30. A Determinant Formula for Period Integrals

By Takeshi SAITO^{*)} and Tomohide TERASOMA^{**)}

(Communicated by Shokichi IYANAGA, M. J. A., May 12, 1993)

We prove a formula for the determinant of the period integrals. It is expressed as the product of the pairing with the relative canonical cycle and special values of Γ -function. It generalizes a previous result for P^1 [3]. It can be regarded as a Hodge analogue of the formula for *l*-adic cohomology [2]. By combining with this, it proves a part of a conjecture of Deligne: A motive of rank 1 over a number field is defined by an algebraic Hecke character ([1] Conjecture 8.1 (iii)), in a certain special case.

1. Definition of the period. Let k, F be subfields of the complex number field C and U be a smooth separated scheme over k of dimension n. We consider the category $M_k(U, F)$ consisting of triples $\mathcal{M} = ((\mathscr{E}, \nabla), V, \rho)$ as follows

- (1) A locally free \mathcal{O}_U -module \mathscr{E} of finite rank with an integrable connection $\nabla : \mathscr{E} \to \mathscr{E} \otimes \mathcal{Q}_U^1$ which is regular singular along the boundary.
- (2) A local system V of F-vector spaces on the complex manifold U^{an} .
- (3) An isomorphism $\rho: V \otimes_F C \xrightarrow{\sim} Ker \nabla^{an}$ of local systems of *C*-vector spaces on U^{an} .

We explain the terminology. Let X be a proper smooth scheme over k containing U as a dense open subscheme such that the complement D = X - Uis a divisor with simple normal crossings. A divisor is said to have simple normal crossings if its irreducible components D_i are smooth and their $m \times m$ intersections are transversal. An integrable connection $\nabla: \mathscr{E} \to \mathscr{E} \otimes \mathscr{Q}_U^1$ is said to be regular singular along the boundary if there exists a locally free \mathscr{O}_X -module \mathscr{E}_X and a logarithmic integrable connection $\nabla_X: \mathscr{E}_X \to \mathscr{E}_X \otimes \mathscr{Q}_X^1(\log D)$ extending (\mathscr{E}, ∇) . It is independent of the choice of compactification X. The complex manifold of the C-valued points of U is denoted by U^{an} and the algebraic connection ∇ induces an analytic connection ∇^{an} on U^{an}

We define the determinant of the period

$$per(\mathcal{M}) \in k^{\times} \setminus C^{\times} / F^{\times}$$

for an object $\mathcal{M} \in M_k(U, F)$. Let $MPic_k(U, F)$ be the group of isomorphism class of the objects of $M_k(U, F)$ of rank 1 with respect to the tensor product. For $U = \operatorname{Spec} k$, we identify $MPic_k(\operatorname{Spec} k, F)$ with $k^{\times} \setminus C^{\times}/F^{\times}$ by $[\mathcal{M}] \to \rho(v)/e$ for $\mathcal{M} \in M_k(\operatorname{Spec} k, F)$ of rank 1 with basis $e \in \mathscr{E}$ and $v \in V$. For $\mathcal{M} \in M_k(U, L)$, we define $per(\mathcal{M}) \in k^{\times} \setminus C^{\times}/F^{\times}$ as [det $R\Gamma(U, \mathcal{M})] \in MPic_k(\operatorname{Spec} k, F)$ defined below. Let $DR(\mathscr{E})$ be the de Rham complex

$$[\mathscr{E} \xrightarrow{\nabla} \mathscr{E} \otimes \mathscr{Q}_U^1 \xrightarrow{\nabla} \mathscr{E} \otimes \mathscr{Q}_U^2 \xrightarrow{\nabla} \cdots \xrightarrow{\nabla} \mathscr{E} \otimes \mathscr{Q}_U^n].$$

^{*)} Department of Mathematical Sciences, University of Tokyo.

^{**)} Department of Mathematics, Tokyo Metropolitan University.

Since $H^{q}(U, DR(\mathscr{E})) \otimes_{k} C \simeq H^{q}(U^{an}, DR(\mathscr{E})^{an})$ by GAGA, the isomorphism ρ induces $H^{q}(\rho) : H^{q}(U, DR(\mathscr{E})) \otimes_{k} C \simeq H^{q}(U^{an}, V) \otimes_{F} C$. In other words, the triple

 $H^{q}(U, \mathcal{M}) = (H^{q}(U, DR(\mathscr{B})), H^{q}(U^{an}, V), H^{q}(\rho))$ is an object of $M_{k}(\text{Spec } k, F)$. Taking the alternating tensor product of the determinant, we obtain

$$\det R\Gamma(U, \mathcal{M}) = (\bigotimes_{q} \det H^{q}(U, DR(\mathscr{E}))^{\otimes (-1)^{q}}, \\ \bigotimes_{q} \det H^{q}(U^{an}, V)^{\otimes (-1)^{q}}, \\ \bigotimes_{q} \det H^{q}(\rho)^{\otimes (-1)^{q}}.$$

The period $per(\mathcal{M}) \in k^{\times} \setminus C^{\times}/L^{\times}$ is thus defined.

