# 30. A Determinant Formula for Period Integrals 

By Takeshi Saito *) and Tomohide Terasoma **)<br>(Communicated by Shokichi IYANAGA, M. J. A., May 12, 1993)

We prove a formula for the determinant of the period integrals. It is expressed as the product of the pairing with the relative canonical cycle and special values of $\Gamma$-function. It generalizes a previous result for $\boldsymbol{P}^{1}$ [3]. It can be regarded as a Hodge analogue of the formula for $l$-adic cohomology [2]. By combining with this, it proves a part of a conjecture of Deligne: A motive of rank 1 over a number field is defined by an algebraic Hecke character ([1] Conjecture 8.1 (iii)), in a certain special case.

1. Definition of the period. Let $k, F$ be subfields of the complex number field $\boldsymbol{C}$ and $U$ be a smooth separated scheme over $k$ of dimension $n$. We consider the category $M_{k}(U, F)$ consisting of triples $\mathcal{M}=((\mathscr{E}, \nabla), V, \rho)$ as follows
(1) A locally free $\mathscr{O}_{U}$-module $\mathscr{E}$ of finite rank with an integrable connection $\nabla: \mathscr{E} \rightarrow \mathscr{E} \otimes \Omega_{U}^{1}$ which is regular singular along the boundary.
(2) A local system $V$ of $F$-vector spaces on the complex manifold $U^{a n}$.
(3) An isomorphism $\rho: V \otimes_{F} \boldsymbol{C} \xrightarrow{\rightrightarrows} \operatorname{Ker} \nabla^{a n}$ of local systems of $\boldsymbol{C}$-vector spaces on $U^{a n}$.
We explain the terminology. Let $X$ be a proper smooth scheme over $k$ containing $U$ as a dense open subscheme such that the complement $D=X-U$ is a divisor with simple normal crossings. A divisor is said to have simple normal crossings if its irreducible components $D_{i}$ are smooth and their $m \times$ $m$ intersections are transversal. An integrable connection $\nabla: \mathscr{E} \rightarrow \mathscr{E} \otimes \Omega_{U}^{1}$ is said to be regular singular along the boundary if there exists a locally free $\mathscr{O}_{X}$-module $\mathscr{E}_{X}$ and a logarithmic integrable connection $\nabla_{X}: \mathscr{E}_{X} \rightarrow \mathscr{E}_{X} \otimes$ $\Omega_{X}^{1}(\log D)$ extending $(\mathscr{E}, \nabla)$. It is independent of the choice of compactification $X$. The complex manifold of the $\boldsymbol{C}$-valued points of $U$ is denoted by $U^{a n}$ and the algebraic connection $\nabla$ induces an analytic connection $\nabla^{a n}$ on $U^{a n}$

We define the determinant of the period

$$
\operatorname{per}(\mathcal{M}) \in k^{\times} \backslash C^{\times} / F^{\times}
$$

for an object $\mathcal{M} \in M_{k}(U, F)$. Let $M P i c_{k}(U, F)$ be the group of isomorphism class of the objects of $M_{k}(U, F)$ of rank 1 with respect to the tensor product. For $U=\operatorname{Spec} k$, we identify $M P i c_{k}$ (Spec $k, F$ ) with $k^{\times} \backslash C^{\times} / F^{\times}$ by $[\mathcal{M}] \rightarrow \rho(v) / e$ for $\mathcal{M} \in M_{k}(\operatorname{Spec} k, F)$ of rank 1 with basis $e \in \mathscr{E}$ and $v \in V$. For $\mathcal{M} \in M_{k}(U, L)$, we define $\operatorname{per}(\mathcal{M}) \in k^{\times} \backslash C^{\times} / F^{\times}$as [det $R \Gamma(U, \mathcal{M})] \in M P i c_{k}(\operatorname{Spec} k, F)$ defined below. Let $D R(\mathscr{E})$ be the de Rham complex

$$
\left[\mathscr{E} \xrightarrow{\nabla} \mathscr{E} \otimes \Omega_{U}^{1} \xrightarrow{\nabla} \mathscr{E} \otimes \Omega_{U}^{2} \xrightarrow{\nabla} \cdots \xrightarrow{\nabla} \mathscr{E} \otimes \Omega_{U}^{n}\right] .
$$

