2}
$$

where A and B are real matrices and $|\cdot|$ denotes absolute value, we have

$$
\operatorname{det}\left(G(F)-\mu I_{2 n}\right)=\left|\operatorname{det}\left[(1-\mu) I_{n}+\sqrt{-1} A\right]\right|^{2}
$$

Since A is skew-symmetric, $\operatorname{det}\left[(1-\mu) I_{n}+\sqrt{-1} A\right] \in \boldsymbol{R}$, and therefore

$$
\begin{equation*}
\operatorname{det}\left(G(F)-\mu I_{2 n}\right)=\left\{\operatorname{det}\left[(1-\mu) I_{n}+\sqrt{-1} A\right]\right\}^{2} \tag{3}
\end{equation*}
$$

On the other hand, there exists a full orthogonal multiplication $F: \boldsymbol{R}^{2} \times \boldsymbol{R}^{n}$ $\rightarrow \boldsymbol{R}^{2 n}$ exists and is defined by

$$
\begin{equation*}
F(x, y)=\left(x_{1} y_{1}, x_{2} y_{1}, x_{1} y_{2}, x_{2} y_{2}, \ldots, x_{1} y_{n}, x_{2} y_{n}\right), \tag{4}
\end{equation*}
$$

where $x=\left(x_{1}, x_{2}\right) \in \boldsymbol{R}^{2}, y=\left(y_{1}, \ldots, y_{n}\right) \in \boldsymbol{R}^{n}$, which realizes the case $r=2 n$. Hence it follows from (3) that r is even.

Next, note that two vectors ($x_{1} y_{i}, x_{2} y_{i}, x_{1} y_{j}, x_{2} y_{j}$) and ($x_{1} y_{i}+x_{2} y_{j}, x_{1} y_{j}$ $-x_{2} y_{i}$) have the same norm. Then it is easy to see that an orthogonal multiplication $F^{(1)}: \boldsymbol{R}^{2} \times \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{2 n-2}$ is obtained from F in (4) by

$$
F^{(1)}(x, y)=\left(x_{1} y_{1}+x_{2} y_{2}, x_{1} y_{2}-x_{2} y_{1}, x_{1} y_{3}, x_{2} y_{3}, \ldots, x_{1} y_{n}, x_{2} y_{n}\right)
$$

since $\left\|F^{(1)}(x, y)\right\|=\|F(x, y)\|$. Similarly, $F^{(2)}: \boldsymbol{R}^{2} \times \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{2 n-4}$ from $F^{(1)}$ by

$$
F^{(2)}(x, y)=\left(x_{1} y_{1}+x_{2} y_{2}, x_{1} y_{2}-x_{2} y_{1}, x_{1} y_{3}+x_{2} y_{4}, x_{1} y_{4}-x_{2} y_{3}, \ldots, x_{1} y_{n}, x_{2} y_{n}\right)
$$

which is an orthogonal multiplication satisfying $\left\|F^{(2)}(x, y)\right\|=\| F^{(1)}$ $(x, y)\|=\| F(x, y) \|$. Repeating this process, we can inductively define orthogonal multiplications

$$
\tilde{F}: \boldsymbol{R}^{2} \times \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{2(n-s)}
$$

for $0 \leq s \leq\left[\frac{n}{2}\right]$, where $[\alpha]$ denotes the maximal integer such that $[\alpha] \leq \alpha$. Hence the proposition follows.
3. Proof of Theorem B. We first note that it is known by H. Gauchman and G. Toth ([1]) that there exist full λ_{2}-eigenmaps
$h: S^{3} \rightarrow S^{q}$ for $q=2,4,5,6,7,8$, and
$h: S^{4} \rightarrow S^{q}$ for $q=4,7,9,10,11,12,13$.
We are going to prove the odd dimensional case (i). Even dimensional case (ii) can be proved by the same argument.