2. The relative Chow group. In this section, we define the relative Chow group $CH^n(X \mod D)$ of dimension 0 and the relative canonical cycle $c_{X \mod D} \in CH^n(X \mod D)$. They are slight modifications of those in [2]. Let X be a smooth scheme over a field k of dimension n and $D = \bigcup_{i \in I} D_i$ be a divisor with simple normal crossings. Let $\mathcal{H}_n(X)$ denote the sheaf of Quillen's K-group on X_{Zar} . Namely the Zariski sheafification of the presheaf $U \to K_n(U)$. Let $\mathcal{H}_n(X \mod D)$ be the complex $[\mathcal{H}_n(X) \to \bigoplus_i \mathcal{H}_n(D_i)]$. Here $\mathcal{H}_n(X)$ is put on degree 0 and $\mathcal{H}_n(D_i)$ denotes their direct image on X. It is the truncation at degree 1 of the complex $\mathcal{H}_{n,X,D}$ studied in [2] and there is a natural map $\mathcal{H}_{n,X,D} \to \mathcal{H}_n(X \mod D)$. We call the hypercohomology $H^n(X, \mathcal{H}_n(X \mod D))$ the relative Chow group of dimension 0 and write

 $CH^{n}(X \mod D) = H^{n}(X, \mathcal{H}_{n}(X \mod D)).$

We recall the definition of the relative canonical class

 $c_{X \mod D} = (-1)^n c_n(\Omega^1_X(\log D), res) \in CH^n(X \mod D).$

Let V be the covariant vector bundle associated to the locally free \mathcal{O}_X -module $\Omega^1_X(\log D)$ of rank *n*. For each irreducible component D_i , let $\Delta_i = r_i^{-1}(1)$, where $r_i : V|_{D_i} \to A^1_{D_i}$ is induced by the Poincaré residue $res_i : \Omega^1_X(\log D)|_{D_i} \to \mathcal{O}_{D_i}$ and $1 \subset A^1$ is the 1-section. Let $\mathcal{H}_n(V \mod \Delta)$ be the complex $[\mathcal{H}_n(V) \to \bigoplus_i \mathcal{H}_n(\Delta_i)]$ defined similarly as above and $\{0\} \subset V$ be the zero section. Then we have

 $H^{n}_{\{0\}}(V, \mathcal{H}_{n}(V \mod \Delta)) \simeq H^{n}_{\{0\}}(V, \mathcal{H}_{n}(V)) \simeq H^{0}(X, \mathbb{Z})$

 $H^{n}(V, \mathcal{H}_{n}(V \mod \Delta)) \simeq H^{n}(X, \mathcal{H}_{n}(X \mod D)) = CH^{n}(X \mod D)$ by the purity and homotopy property of *K*-cohomology. The relative top chern class $c_{n}(\Omega^{1}_{X}(\log D), res) \in CH^{n}(X \mod D)$ is defined as the image of $1 \in H^{0}(X, \mathbb{Z})$.

the rest of this section, we give an adelic presentation

$$CH^n(X \mod D) \simeq Coker(\partial : \bigoplus_{y \in X_1} H_y^{n-1} \to \bigoplus_{x \in X_0} H_x^n).$$

Here X_i denotes the set of the points of X of dimension *i* and the groups H_y^{n-1} and H_x^n and the homomorphism ∂ are defined as follows.

(1) The group H_x^n for $x \in X_0$. It is an extension of \mathbb{Z} by $\bigoplus_{i \in I_x} \kappa(x)^{\times}$ with the index set $I_x = \{i : x \in D_i\}$. For $i \in I_x$, let $N_i(x)$ be the one-dimensional $\kappa(x)$ -vector space $\mathcal{O}_X(-D_i) \otimes \kappa(x)$. The $\kappa(x)$ -algebra $\bigoplus_{m \in \mathbb{Z}} N_i(x)^{\otimes m}$ is non-canonically isomorphic to the Laurent polynomial ring $\kappa(x)[T, T^{-1}]$. We put $H_{x,i}^n = (\bigotimes_{m \in \mathbb{Z}} N_i(x)^{\otimes m})^{\times}$. It is an extension of \mathbb{Z} by

