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On Integrated Semigroups which are
not Exponentially Bounded

By Isao MIYADERA, *) Masashi OKUBO,* .1 and Naoki TANAKA

(Communicated by Kiyosi IT6, M. J. A., June 8, 1993)

1. Introduction. Recently, as a generalization of the notion of exponen-
tially bounded n-times integrated semigroups, Hieber [4] introduced that of
exponentially bounded a-times integrated semigroups for positive numbers cr
and obtained interesting results by using Laplace transform techniques. But
there exist integrated semigroups which are not exponentially bounded (and
do not have the Laplace transforms) (see [5]). It is interesting to study the
theory of a-times integrated semigroups which are not necessarily exponen-
tially bounded. In this direction, some results in the special case where cr is
a nonnegative integer are found in Tanaka and Okazawa [6] and Thierne [7].

In this paper we deal with a-times integrated semigroups which are not
necessarily exponentially bounded on a Banach space X for cr _> 0. It should
be noted that Laplace transform techniques are not available in our case. In
2 we investigate the basic properties of an a-times integrated semigroup
and its generator. In 3 we give a characterization of the generator of an
a-times integrated semigroup in terms of the associated abstract Cauchy
problem. Applying this characterization we prove in 4 the following: (I)
(Perturbation Theorem) If A generates an n-times integrated semigroup and
if B B(X) and R(B) (the range of B) D(An) then A + B generates an
n-times integrated semigroup. (II) (Adjoint Theorem) If A is the densely de-
fined generator of an c-times integrated semigroup then the adjoint A* of A
generates a -tirnes integrated semigroup on the adjoint X* of X for every
> a. These extend [2, Corollary 3.5] and [4, Corollary 3.7]. The proofs of

main results are sketched here, and the details will be published elsewhere.
2. c-times integrated semigroups. Let X be a Banach space with norm

[[" I[. We denote by B(X) the set of all bounded linear operators from X into
itself. Generalizing [1, Definition 3.2] we introduce

Definition 2.1. Let a be a positive number. A family {U(t):t >_ 0} in
B(X) is called an or-times integrated semigroup on X, if

(al) U(’)x [0, oo) X is continuous for every x X,
1 (f+s (t + s r) -x U(r)xdr(a) U(t) U(s)x V(cr)

foo (t + s r)- U(r)xd

for x X and t, s -> O, where/’(’) denotes the gamma function,
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(a3) U(t)x= 0 for all t> 0impliesx= 0.
For convenience we call a semigroup of class (Co) on X also O-times in-

tegrated semigroup on X.
Definition 2.2. Let {U(t):t _> 0} be an c-times integrated semigroup

on X, where c _> 0. The generator A of { U(t) t 0} is defined as follows:
tx - 17(.4) and Ax = y if and only if U(t)x-- U(r)ydr + F(o + 1) x

for t _> 0.
Remark 2.1. When c 0, our definition of the generator coincides

with that of the infinitesimal generator of a semigroup of class (Co).
Proposition 2.1. Let A be the generator of an o-times integrated semigroup

{ U(t) t 0} on X, where x O. Then A is a closed linear operator in X, and
we have:
(2.!) U(t)x D(A) and A U(t)x U(t)Ax for x D(A) and t >_ O,

(2.2) U(r)xdr D(A) and A U(r)xdr U(t)x- F(c + 1) x for

xXandtO.
Proposition 2.2. Let {V(t) t >-0} be a family in B,(X) such that

V(’)x [0, oo) X is continuous for every x X, and let B be a closed linear
operator in X. Let c >_ O. If { V(t) t ,>_ 0} satisfies two conditions

foo fo tV(s)xds D(B) d V(t)x B V(s)xds + F(c + ) x for
xXdt>_O,

ta(ii) V(t)x V(s)Bxds + F(c + 1) x for x D(B) and t O,

then there exists an co > 0 such that (co, oo) c p(B) (the resolvent set orB).
Sketch of proof. Let v > 0 be fixed. For , > 0 we define R,(A)