[^0]Since $H^{q}(U, D R(\mathscr{E})) \otimes_{k} C \simeq H^{q}\left(U^{a n}, D R(\mathscr{E})^{a n}\right)$ by GAGA, the isomorphism $\rho$ induces $H^{q}(\rho): H^{q}(U, D R(\mathscr{E})) \otimes_{k} \boldsymbol{C} \simeq H^{q}\left(U^{a n}, V\right) \otimes_{F} \boldsymbol{C}$. In other words, the triple

$$
H^{q}(U, \mathcal{M})=\left(H^{q}(U, D R(\mathscr{E})), H^{q}\left(U^{a n}, V\right) H^{q}(\rho)\right)
$$

is an object of $M_{k}(\operatorname{Spec} k, F)$. Taking the alternating tensor product of the determinant, we obtain

$$
\begin{aligned}
\operatorname{det} R \Gamma(U, \mathcal{M})= & \left(\otimes_{q} \operatorname{det} H^{q}(U, D R(\mathscr{E}))^{\otimes(-1)^{q}},\right. \\
& \left.\otimes_{q} \operatorname{det} H^{q}\left(U^{a n}, V\right)^{\otimes(-1)^{q}}, \otimes_{q} \operatorname{det} H^{q}(\rho)^{\otimes(-1)^{q}}\right) .
\end{aligned}
$$

The period $\operatorname{per}(\mathcal{M}) \in k^{\times} \backslash \boldsymbol{C}^{\times} / L^{\times}$is thus defined.
2. The relative Chow group. In this section, we define the relative Chow group $C H^{n}(X \bmod D)$ of dimension 0 and the relative canonical cycle $c_{X \text { mod }} \in C H^{n}(X \bmod D)$. They are slight modifications of those in [2]. Let $X$ be a smooth scheme over a field $k$ of dimension $n$ and $D=\cup_{i \in I} D_{i}$ be a divisor with simple normal crossings. Let $\mathscr{K}_{n}(X)$ denote the sheaf of Quillen's $K$-group on $X_{z a r}$. Namely the Zariski sheafification of the presheaf $U \rightarrow K_{n}(U)$. Let $\mathscr{K}_{n}(X \bmod D)$ be the complex $\left[\mathscr{K}_{n}(X) \rightarrow \bigoplus_{i} \mathscr{K}_{n}\left(D_{i}\right)\right]$. Here $\mathscr{K}_{n}(X)$ is put on degree 0 and $\mathscr{K}_{n}\left(D_{i}\right)$ denotes their direct image on $X$. It is the truncation at degree 1 of the complex $\mathscr{K}_{n, X, D}$ studied in [2] and there is a natural map $\mathscr{K}_{n, X, D} \rightarrow \mathscr{K}_{n}(X \bmod D)$. We call the hypercohomology $H^{n}(X$, $\left.\mathscr{K}_{n}(X \bmod D)\right)$ the relative Chow group of dimension 0 and write

$$
C H^{n}(X \bmod D)=H^{n}\left(X, \mathscr{K}_{n}(X \bmod D)\right)
$$

We recall the definition of the relative canonical class

$$
c_{X \bmod D}=(-1)^{n} c_{n}\left(\Omega_{X}^{1}(\log D), r e s\right) \in C H^{n}(X \bmod D)
$$

Let $V$ be the covariant vector bundle associated to the locally free $\mathcal{O}_{X}$-module $\Omega_{X}^{1}(\log D)$ of rank $n$. For each irreducible component $D_{i}$, let $\Delta_{i}=r_{i}^{-1}(1)$, where $r_{i}:\left.V\right|_{D i} \rightarrow \boldsymbol{A}_{D_{i}}^{1}$ is induced by the Poincare residue res $_{i}$ : $\left.\Omega_{X}^{1}(\log D)\right|_{D_{i}} \rightarrow \mathscr{O}_{D_{i}}$ and $1 \subset \boldsymbol{A}^{1}$ is the 1 -section. Let $\mathscr{K}_{n}(V \bmod \Delta)$ be the complex $\left[\mathcal{K}_{n}(V) \rightarrow \bigoplus_{i} \mathcal{K}_{n}\left(\Delta_{i}\right)\right]$ defined similarly as above and $\{0\} \subset V$ be the zero section. Then we have