In

 $\kappa(x)^{\times}$. By pulling-back $\bigoplus_{i \in I_x} H_{x,i}^n$ by the diagonal $Z \to \bigoplus_i Z$, we obtain H_x^n by

(2) The group H_y^{n-1} for $y \in X_1$. It is an extension of $\kappa(y)^{\times}$ by $\bigoplus_{i \in I_y} K_2(\kappa(y))$ with the index set $I_y = \{i : y \in D_i\}$. In the same way as above, we define an extension $H'_y(\text{resp. } H'_{y,i})$ of \mathbb{Z} by $\bigoplus_{i \in I_y} \kappa(y)^{\times}$ (resp. by $\kappa(y)^{\times}$ for $i \in I_y$). The tensor product $H'_y \otimes \kappa(y)^{\times}$ is an extension of $\kappa(y)^{\times}$ by $\bigotimes_{i \in I_y} (\kappa(y)^{\times} \otimes \kappa(y)^{\times})$. By pushing it by the symbol map $\kappa(y)^{\times} \otimes \kappa(y)^{\times} \to K_2(\kappa(y))$ we obtain H_y^{n-1} by

(3) The homomorphism ∂ . It is the direct sum of the (x, y)-component $\partial_{x,y}: H_y^{n-1} \to H_x^n$ for $x \in X_0$ and $y \in X_1$. This fits in the commutative diagram

and is 0 unless x is not in the closure Y of $\{y\}$. Here $\operatorname{ord}_x: \kappa(y)^{\times} \to \mathbb{Z}$ is the usual order and $(,)_x: K_2(\kappa(y)) \to \kappa(x)^{\times}$ is the tame symbol. If $\{\tilde{x}_j\}_j$ denote the inverse image of x in the normalization of Y, they are defined by $\operatorname{ord}_x(f) = \sum_j [\kappa(\tilde{x}_j):\kappa(x)] \cdot \operatorname{ord}_{\tilde{x}_j}(f)$ and $(f, g)_x = \prod_j N_{\kappa(\tilde{x}_j)/\kappa(x)}(f, g)_{\tilde{x}_j}$ for $f, g \in \kappa(y)^{\times}$. Here $\operatorname{ord}_{\tilde{x}_j}$ is the valuation, $(f, g)_{\tilde{x}_j} = ((-1)^{\operatorname{ord}_{\tilde{x}_j}(f) \operatorname{ord}_{\tilde{x}_j}(g)} f^{\operatorname{ord}_{\tilde{x}_j}(g)} g^{-\operatorname{ord}_{\tilde{x}_j}(f)})(\tilde{x}_j)$ is the usual tame symbol and N denotes the norm.

To give the definition of $\partial_{x,y}$, we introduce the tame symbol for invertible sheaves. For an invertible \mathscr{O}_{Y} -module \mathscr{L} and $f \in \kappa(y)^{\times}$, let $(\mathscr{L}, f)_{x}$ be the one-dimensional $\kappa(x)$ -vector space generated by the symbol $(l, f)_{x}$ for a non-zero rational section l of \mathscr{L} . We put $(gl, f)_{x} = (g, f)_{x}(l, f)_{x}$ for other section gl of \mathscr{L} and $g \in \kappa(y)^{\times}$. We have a canonical isomorphism $(\mathscr{L}, f)_{x} \cong \mathscr{L}(x)^{\otimes \operatorname{ord}_{x}(f)}$ where $\mathscr{L}(x) = \mathscr{L} \otimes \kappa(x)$. In fact, we may assume $\mathscr{O}_{Y,x}$ is normal by considering the norm and then $(l, f)_{x} \mapsto ((-1)^{\operatorname{ord}_{x}(l)\operatorname{ord}_{x}(f)} l^{\otimes \operatorname{ord}_{x}(f)})$

Let x be a closed point in the closure Y of $\{y\}$ and D_i be an irreducible component of D containing x. We define $\partial_{x,y,i}: H'_{y,i} \otimes \kappa(y)^{\times} \to H^n_{x,i}$ when $y \in D_i$ and $\partial_{x,y,i}: \kappa(y)^{\times} \to H^n_{x,i}$ otherwise. They induce $\partial_{x,y}$. Let N_i be the invertible \mathcal{O}_Y -module $\mathcal{O}_Y(-D_i)$. Note that $H'_{y,i}$ is identified with $\coprod_{m \in \mathbb{Z}}(N_i(y)^{\otimes m} - \{0\})$ as a set for $N_i(y) = N_i \otimes \kappa(y)$ and similarly $H^n_{x,i} = \coprod_{m \in \mathbb{Z}}(N_i(x)^{\otimes m} - \{0\})$. First assume $y \in D_i$. For $\nu \in N_i(y)^{\otimes m}$, $(\nu \neq 0)$ and $f \in \kappa(y)^{\times}$, let $(\nu, f)_x \in N_i(x)^{\otimes m \times \operatorname{ord}_X(f)}$, $\neq 0$ be the tame symbol for