B( by Rr()x e-V(t)xdt for x X. Using the identity

R()x e- V(s)xds + + e- V(s)xds dt

we deduce from the condition (i) that Rr()x D(B) and

BR(2)x= Xe- V(r)x- F( + I) z +

e-t V(Ox F( + 1) x dt

for x X and A > 0. Hence
(2.3) (AI--B)R(A)x= (I-- Q(A))x forxXand > 0,

where (2)x 2e- V(r)x-- F( + 1) x + F( + 1) e-tdt’x

for x X and 2 > 0. Combining (i) and (ii) yields B V(s)xds

V(s)Bxds for x D(B) and t 0. Using this fact and the closedness of

B we see that R()Bx BR()x for x D(B), and then



No. 6] On Integrated Semigroups which are not Exponentially Bounded 201

(2.4) R:(,) (21-- B)x (I- Q:(,))x for x D(B) and > 0.
Since [IQr(/)II---*0 as ---,oo, we can choose an o > 0 such that
IlVr()ll < 1 for > w. Hence (I-- Vr())- B(X) if > w. This fact
together with the relations (2.3) and (2.4) shows (w, oo) p(B).

As a direct consequence of Propositions 2.1 and 2.2 we have
Corollary 2.3. Let c >_ O. If A is the generator of an o-times integrated

semigroup on X, then there exists an oo > 0 such that (o, oo) p(A).
Proposition 2.4. Let c >_ O. (1) Let A be the generator of an c-times inte-

grated semigroup {U(t): t _> 0} on X. If u C([0, T];X) satisfies u(t)

.4 (s) ds for 0 <- t <- T, then (t) 0 for 0 <-- t <-- T. (2) Every

o,times integrated semigroup is uniquely determined by its generator.
Definition 2.3. If an c-times integrated semigroup {U(t) :t -> 0} on X,

where c _> 0, satisfies the exponential growth condition
(a,) there exist positive numbers M and a such that U(t)]1 Meat for t _> 0,
then it is called an exponentially bounded a-times integrated semigroup on X.

Proposition 2.5. Let { U(t) t 0} be an o-times integrated semigroup on
X satisfying the condition (a,), and let A be the generator of {U(t):t 0}.

Then (a oo) p (A) and R( A)x , -e U(t)xdt for x X and

>a.
Sketch of proof. Since A is closed we deduce grom (2.2) that

taA (a+l f0 e-t (fot U(s)xds)dt)- a+l f0 e-t(U(t)x- I’(c + 1)x)dt;
hence (I--A) e- U(Dxd =x for xX and > a. Combining

a -2t
this and (2 1) we have e U(t)(I--A)xdt x for x D(A) and

>a.
Remark 2.2. Proposition 2.5 shows that i an c-times integrated semi-

group is exponentially bounded then our definition og the generator coincides
with that due to Hieber [4].

3. Abstract Cauchy problems. Let A be a closed linear operator in X
and x X. We consider the following abstract Cauchy problem (for A):
(ACP;x) u’(t) Au(t) for t_> 0, and u(0) x.
By a classical solution u to (ACP ;x) we mean that u C([0, oo) ;X) and
u(t) satisfies the above equation (ACP ;x). Since A is closed, u is a classical
solution to (ACP ;x)if and only if u C([0, oo);X)and u(t)satisfies
the following integral equation

(ACP X)o u(t) A u(s)ds + x for t _> O.

Now, let c _> 0 and consider the following integral equation which is the
c-times integral version of (ACP X)o:

(ACP ;x) (0 .,4_ (s)ds + F(o + 1) x for t 20.
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Definition 3.1. If u C([0, ) ;X) and u(t) satisfies (ACP ;:r)a then
u is called a sotuton to (ACP :r)a.