$$
\begin{aligned}
& H_{\{0\}}^{n}\left(V, \mathscr{K}_{n}(V \bmod \Delta)\right) \simeq H_{\{0\}}^{n}\left(V, \mathscr{K}_{n}(V)\right) \\
& \downarrow \\
& H^{n}\left(V, \mathscr{K}_{n}(V \bmod \Delta)\right) \simeq H^{0}(X, Z) \\
&\left(X, \mathscr{K}_{n}(X \bmod D)\right)=C H^{n}(X \bmod D)
\end{aligned}
$$

by the purity and homotopy property of $K$-cohomology. The relative top chern class $c_{n}\left(\Omega_{X}^{1}(\log D), r e s\right) \in C H^{n}(X \bmod D)$ is defined as the image of $1 \in H^{0}(X, Z)$.

In the rest of this section, we give an adelic presentation

$$
C H^{n}(X \bmod D) \simeq \operatorname{Coker}\left(\partial: \underset{y \in X_{1}}{ } H_{y}^{n-1} \rightarrow \underset{x \in X_{0}}{\bigoplus} H_{x}^{n}\right)
$$

Here $X_{i}$ denotes the set of the points of $X$ of dimension $i$ and the groups $H_{y}^{n-1}$ and $H_{x}^{n}$ and the homomorphism $\partial$ are defined as follows.
(1) The group $H_{x}^{n}$ for $x \in X_{0}$. It is an extension of $\boldsymbol{Z}$ by $\bigoplus_{i \in I_{x}} \kappa(x)^{\times}$ with the index set $I_{x}=\left\{i ; x \in D_{i}\right\}$. For $i \in I_{x}$, let $N_{i}(x)$ be the one-dimensional $\kappa(x)$-vector space $\mathscr{O}_{X}\left(-D_{i}\right) \otimes \kappa(x)$. The $\kappa(x)$-algebra $\oplus$ ${ }_{m \in Z} N_{i}(x)^{\otimes m}$ is non-canonically isomorphic to the Laurent polynomial ring $\kappa(x)\left[T, T^{-1}\right]$. We put $H_{x, i}^{n}=\left(\otimes_{m \in \boldsymbol{Z}} N_{i}(x)^{\otimes m}\right)^{\times}$. It is an extension of $\boldsymbol{Z}$ by
$\kappa(x)^{\times}$. By pulling-back $\bigoplus_{i \in I_{x}} H_{x, i}^{n}$ by the diagonal $\boldsymbol{Z} \rightarrow \bigoplus_{i} \boldsymbol{Z}$, we obtain $H_{x}^{n}$ by

(2) The group $H_{y}^{n-1}$ for $y \in X_{1}$. It is an extension of $\kappa(y)^{\times}$by $\bigoplus_{i \in I_{y}}$ $K_{2}(\kappa(y))$ with the index set $I_{y}=\left\{i ; y \in D_{i}\right\}$. In the same way as above, we define an extension $H_{y}^{\prime}\left(\right.$ resp. $\left.H_{y, i}^{\prime}\right)$ of $\boldsymbol{Z}$ by $\bigoplus_{i \in I_{y}} \kappa(y)^{\times}$(resp. by $\kappa(y)^{\times}$for $i \in I_{y}$ ). The tensor product $H_{y}^{\prime} \otimes \kappa(y)^{\times}$is an extension of $\kappa(y)^{\times}$by $\otimes_{i \in I_{y}}\left(\kappa(y)^{\times} \otimes \kappa(y)^{\times}\right)$. By pushing it by the symbol map $\kappa(y)^{\times} \otimes \kappa(y)^{\times} \rightarrow$ $K_{2}(\kappa(y))$ we obtain $H_{y}^{n-1}$ by