No. 5]

 $N_i^{\otimes m}$ defined above. Then the map $H'_{y,i} \times \kappa(y)^{\times} \to H_{x,i}^n : (\nu, f) \mapsto (\nu, f)_x$ induces the map $\partial_{x,y,i} : H'_{y,i} \otimes \kappa(y)^{\times} \to H_{x,i}^n$. Next we assume $y \notin D_i$. Let $N_i(y)$ be as above and consider $1 \in N_i(y)$. Then $\partial_{x,y,i} : \kappa(y)^{\times} \to H_{x,i}^n$ is defined by $f \mapsto (1, f)_x$.

The isomorphism $Coker(\partial : \bigoplus_{y \in X_1} H_y^{n-1} \to \bigoplus_{x \in X_0} H_x^n) \simeq CH^n(X \mod D)$ is defined as follows. For the cohomology with support, we have isomorphisms $H_x^n \simeq H_x^n(X, \mathcal{H}_n(X \mod D))$ for $x \in X_0$ and $H_y^{n-1} \simeq H_y^{n-1}(X, \mathcal{H}_n(X \mod D))$ for $y \in X_1$. The spectral sequence $E_1^{p,q} = \bigoplus_{x \in X_{-p}} H_x^{p+q}(X, \mathcal{H}_n(X \mod D)) \Rightarrow H^{p+q}(X, \mathcal{H}_n(X \mod D))$ degenerates at E_2 -terms and induces the morphism.

3. The pairing. Let $k, F \subseteq C$ and $X \supseteq U$ over k be as in section 1. Recall that $MPic_k(U, F)$ denotes the class group of the rank 1 objects of $M_k(U, F)$. In this section, we define a pairing:

 $(,): MPic_{k}(U, F) \otimes CH^{n}(X \mod D) \to MPic_{k}(\operatorname{Spec} k, F)$ $\simeq k^{\times} \setminus C^{\times}/F^{\times}.$

First we define the local pairing. Let $x \in X_0$ be a closed point of X. Let $\{\bar{x}_j : j \in J_x\}$ be the set of C-valued points of X supported on x. For each \bar{x}_j , let $\sigma_j : \kappa(x) \to C$ be the corresponding k-morphism. We have an isomorphism $(\sigma_j)_j : \kappa(x) \otimes_k C \to \prod_{j \in J_x} C$. We define the local pairing

$$(,)_{x}: MPic_{k}(U, F) \otimes H_{x}^{n} \to MPic_{k}(x, F)$$

$$\simeq (\kappa(x) \otimes 1)^{\times} \setminus (\kappa(x) \otimes_{k} C)^{\times} / \Pi F^{\times}$$

for $x \in X_0$. When $x \in U$, the pairing $(, 1)_x$ with $1 \in \mathbb{Z} = H_x^n$ is simply defined by taking the fiber at x. We consider the general case.

Let $((\mathscr{E}, \nabla), V, \rho)$ be an object of $M_k(U, F)$ of rank 1. Take an invertible $\mathcal{O}_{X^{-m}}$ module \mathscr{E}_X extending \mathscr{E} and an $\mathcal{O}_{X,x^{-}}$ basis e of $\mathscr{E}_{X,x^{-}}$. Let $I_x = \{i : x \in D_i\}$. For each irreducible component $D_i \ni x$ of D, put $\nabla_i(x) = \operatorname{res}_i(\nabla e/e)(x) \in \kappa(x)$. For each $\bar{x}_j, j \in J_x$, let Δ_j be a small polydisc in X^{an} with center \bar{x}_j and $\tilde{\Delta}_j^*$ be the universal covering of $\Delta_j^* = \Delta_j \cap U^{an}$. Take a basis v_j of the one-dimensional F-vector space $\Gamma(\tilde{\Delta}_j^*, V)$. This space has a natural action of $\pi_1(\Delta_j^*)$ and the action of the monodromy γ_{ij} around the inverse image of D_i is given by $\exp(-2\pi\sqrt{-1}\sigma_j(\nabla_i(x))) \in F^{\times}$. Let ψ_j be the analytic function $\rho(v_j)/e$ on $\tilde{\Delta}_j^*$.