The following theorem extends and improves [7, Theorem 6.2].
Theorem 3.1. Let c >-- O. An operator A s the generator of an -tmes -tegrate semgroup on X f ang only fA s a closeg Hnear operator n X an the

(ACP ;w)a has a unique solution for every X.
Sketch of proof If A is the generator of an -times integrated semigroup

{U(t) :t 0} on X, then it follows from Propositions 2.1 and 2.4 (1) that A
is a closed linear operator in X and U(’) is a unique solution to
(ACP w)a for every w X. To prove the converse, let u(" ;) be the uni-

que solution o (ACP;w). For t 0 we define U(t) :XX by U(t)w
u(t ;w)for w X. Clearly, each U(t)is a linear operaor in X. To show
U(t) B( we consider an F-space (in the sense of [3]) C([0, );

with the quasi-norm = v ll/2(1 + v [l) for v C([0, );,
where v max (ll v(t)  1:o t k} for k = 1,2,3, and a linear

operator T :X C([0, ) ; defined by Tx U(’)x for x X. We
then see that T is closed. By the closed graph theorem (see [3, Theorem
2.2.4]), T is continuous from X into C([0, );. This shows that each
U(t) :X X is continuous, that is, U(t) B(. If a 0 then we see that
{U(t):t 0} is a semigroup of class (C0). Next, we consider the case
where > 0. It is clear that {U(t) :t 0} satisfies (a) and (a3) in Defini-
tion 2.1. To show (ae), let s 0 and x X be arbitrarily fixed and set

1 (+s r)v(t) F(a) (t + s- r) -1 U(r)xdr- (t + s- r)-lU(r)xd

v U(s)x forfor t 0. Then we see that A v(t)dt-v(z)- F(a+ 1)
z 0, which means that v is a solution to (ACP; U(s)) and hence (by the
uniqueness of solutions) v(t) u(t; U(s)w) U(t)U(s)w for t 0. Thus

(a2) is satisfied. To show that A is the generator of the -times integrated
semigroup {U(t) :t 0}, let B be the generator of {U(D :t 0}. Let

tzD(A) and set w(O (s;Az)ds+ F(+ 1) z for t20. Since

(s ;Az) Aw(s) for s 2 O, we see that w is a solution to (ACP x). The
uniqueness of solutions shows w(O (t ;z), namely

(.1) U(t)x= U(s)Axds+ F(+ 1) x forx D(A) and t20.

tBy (3.1) and U(t)z A U(r)zdr + F(a + 1) z for z X and t 0, we

deduce from Proposition 2.2 that (, ) c p(A) for some > 0. Combin-
ing this fact and Corollary 2.3, we obtain p(A) R(B) . From this fact
and the relation that A c B (by (3.1)) it follows that A B.

In the special case where is a nonnegative integer we may prove
Theorem 3.2. Let be a nonnegatve nteger. Then the equivalent congi-

tions Theorem 3.1 are equivalent to the statement that A is a closeg linear

operator in X wth no,empty resolvent set ang the (ACP w) has a unique clas-
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sical solution for every x D(A+).
4. Applications. This section is devoted to applications of Theorem

3.1. We start with the following perturbation theorem.
Theorem 4.1. Let A be the generator of an n-times integrated "semigroup

(U(t) t >_ 0} on X, where n is a nonnegative integer. If B B(X) and
R(B) D(A*), then A + B is the generator of an n-times integrated semi-

group on X. In the special case where { U(t) t >- 0} satisfies the condition (a4),
the n-times integrated semigroup (V(t) t >- 0} generated by A + B satisfies
the estimate that V(t) -< Me(a+K)t

for t >_ O, where K= M I[AnB +
maxo<<,_ (1[ AB II/a*).