(3) The homomorphism $\partial$. It is the direct sum of the $(x, y)$-component $\partial_{x, y}: H_{y}^{n-1} \rightarrow H_{x}^{n}$ for $x \in X_{0}$ and $y \in X_{1}$. This fits in the commutative diagram

and is 0 unless $x$ is not in the closure $Y$ of $\{y\}$. Here $\operatorname{ord}_{x}: \kappa(y)^{\times} \rightarrow \boldsymbol{Z}$ is the usual order and $(,)_{x}: K_{2}(\kappa(y)) \rightarrow \kappa(x)^{\times}$is the tame symbol. If $\left\{\tilde{x}_{j}\right\}_{j}$ denote the inverse image of $x$ in the normalization of $Y$, they are defined by $\operatorname{ord}_{x}(f)=\sum_{j}\left[\kappa\left(\tilde{x}_{j}\right): \kappa(x)\right] \cdot \operatorname{ord}_{\tilde{x}}(f)$ and $(f, g)_{x}=\Pi_{j} N_{x\left(\tilde{x}_{j}\right) / \kappa(x)}(f, g)_{\tilde{x}_{j}}$ for $f, g \in \kappa(y)^{\times}$. Here $\operatorname{ord}_{\tilde{x}_{j}}$ is the valuation, $(f, g)_{\tilde{x}_{j}}=\left((-1)^{\operatorname{ord} \tilde{x}_{f}(f) \operatorname{ord} \tilde{x}_{\dot{x}}(g)}\right.$ $\left.f^{\mathrm{ord} \tilde{x}_{j}(g)} g^{-\operatorname{ord} \tilde{x}_{j}(f)}\right)\left(\tilde{x}_{j}\right)$ is the usual tame symbol and $N$ denotes the norm.

To give the definition of $\partial_{x, y}$, we introduce the tame symbol for invertible sheaves. For an invertible $\mathscr{O}_{Y}$-module $\mathscr{L}$ and $f \in \kappa(y)^{\times}$, let $(\mathscr{L}, f)_{x}$ be the one-dimensional $\kappa(x)$-vector space generated by the symbol $(l, f)_{x}$ for a non-zero rational section $l$ of $\mathscr{L}$. We put $(g l, f)_{x}=(g, f)_{x}(l, f)_{x}$ for other section $g l$ of $\mathscr{L}$ and $g \in \kappa(y)^{\times}$. We have a canonical isomorphism $(\mathscr{L}, f)_{x} \simeq$ $\mathscr{L}(x)^{\otimes \operatorname{ord}_{x}(f)}$ where $\mathscr{L}(x)=\mathscr{L} \otimes \kappa(x)$. In fact, we may assume $\mathscr{O}_{Y, x}$ is normal by considering the norm and then $(l, f)_{x} \mapsto\left((-1)^{\operatorname{ord}_{x}(l) \operatorname{ord}_{x}(f)} l^{\otimes \operatorname{ord}_{x}(f)}\right.$ $\left.f^{- \text {ord }_{x}(l)}\right)(x)$ gives the isomorphism.

Let $x$ be a closed point in the closure $Y$ of $\{y\}$ and $D_{i}$ be an irreducible component of $D$ containing $x$. We define $\partial_{x, y, i}: H_{y, i}^{\prime} \otimes \kappa(y)^{\times} \rightarrow H_{x, i}^{n}$ when $y \in D_{i}$ and $\partial_{x, y, i}: \kappa(y)^{\times} \rightarrow H_{x, i}^{n}$ otherwise. They induce $\partial_{x, y}$. Let $N_{i}$ be the invertible $\mathscr{O}_{Y}$-module $\mathscr{O}_{Y}\left(-D_{i}\right)$. Note that $H_{y, i}^{\prime}$ is identified with $\amalg_{m \in \boldsymbol{Z}}\left(N_{i}(y)^{\otimes m}-\{0\}\right)$ as a set for $N_{i}(y)=N_{i} \otimes \kappa(y)$ and similarly $H_{x, i}^{n}=$ $\amalg_{m \in \boldsymbol{Z}}\left(N_{i}(x)^{\otimes m}-\{0\}\right)$. First assume $y \in D_{i}$. For $\nu \in N_{i}(y)^{\otimes m},(\nu \neq 0)$ and $f \in \kappa(y)^{\times}$, let $(\nu, f)_{x} \in N_{i}(x)^{\otimes m \times \operatorname{ord}_{x}(f)}, \neq 0$ be the tame symbol for
$N_{i}^{\otimes m}$ defined above. Then the map $H_{y, i}^{\prime} \times \kappa(y)^{\times} \rightarrow H_{x, i}^{n}:(\nu, f) \mapsto(\nu, f)_{x}$ in duces the map $\partial_{x, y, i}: H_{y, i}^{\prime} \otimes \kappa(y)^{\times} \rightarrow H_{x, i}^{n}$. Next we assume $y \notin D_{i}$. Let $N_{i}(y)$ be as above and consider $1 \in N_{i}(y)$. Then $\partial_{x, y, i}: \kappa(y)^{\times} \rightarrow H_{x, i}^{n}$ is defined by $f \mapsto(1, f)_{x}$.

