46. Some New Examples of Eigenmaps from S^m into S^n

By Keisuke UENO

Mathematical Institute, Tôhoku University (Communicated by Heisuke HIRONAKA, M. J. A., June 8, 1993)

1. Introduction. Recently, H. Gauchman and G. Toth introduced a method of constructing new examples of eigenmaps between spheres from known old ones ([1]). As a consequence, they proved the following theorem by applying it to those λ_2 -eigenmaps obtained in [2]-[4].

Theorem A. For $m \geq 5$, there exist full λ_2 -eigenmaps

$$f: S^m \to S^{\frac{m(m+3)}{2}-r},$$

where r = 1, 2, 3, 4, 5, 7, 11, 12, 13, 16.

Here a map $f: S^m \to S^n$ is said to be λ_2 -eigenmap if all components of f are spherical harmonics of degree 2, and is called full if its image is not contained in any totally hypersphere of S^n .

Theorem A implies, in particular, that full λ_2 -eigenmaps $f: S^5 \to S^n$ exist for n = 4,7,8,9,13,15,16,17,18,19. However, in their approach the existence of full λ_2 -eigenmaps $f: S^5 \to S^n$ is missing for n = 3,5,6,10, 11,12,14 (for n = 2 the non-existence is proved in [1]).

The aim of this note is to show the following theorem which supplements Theorem A.

Theorem B. Let $k \geq 1$. Then the following hold.

(i) There exist full λ_2 -eigenmaps $f: S^{2k+1} \rightarrow S^l$ for $k^2 + 3k \le l \le 2k^2 + 4k + 2$, $l = k^2 + 3k - 2$.

(ii) There exist full λ_2 -eigenmaps $f: S^{2k+2} \to S^l$ for $k^2 + 5k + 3 \le l \le 2k^2 + 6k + 5$, $l = k^2 + 5k - 2 + 2s(k - 1)$ ($0 \le s \le k + 1$) or $l = k^2 + 5k + 1$.

Our method of proof is different from that of H. Gauchman and G. Toth and, in fact, makes an essential use of orthogonal multiplications $\mathbf{R}^2 \times \mathbf{R}^n \rightarrow \mathbf{R}^r$ in constructing these maps. As a corollary of Theorem *B*, we obtain for instance

Corollary. There exist full λ_2 -eigenmaps $f: S^5 \to S^n$ for n = 10,11, 12,14.

This corollary combined with a result in H. Gauchman and G. Toth then implies that Theorem A is true for r such that $1 \le r \le 13$ or r = 16.

2. Existence of orthogonal multiplication for m = 2. An orthogonal multiplication $F : \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^r$ is by definition a bilinear map such that $||F(x, y)|| = ||x|| \cdot ||y||$, where $||\cdot||$ denotes the Euclidean norm. F is said to be full if the image of F spans \mathbb{R}^r .

It is well-known that if $F: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^r$ is an orthogonal multiplication, then the Hopf map defined by

 $f_F(x, y) := (||x||^2 - ||y||^2, 2F(x, y)), x, y \in \mathbf{R}^n$

gives rise to a λ_2 -eigenmap from S^{2n-1} into S^r . Note that from its definition the Hopf map is defined only on odd dimensional spheres. However, for even dimensional spheres S^k we can construct λ_2 -eigenmaps $f: S^k \to S'$ by orthogonal multiplications as follows.

Given two λ_2 -eigenmaps $g: S^{m-1} \to S^{p-1}$, $h: S^{n-1} \to S^{q-1}$ and an orthogonal multiplication $F: \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^r$, we define

 $f(x, y) := (g(x), h(y), \sqrt{2}F(x, y)),$ where $x \in \mathbb{R}^m$, $y \in \mathbb{R}^n$. Then it follows from $||g(x)|| = ||x||^2$, $||h(y)|| = ||y||^2$ and $||F(x, y)|| = ||x|| \cdot ||y||$ that

 $||f(x, y)||^2 = (||x||^2 + ||y||^2)^2,$

which implies that f gives rise to a λ_2 -eigenmap $f: S^{m+n-1} \to S^{p+q+r-1}$. Moreover, if g and h are full λ_2 -eigenmaps and F is a full orthogonal multiplication, then f defines a full λ_2 -eigenmap.

In this section, we shall prove the existence of orthogonal multiplications $F: \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^r$ when m = 2.

