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36. A Note on the Rational Approximations to tanh—llc—

By Takeshi OKANO

Department of Mathematics, Saitama Institute of Technology
(Communicated by Shokichi IYANAGA, M. J. A., June 8, 1993)

§ 1. Introduction. I. Shiokawa [4] proved the following theorem.
Theorem A. Let k be a positive integer. Then there is a positive constant
C depending only on k such that

tanh% - % >C l_ozgggg_g
g logq
for all integers p and q with ¢ = 3.

The purpose of this note is to prove the following theorem which shows
that constant C in Theorem A is an effectively computable number depend-
ing only on k = 2.

Theorem. Let k and N be positive integers with k = 2 and N = 10, and

let p, /q, be the n-th convergent of tanh % Let 7y and 0, be defined by

3 k+1 log log k(N + 1)/¢)
TN_2<k+N—1/2><1+ log(N + 1) )

and
(k@2n + 1) + 2) loglog g,
log g,
respectively. Let v be any constant such that
7 = max{ry, ),

0y =

B

where
7e =max{0,|1 < n < N}.
Then
tan L — 2| > 1oglog g
74" log g
for all integers p and q with q = 2.
We now record two corollaries of the theorem.
Corollary 1. For all integers p and q with ¢ = 2,

logl
anh L~ 2 logloga,
q 69" log q
Corollary 2. For all integers p and q with ¢ = 2,
logl
an L 2] > loglog
q 9q log q
§ 2. Lemma. Lemma. Under the same assumptions as in Theorem,
1
tann L — 2| 5 logloga.
7' rvg'logg
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for all integers p and q with ¢ = qy.

Proof. 1f p/q is not a convergent of tanh % then

1_»plo 1
tanhk q >2q2'

Therefore, the lemma is proved in this case. We must consider the case that

p/q is a convergent of tanh % The continued fraction of tanh % is

tanh - = [ay, @y, a, a5,-+*1 = [0, &, 3k, 5k, --].
In other words, @, = 0 and a, = k(2n — 1) for » = 1. Since ¢,,; = @414,
+¢,.,=k@n+ g, + q,_, < (k2n + 1) + 1)q,, we have
1 J2) 1 : 1
tanh - — &% > .
4@t 8 T k@n+1) + 2)¢

>

kg,

Now we must estimate g, Suppose that #» = N. Since ¢, = k2n — 1)gq,_,
> - 2 K'II_, (2v — 1), we have

log g, =2 nlogk + 2 log2v — 1)
v=1

> nlogk+f log(2z — 1)dx
1

=nlogk+ n—1/2)log@n —1) —n+1
> (n—1/2)log(2n —1)/e"?).
Conversely, g, < 2kng,_,. Hence,
g, < k) "n!.
Therefore,

log g, < nlog (2k) + 2 logv
v=1

n+1

< nlog (2k) + f log xdx
1

=nlog (2k) + (n + Dlogn +1) — n
< (m+ Dlog(Rk(n + 1)/e),
log log g, < log(n + 1) + loglog(2k(n + 1)/e).
As we can see that

I(p) = log loli(gZ(I;(:r‘_-li)l)/e) (z > 10)

is a strictly decreasing function, we have
loglog g, < (1 + I(\N)) log(n + 1) < (1 + I(N)) log((2n — 1)/¢).
From these consequences, we find
loglogg, . 1+ IN)
logg, ~— n—1/2

k+1 loglogQk(N +1)/e) . 1
S2("+N—1/2><1+ log(N + 1) ) ATESES.

= Iy
k2n+1) +2°
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Therefore,

tanh 1_ 2, > loglogg,

k@™ ygilogq,
This completes the proof.

§ 3. Proof of the theorem. It suffices only to consider that p/q is an

n-th convergent of tanh—};. From the definition of 7,:';, we have following

inequalities
tanh L — 22| > L _— loglogg, , loglogs, ; ., <)
Wl (k@n+1) +2)q, 0,4,l08q, 7x4,logg,

And from Lemma, we have

|tanh%—§” >£gzl—0g—q”—(n2N).
i TNqn lOg Qn
This completes the proof of the theorem.

§ 4. Proof of corollaries. Proof of Corollary 1. For N = 22, we have
722 — 5.9972- :: and r;; = 0, = 5.3972 - . Hence we can choose 7 so that
7 = 6. Then Corollary 1 follows at once from the theorem.

Proof of Corollary 2. For N = 27, we have 7,, = 8.9813- - - and r;; =
0g = 7.1487- - -. Hence we can choose 7 so that ¥ = 9. Then Corollary 2 fol-
lows at once from the theorem.
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