The isomorphism $\operatorname{Coker}\left(\partial: \bigoplus_{y \in X_{1}} H_{y}^{n-1} \rightarrow \bigoplus_{x \in X_{0}} H_{x}^{n}\right) \simeq C H^{n}(X \bmod D)$ is defined as follows. For the cohomology with support, we have isomorphisms $\quad H_{x}^{n} \simeq H_{x}^{n}\left(X, \mathscr{K}_{n}(X \bmod D)\right)$ for $\quad x \in X_{0} \quad$ and $\quad H_{y}^{n-1} \simeq H_{y}^{n-1}(X$, $\left.\mathscr{K}_{n}(X \bmod D)\right)$ for $y \in X_{1}$. The spectral sequence $E_{1}^{p, q}=\bigoplus_{x \in X_{-p}} H_{x}^{p+q}(X$, $\left.\mathscr{K}_{n}(X \bmod D)\right) \Rightarrow H^{p+q}\left(X, \mathscr{K}_{n}(X \bmod D)\right)$ degenerates at $E_{2}$-terms and induces the morphism.
3. The pairing. Let $k, F \subset \boldsymbol{C}$ and $X \supset U$ over $k$ be as in section 1. Recall that $\mathrm{MPic}_{k}(U, F)$ denotes the class group of the rank 1 objects of $M_{k}(U, F)$. In this section, we define a pairing:

$$
\begin{aligned}
(,): M P i c_{k}(U, F) \otimes C H^{n}(X \bmod D) & \rightarrow M P i c_{k}(\text { Spec } k, F) \\
& \simeq k^{\times} \backslash C^{\times} / F^{\times} .
\end{aligned}
$$

First we define the local pairing. Let $x \in X_{0}$ be a closed point of $X$. Let $\left\{\bar{x}_{j} ; j \in J_{x}\right\}$ be the set of $\boldsymbol{C}$-valued points of $X$ supported on $x$. For each $\bar{x}_{j}$, let $\sigma_{j}: \kappa(x) \rightarrow \boldsymbol{C}$ be the corresponding $k$-morphism. We have an isomorphism $\left(\sigma_{j}\right)_{j}: \kappa(x) \otimes_{k} \boldsymbol{C} \rightarrow \Pi_{j \in J_{x}} \boldsymbol{C}$. We define the local pairing

$$
\begin{aligned}
(,)_{x}: \operatorname{MPic}_{k}(U, F) \otimes H_{x}^{n} & \rightarrow \operatorname{MPic}_{k}(x, F) \\
& \simeq(\kappa(x) \otimes 1)^{\times} \backslash\left(\kappa(x) \otimes_{k} C\right)^{\times} / \prod_{j} F^{\times}
\end{aligned}
$$

for $x \in X_{0}$. When $x \in U$, the pairing $(, 1)_{x}$ with $1 \in \boldsymbol{Z}=H_{x}^{j}$ is simply defined by taking the fiber at $x$. We consider the general case.