We assume $m \leq n$. Since $F : \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^r$ is a bilinear map, we may write

$$F(x, y) = \sum a_{ij} x_i y_j$$

where $x = (x_1, \ldots, x_m) \in \mathbb{R}^m$, $y = (y_1, \ldots, y_n) \in \mathbb{R}^n$ and $a_{ij} \in \mathbb{R}^r$. Since $||F(x, y)|| = ||x|| \cdot ||y||$, we have

(2)
$$\begin{cases} \langle a_{ik}, a_{il} \rangle = \delta_{kl} \\ \langle a_{ik}, a_{jk} \rangle = \delta_{ij} \\ \langle a_{ik}, a_{jl} \rangle + \langle a_{il}, a_{jk} \rangle = 0 \quad (i \neq j, k \neq l), \end{cases}$$

which imply that $\{a_{1k}\}_{k=1}^{n}$ is an orthogonal system in \mathbf{R}^{r} , and hence $n \leq r$. Moreover, since F is full, we have $n \leq r \leq mn$.

Following the method due to M. Parker [2], who employed it in the case m = n, we now define an $mn \times mn$ -matrix G(F) by

$$G(F) := \begin{bmatrix} I_n & A_{12} & \cdots & A_{1m} \\ A_{21} & I_n & \cdots & A_{2m} \\ \vdots & \vdots & & \vdots \\ A_{m1} & A_{m2} & \cdots & I_n \end{bmatrix},$$

where I_n denotes the $n \times n$ identity matrix and A_{ij} the $n \times n$ -matrix whose entries are

 $(A_{ij})_{kl} = \langle a_{ik}, a_{jl} \rangle, \quad 1 \le k, \ l \le n.$

Owing to (2), A_{ii} is a skew-symmetric matrix and $A_{ii} = -A_{ii}$.

Note that the determinant det G(F) of G(F) coincides with the Gram's determinant with respect to the system of vectors $\{a_{ii}\}$. Hence it holds that rank G(F) = r.

We set m = 2. Then G(F) is a $2n \times 2n$ -matrix given by

$$G(F) = \begin{bmatrix} I_n & -A \\ A & I_n \end{bmatrix}, \quad A = -A_{12}.$$

Proposition C. A full orthogonal multiplication $F: \mathbb{R}^2 \times \mathbb{R}^n \to \mathbb{R}^r$ exists if and only if r is even.

207

Proof. First, we prove that rank G(F) (= r) is even whenever a full orthogonal multiplication exists. Recall that the characteristic polynomial of G(F) is

$$\det(G(F) - \mu I_{2n}) = \det \begin{bmatrix} (1-\mu)I_n & -A \\ A & (1-\mu)I_n \end{bmatrix}.$$

Noting the formula

$$\det \begin{bmatrix} A & -B \\ B & A \end{bmatrix} = |\det [A + \sqrt{-1}B]|^2,$$

where A and B are real matrices and $|\cdot|$ denotes absolute value, we have $\det(G(F) - \mu I_{2n}) = |\det[(1 - \mu)I_n + \sqrt{-1}A]|^2.$

Since A is skew-symmetric, det $[(1 - \mu)I_n + \sqrt{-1}A] \in \mathbf{R}$, and therefore $\det(G(F) - \mu I_{2n}) = \{\det [(1 - \mu)I_n + \sqrt{-1}A] \}^2.$ (3)On the other hand, there exists a full orthogonal multiplication $F: \mathbf{R}^2 \times \mathbf{R}^n$ $\rightarrow \mathbf{R}^{2n}$ exists and is defined by

 $F(x, y) = (x_1y_1, x_2y_1, x_1y_2, x_2y_2, \ldots, x_1y_n, x_2y_n),$ (4)where $x = (x_1, x_2) \in \mathbb{R}^2$, $y = (y_1, \ldots, y_n) \in \mathbb{R}^n$, which realizes the case r = 2n. Hence it follows from (3) that r is even.

Next, note that two vectors $(x_1y_i, x_2y_i, x_1y_j, x_2y_j)$ and $(x_1y_i + x_2y_j, x_1y_j)$ $(-x_2y_i)$ have the same norm. Then it is easy to see that an orthogonal multiplication $F^{(1)}: \mathbb{R}^2 \times \mathbb{R}^n \to \mathbb{R}^{2n-2}$ is obtained from F in (4) by

 $F^{(1)}(x, y) = (x_1y_1 + x_2y_2, x_1y_2 - x_2y_1, x_1y_3, x_2y_3, \ldots, x_1y_n, x_2y_n),$ since $||F^{(1)}(x, y)|| = ||F(x, y)||$. Similarly, $F^{(2)}: \mathbb{R}^2 \times \mathbb{R}^n \to \mathbb{R}^{2n-4}$ from $F^{(1)}$ by

 $F^{(2)}(x, y) = (x_1y_1 + x_2y_2, x_1y_2 - x_2y_1, x_1y_3 + x_2y_4, x_1y_4 - x_2y_3, \dots, x_1y_n, x_2y_n),$ which is an orthogonal multiplication satisfying $||F^{(2)}(x, y)|| = ||F^{(1)}(x, y)||$ $(x, y) \parallel = \parallel F(x, y) \parallel$. Repeating this process, we can inductively define orthogonal multiplications ·s)

$$\tilde{F}: \boldsymbol{R}^2 \times \boldsymbol{R}^n \to \boldsymbol{R}^{2(n-1)}$$

for $0 \le s \le \left\lfloor \frac{n}{2} \right\rfloor$, where $[\alpha]$ denotes the maximal integer such that $[\alpha] \le \alpha$. Hence the proposition follows.