Sketch of proof. We shall consider the case where n _> 1. Let x X and
T (0, oo) be arbitrarily fixed. We consider the Banach space
C([0, T] ;X) with supremum norm and define an operator W C([0, T]
X)--) C([0, T] ;X) by

(Wf)(t) g(t)x + (d’/dt") g(t- s)Bf(s)ds

U(t)x + U(t- s)A"Bf(s)ds + ,- (t- s)
--o k! ABf(s) ds

for f C([0, T] ;X). Here we note that W is well-defined since AB
B(X) for every k with 0 -< k -< n, by the closed graph theorem. Then, the
fixed point theorem asserts that W has a unique fixed point. Therefore it is

seen that for every x X and T > 0 there exists a unique element Vx, r

C([0, T] ;X) such that Vx, r(t) U(t)x + (dn/dt) U(t- s)Bvx,r(s)ds

for 0 <- t <_ T. Now, for each x X we define Vx: [0, oo) --. X by Vx(t)
Vx, r(t) if 0 <-t<_ T. Then Vx is a unique element in C([0, oo);X)
satisfying

Vx(t) U(t)x + (d /dt) U(t s)Bvx(s)ds

for t _> 0. We see that for every x X, vx is the unique solution to (ACP
x) n for the operator A + B. Clearly, A + B is a closed linear operator in X.
By virtue of Theorem 3.1, A + B is the generator of an n-times integrated

semigroup {V(t) t >- 0} defined by V(t)x Vx(t) for x X and t >- 0.
Finally, suppose that {U(t) :t >- 0} satisfies the condition (a). We find

a(t-s)
the estimate that V<Ox II-< Me’ x + K e V<s)x ds, namely

-at -as
e V(t)x -< M x / K e V(s)x ds

).for x X and t > 0, where K M IIA"B / maxo,.-x(ll A*B II/a The
-at MeKtGronwall inequality shows e V(t)x x for x X and t _> 0.

As an another application we give the following adjoint theorem.
Theorem 4.2. Let A be the densely defined generator of an o-times inte-

grated semigroup (U(t) t >- 0} on X, where o >_ O. Then we have:
(i) The adjoint A* of A is the generator of an (o q- 7")-times integrated semi-
group on the adjoint X* of X for every 7" > 0. (ii) { U(t)* I-za-" t >- O) is an
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c-times integrated semigroup on D(A*) whose generator is the part of A* in
D(A*), where U(t)*I denotes the restriction of U(t)* to D(A*).

Sketch of proof for (i). Let 7" > 0 and define V(t) B(X) for t _> 0 by
(t s)-

xV(t)x F()’) U(s)xds for x X. It is seen that V(’)*

C([0, oo) ;X*) for every x* X*. By Theorem 3.1 we see that A is the
generator of the ( + r)-times integrated semigroup {V(t)’t 0} on X;

t+r
hence V(r)Axdr V(t)x- F( + r + 1) x for z D(A) and t 20.

Using this we have

Ax V(r) * *d V(r)Axdr, x*

x V(O* * *x F(a + r+ 1)
for x D(A), x* X* and t 2 0. From the definition of the adjoint we

deduce that V(r)* * *) A* *x * *x dr D(A and V(r) *dr V(t) x
ta+r ,

F(+ + 1)x for x X* and t2 0. This means that for every

*, * * *) for the operator A*. Tox X V(’) x is a solution to (ACP;x +r
*)show the uniqueness of solutions, let u (’) be a solution to (ACP ;x

and set w*(t)= V(t) *x* u* (t) for t 2 0. Then we see that w*(’)

A* w*C([0, ) ;X*) and w (t) (r)dr for t 2 0. Combining this with
(t s)+-(d/ds) V(t- s)x- AV(t-- s)x-- F( + r) x for x D(A) and

0 N s N t, we find
s

( gs(d/ds)(V(t- s)x, w (r)dr) x,
(t- s) w*F(a + r) (r)d

for x D(A) and 0 N s N t. ,Integrating this over [0, t] and noting V(0) 0,

we see that x, F(a + r) (r)d ds 0 for x D(A) and

t20. Since D(A)is dense in X we have F(+ r)
ds 0" hence W*(t) 0 for t 2 0. By Theorem 3.1, {V(t)*" t 2 0} is an
(a + ’r)-times integrated semigroup on X* whose generator is A*.
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