Let $((\mathscr{E}, \nabla), V, \rho)$ be an object of $M_{k}(U, F)$ of rank 1 . Take an invertible $\mathscr{O}_{X}$-module $\mathscr{E}_{\boldsymbol{X}}$ extending $\mathscr{E}$ and an $\mathscr{O}_{X, x}$-basis $e$ of $\mathscr{E}_{X, x}$. Let $I_{x}=\{i: x \in$ $\left.D_{i}\right\}$. For each irreducible component $D_{i} \ni x$ of $D$, put $\nabla_{i}(x)=\operatorname{res}_{i}(\nabla e /$ $e)(x) \in \kappa(x)$. For each $\bar{x}_{j}, j \in J_{x}$, let $\Delta_{j}$ be a small polydisc in $X^{a n}$ with center $\bar{x}_{j}$ and $\tilde{\Delta}_{j}^{*}$ be the universal covering of $\Delta_{j}^{*}=\Delta_{j} \cap U^{a n}$. Take a basis $v_{j}$ of the one-dimensional $F$-vector space $\Gamma\left(\tilde{\Delta}_{j}^{*}, V\right)$. This space has a natural action of $\pi_{1}\left(\Delta_{j}^{*}\right)$ and the action of the monodromy $\gamma_{i j}$ around the inverse image of $D_{i}$ is given by $\exp \left(-2 \pi \sqrt{-1} \sigma_{j}\left(\nabla_{i}(x)\right)\right) \in F^{\times}$. Let $\psi_{j}$ be the analytic function $\rho\left(v_{j}\right) / e$ on $\tilde{\Delta}_{j}^{*}$.

Let $f \in H_{x}^{n}$. The group $H_{x, i}^{n}$ in the last section is canonically identified with the group $\Gamma\left(\operatorname{Spec} \mathscr{O}_{X, x}-D_{i}, \mathscr{O}^{\times}\right) /\left(1+m_{x}\right)$ for $i \in I_{x}$. We take $\varphi_{i} \in$ $\Gamma$ (Spec $\left.\mathscr{O}_{X, x}-D_{i}, \mathscr{O}^{\times}\right)$for each $i \in I_{x}$ representing $f$ by this identification. Let $\varphi_{i j}$ be the pull-back of $\varphi_{i}$ to $\Delta_{j}^{*}$ and define an analytic function $\varphi_{i j}^{\nabla_{i}(x)}=$ $\exp \left(\sigma_{j}\left(\nabla_{i}(x)\right) \log \varphi_{i j}\right)$ on $\tilde{\Delta}_{j}^{*}$. It is well-defined modulo $F^{\times}$since the change of the branch of the logarithm multiplies an integral power of $\exp (2 \pi \sqrt{-1}$ $\left.\sigma_{j}\left(\nabla_{i}(x)\right)\right) \in F^{\times}$. We consider an analytic function on $\tilde{\Delta}_{j}^{*}$

$$
(\varphi, \varphi)_{j}=(-1)^{\operatorname{ord}_{x} \Sigma_{i} \sigma_{j}\left(\nabla_{t}(x)\right)} \cdot \psi_{j}^{\text {ord }_{x} f} \prod_{i \in I_{x}} \varphi_{i j}^{\nabla_{i j}(x)} .
$$

Here $\operatorname{ord}_{x}: H_{x}^{n} \rightarrow \boldsymbol{Z}$ is the canonical map and $(-1)^{i \in I_{x}}{ }^{\operatorname{ord}_{x} f \Sigma_{i} \sigma_{,}\left(\nabla_{i}(x)\right)}=\exp (\pi$ $\sqrt{-1} \cdot \operatorname{ord}_{x} f \sum_{i} \sigma_{j}\left(\nabla_{i}(x)\right)$ ). It is a pull-back of an invertible holomorphic function on $\Delta_{j}$ also denoted $(\psi, \varphi)_{j}$. In fact $\log (\psi, \varphi)_{j}$ is invariant by mono-
dromy and $d \log (\psi, \varphi)_{j}$ is holomorphic on $\Delta_{j}$. Therefore the value $(\psi, \varphi)_{j}$ $\left(\bar{x}_{j}\right) \in \boldsymbol{C}^{\times}$is well-defined modulo $F^{\times}$. The local pairing is defined by

$$
([\mathcal{M}], f)_{x}=\left((\psi, \varphi)_{j}\left(\bar{x}_{j}\right)\right) \in(\kappa(x) \otimes 1)^{\times} \backslash \prod_{j} C^{\times} / \prod_{j} F^{\times} .
$$