3. Proof of Theorem B. We first note that it is known by H. Gauchman and G. Toth ([1]) that there exist full λ_2 -eigenmaps

 $h: S^3 \to S^q$ for q = 2,4,5,6,7,8, and $h: S^4 \to S^q$ for q = 4,7,9,10,11,12,13.

We are going to prove the odd dimensional case (i). Even dimensional case (ii) can be proved by the same argument.

From Proposition C, there exist full orthogonal multiplications $F: oldsymbol{R}^2 imes$ $\mathbf{R}^{2k+2} \rightarrow \mathbf{R}^r$ for r = 2k + 2 + 2s ($0 \le s \le k + 1$). We assume that full λ_2 -eigenmaps $h: S^{2k+1} \to S^q$ exist for all q satisfying $q_k \leq q \leq \tilde{q}_k$ $(q_k, \tilde{q}_k \in N)$ and $q_{\mu} < \tilde{q}_{\mu}$). Set

 $q_{k+1} := q_k + 2k + 4, \ \tilde{q}_{k+1} := \tilde{q}_k + 4k + 6.$ (5)Then we can construct full λ_2 -eigenmaps

$$f:S^{2k+3}\to S^{l}$$

[Vol. 69(A),

for $q_{k+1} \leq l \leq \tilde{q}_{k+1}$ in the following fashion.

Let $g(x_1, x_2) = (|x_1|^2 - |x_2|^2, 2x_1x_2)$, and define $f(x, y) := (g(x), h(y), \sqrt{2}F(x, y)),$

h and *F* being as above. Then $f: S^{2k+3} \to S^{q+r+2}$ gives rise to a full λ_2 -eigenmap. Since $q_k \leq l \leq \tilde{q}_k$ and r = 2k + 2 + 2s ($0 \leq s \leq k + 1$), q + r + 2 takes any integer satisfying

 $q_k + 2k + 4 \le q + r + 2 \le \tilde{q}_k + 4k + 6.$

Now, recall that when k = 1, the above examples due to H. Gauchman and G. Toth show that full λ_2 -eigenmap $h: S^3 \to S^q$ exists for $4 \le q \le 8$. Hence we may take $q_1 = 4$ and $\tilde{q}_1 = 8$. Then it follows from (5) that

$$q_k = k^2 + 3k, \quad \tilde{q}_k = 2k^2 + 4k + 2.$$

Hence we obtain full λ_2 -eigenmaps $f: S^{2k+1} \to S^q$ for $k^2 + 3k \le q \le 2k^2 + 4k + 2$.

On the other hand, by making use of $h: S^3 \rightarrow S^2$, we obtain similarly full λ_2 -eigenmaps

$$f: S^5 \rightarrow S^{8+2s}$$
 for $0 \le s \le 2$,

from which we can also construct inductively full λ_2 -eigenmaps

$$f:S^{2k+1}\to S^{t_k},$$

where $t_k = k^2 + 3k - 2 + 2s(k - 1)$ ($0 \le s \le k$). Note that since $t_k \ge q_k$ if $s \ge 1$, these examples are contained in the previous case when $s \ge 1$.

Consequently, we see that full λ_2 -eigenmaps

$$f: S^{2k+1} \to S^k$$

exist for $l = k^2 + 3k - 2$ or $k^2 + 3k \le l \le 2k^2 + 4k + 2$.

Remark. By the same argument we can construct more examples of full λ_2 -eigenmaps. For example, it is known by the result due to M. Parker that full orthogonal multiplications $F: \mathbb{R}^3 \times \mathbb{R}^4 \to \mathbb{R}^r$ exist for r = 4,7, 8,10,11,12. By making use of this, we can construct full λ_2 -eigenmaps

$$f:S^6\to S^l$$

for l = 12,14 and $15 \le l \le 26$.

The author would like to thank Professor S. Nishikawa who suggested him the problem with valuable comments and Professor H. Urakawa for his helpful discussions.

References

- H. Gauchman and G. Toth: Constructions of harmonic polynomial maps between spheres (1992) (preprint).
- M. Parker: Orthogonal multiplications in small dimensions. Bull. London Math. Soc., 15, 368-372 (1983).
- [3] G. Toth: Classification of quadratic harmonic maps of S^3 into spheres. Indiana Univ. Math. J., **36**, 231–239 (1987).
- [4] R. Wood: Polynomial maps from spheres to spheres. Invent. Math., 5, 163-168 (1968).

208