From Proposition C, there exist full orthogonal multiplications $F: \boldsymbol{R}^{2} \times$ $\boldsymbol{R}^{2 k+2} \rightarrow \boldsymbol{R}^{r}$ for $r=2 k+2+2 s(0 \leq s \leq k+1)$. We assume that full λ_{2}-eigenmaps $h: S^{2 k+1} \rightarrow S^{q}$ exist for all q satisfying $q_{k} \leq q \leq \tilde{q}_{k}\left(q_{k}, \tilde{q}_{k} \in \boldsymbol{N}\right.$ and $q_{k}<\tilde{q}_{k}$). Set

$$
\begin{equation*}
q_{k+1}:=q_{k}+2 k+4, \tilde{q}_{k+1}:=\tilde{q}_{k}+4 k+6 \tag{5}
\end{equation*}
$$

Then we can construct full λ_{2}-eigenmaps

$$
f: S^{2 k+3} \rightarrow S^{l}
$$

for $q_{k+1} \leq l \leq \tilde{q}_{k+1}$ in the following fashion.
Let $g\left(x_{1}, x_{2}\right)=\left(\left|x_{1}\right|^{2}-\left|x_{2}\right|^{2}, 2 x_{1} x_{2}\right)$, and define

$$
f(x, y):=(g(x), h(y), \sqrt{2} F(x, y))
$$

h and F being as above. Then $f: S^{2 k+3} \rightarrow S^{q+r+2}$ gives rise to a full λ_{2}-eigenmap. Since $q_{k} \leq l \leq \tilde{q}_{k}$ and $r=2 k+2+2 s(0 \leq s \leq k+1)$, $q+r+2$ takes any integer satisfying

$$
q_{k}+2 k+4 \leq q+r+2 \leq \tilde{q}_{k}+4 k+6
$$

Now, recall that when $k=1$, the above examples due to H. Gauchman and G. Toth show that full λ_{2}-eigenmap $h: S^{3} \rightarrow S^{q}$ exists for $4 \leq q \leq 8$. Hence we may take $q_{1}=4$ and $\tilde{q}_{1}=8$. Then it follows from (5) that

$$
q_{k}=k^{2}+3 k, \quad \tilde{q}_{k}=2 k^{2}+4 k+2
$$

Hence we obtain full λ_{2}-eigenmaps $f: S^{2 k+1} \rightarrow S^{q}$ for $k^{2}+3 k \leq q \leq 2 k^{2}+$ $4 k+2$.

On the other hand, by making use of $h: S^{3} \rightarrow S^{2}$, we obtain similarly full λ_{2}-eigenmaps

$$
f: S^{5} \rightarrow S^{8+2 s} \quad \text { for } 0 \leq s \leq 2
$$

from which we can also construct inductively full λ_{2}-eigenmaps

$$
f: S^{2 k+1} \rightarrow S^{t_{k}}
$$

where $t_{k}=k^{2}+3 k-2+2 s(k-1)(0 \leq s \leq k)$. Note that since $t_{k} \geq q_{k}$ if $s \geq 1$, these examples are contained in the previous case when $s \geq 1$.

Consequently, we see that full λ_{2}-eigenmaps

$$
f: S^{2 k+1} \rightarrow S^{l}
$$

exist for $l=k^{2}+3 k-2$ or $k^{2}+3 k \leq l \leq 2 k^{2}+4 k+2$.
Remark. By the same argument we can construct more examples of full λ_{2}-eigenmaps. For example, it is known by the result due to M . Parker that full orthogonal multiplications $F: \boldsymbol{R}^{3} \times \boldsymbol{R}^{4} \rightarrow \boldsymbol{R}^{r}$ exist for $r=4,7$, $8,10,11,12$. By making use of this, we can construct full λ_{2}-eigenmaps

$$
f: S^{6} \rightarrow S^{l}
$$

for $l=12,14$ and $15 \leq l \leq 26$.
The author would like to thank Professor S. Nishikawa who suggested him the problem with valuable comments and Professor H. Urakawa for his helpful discussions.

References

[1] H. Gauchman and G. Toth: Constructions of harmonic polynomial maps between spheres (1992) (preprint).
[2] M. Parker: Orthogonal multiplications in small dimensions. Bull. London Math. Soc., 15, 368-372 (1983).
[3] G. Toth: Classification of quadratic harmonic maps of S^{3} into spheres. Indiana Univ. Math. J., 36, 231-239 (1987).
[4] R. Wood: Polynomial maps from spheres to spheres. Invent. Math., 5, 163-168 (1968).