The norm $N_{\kappa(x) / k}$ induces MPic $_{k}(x, F) \rightarrow$ MPic $_{k}(\operatorname{Spec} k, F)$ and the local pairings define the global pairing $\operatorname{MPic}_{k}(U, F) \times C H^{n}(X \bmod D) \rightarrow$ $M \operatorname{Pic}_{k}(\operatorname{Spec} k, F)$. The required reciprocity law follows from that for the tame symbols on a curve and the fact that the residue $\nabla_{i}$ of the connection is constant on each component $D_{i}$. For an object $\mathcal{M} \in M_{k}(U, F)$, the pairing with the relative canonical class defined in the last section

$$
\left(\operatorname{det} \mathcal{M}, c_{X \bmod D}\right) \in k^{\times} \backslash C^{\times} / F^{\times}
$$

is thus defined.
4. Main theorem. Let $k, F \subset \boldsymbol{C}$ and $X \supset U$ over $k$ be as in the previous sections. First we review the residues of a logarithmic integrable connection $\nabla: \mathscr{E}_{X} \rightarrow \mathscr{E}_{X} \otimes \Omega_{X}^{1}(\log D)$. For an irreducible component $D_{i}$ of $D$, the residue $\nabla_{i} \in E n d_{\mathscr{O}_{D_{i}}}\left(\mathscr{E}_{x} \otimes \mathscr{O}_{D_{i}}\right)$ is the endomorphism induced by (id $\otimes r e s_{i}$ ) $\circ \nabla: \mathscr{E}_{X} \rightarrow \mathscr{E}_{X} \otimes \mathscr{O}_{D_{i}}$ Let $k_{i}$ be the constant field of $D_{i}$. Then the eigenpolynomial $\Phi_{i}(T)=\operatorname{det}\left(T-\nabla_{i}\right)$ is a polynomial with coefficient in $k_{i}$ of degree $r=\operatorname{rank} \mathscr{E}_{X}$. Let $\sum_{i}=\left\{\sigma: k_{i} \rightarrow \boldsymbol{C}\right\}$ be the set of $k$-morphisms and $s_{\sigma l}(1 \leq l \leq r)$ be the solutions of $\sigma\left(\Phi_{i}(T)\right)=0$ in $C$ counted with multiplicities. By changing the lattice $\mathscr{E}_{X}$ if necessary, we may assume $s_{\sigma l} \notin 0,1,2, \ldots$ for all $\sigma$ and $l$. The product

$$
\Gamma\left(-\nabla_{i}\right)=\prod_{\sigma \in \Sigma_{i}} \prod_{l=1}^{r} \Gamma\left(-s_{\sigma l}\right) \in \boldsymbol{C}^{\times} / k^{\times}
$$

is determined by the restriction $(\mathscr{E}, \nabla)$ on $U$ and it is independent of the lattice $\mathscr{E}_{X}$ on $X$. Let $D_{i}^{*}=D_{i}-\cup_{j \neq i} D_{j}$ and $c_{i}$ be the Euler chracteristic of $D_{i}^{*} \otimes_{k_{i}} \boldsymbol{C}$.

Theorem. Let $\mathcal{M} \in M_{k}(U, F)$ and $1=\left(\left(\mathscr{O}_{U}, d\right), F, 1\right)$ be the identity object of $M_{k}(U, F)$. Assume the compactification $X$ of $U$ is projective. Then we have

$$
\operatorname{per}(\mathcal{M}) / \operatorname{per}(1)^{r a n k \cdot M}=\left(\operatorname{det} \mathcal{M}, c_{X \bmod D}\right) \times \prod_{i \in I} \Gamma\left(-\nabla_{i}\right)^{-c_{i}}
$$

in $k^{\times} \backslash \boldsymbol{C}^{\times} / F^{\times}$.
Proof will be given somewhere else, the rough idea is as follows. Along the same lines as in [2], by taking a Lefschetz pencil and by induction on dimension of $X$, it is reduced to the case $X=\boldsymbol{P}^{1}$, which is proved in [3].

## References

[1] P. Deligne: Valeurs de fonctions $L$ et périodes d'intégrales. Proc. of Symp. in Pure Math., 33, part 2, 313-346 (1979).
[2] T. Saito: $\varepsilon$-factor of a tamely ramified sheaf on a variety (to appear in Inventiones Math.).
[3] T. Terasoma: A product formula for period integrals (preprint).


[^0]:    *) Department of Mathematical Sciences, University of Tokyo.
    **) Department of Mathematics, Tokyo Metropolitan University.