Let $f \in H_x^n$. The group $H_{x,i}^n$ in the last section is canonically identified with the group $\Gamma(\operatorname{Spec} \mathcal{O}_{X,x} - D_i, \mathcal{O}^{\times}) / (1 + m_x)$ for $i \in I_x$. We take $\varphi_i \in$ $\Gamma(\operatorname{Spec} \mathcal{O}_{X,x} - D_i, \mathcal{O}^{\times})$ for each $i \in I_x$ representing f by this identification. Let φ_{ij} be the pull-back of φ_i to Δ_j^* and define an analytic function $\varphi_{ij}^{\nabla_i(x)} =$ $\exp(\sigma_j(\nabla_i(x))\log\varphi_{ij})$ on $\tilde{\Delta}_j^*$. It is well-defined modulo F^{\times} since the change of the branch of the logarithm multiplies an integral power of $\exp(2\pi\sqrt{-1} \sigma_j(\nabla_i(x))) \in F^{\times}$. We consider an analytic function $\tilde{\Delta}_j^*$

$$(\phi, \varphi)_{j} = (-1)^{\operatorname{ord}_{x} f \Sigma_{i} \sigma_{j}(\nabla_{i}(x))} \cdot \psi_{j}^{\operatorname{ord}_{x} f} \prod_{i \in I_{x}} \varphi_{ij}^{\nabla_{i}(x)}$$

Here $\operatorname{ord}_x : H_x^n \to \mathbb{Z}$ is the canonical map and $(-1)^{\operatorname{ord}_x f \Sigma_i \sigma_j(\nabla_i(x))} = \exp(\pi \sqrt{-1} \cdot \operatorname{ord}_x f \sum_i \sigma_j(\nabla_i(x)))$. It is a pull-back of an invertible holomorphic function on Δ_j also denoted $(\psi, \varphi)_j$. In fact $\log(\psi, \varphi)_j$ is invariant by mono-

dromy and $d \log(\phi, \varphi)_i$ is holomorphic on Δ_i . Therefore the value $(\phi, \varphi)_i$ $(\bar{x}_i) \in \mathbf{C}^{\times}$ is well-defined modulo F^{\times} . The local pairing is defined by $([\mathcal{M}], f)_x = ((\phi, \varphi)_i(\bar{x}_i)) \in (\kappa(x) \otimes 1)^{\times} \setminus \prod_i \mathbf{C}^{\times} / \prod_i F^{\times}.$

The norm $N_{\kappa(x)/k}$ induces $MPic_k(x, F) \to MPic_k(\operatorname{Spec} k, F)$ and the local pairings define the global pairing $MPic_k(U, F) \times CH^n(X \mod D) \to MPic_k(\operatorname{Spec} k, F)$. The required reciprocity law follows from that for the tame symbols on a curve and the fact that the residue ∇_i of the connection is constant on each component D_i . For an object $\mathcal{M} \in M_k(U, F)$, the pairing with the relative canonical class defined in the last section

$$(\det \mathcal{M}, c_{X \mod D}) \in k^{\times} \setminus C^{\times} / F^{\times}$$

is thus defined.

4. Main theorem. Let $k, F \subset C$ and $X \supset U$ over k be as in the previous sections. First we review the residues of a logarithmic integrable connection $\nabla : \mathscr{E}_X \to \mathscr{E}_X \otimes \Omega_X^1(\log D)$. For an irreducible component D_i of D, the residue $\nabla_i \in End_{\mathcal{O}_{D_i}}(\mathscr{E}_X \otimes \mathscr{O}_{D_i})$ is the endomorphism induced by $(id \otimes res_i) \circ \nabla : \mathscr{E}_X \to \mathscr{E}_X \otimes \mathscr{O}_{D_i}$. Let k_i be the constant field of D_i . Then the eigenpolynomial $\Phi_i(T) = \det(T - \nabla_i)$ is a polynomial with coefficient in k_i of degree $r = \operatorname{rank} \mathscr{E}_X$. Let $\sum_i = \{\sigma : k_i \to C\}$ be the set of k-morphisms and $s_{\sigma i}(1 \leq l \leq r)$ be the solutions of $\sigma(\Phi_i(T)) = 0$ in C counted with multiplicities. By changing the lattice \mathscr{E}_X if necessary, we may assume $s_{\sigma l} \notin 0, 1, 2, \ldots$ for all σ and l. The product

$$\Gamma(-\nabla_i) = \prod_{\sigma \in \Sigma_i} \prod_{l=1}^{\prime} \Gamma(-s_{\sigma l}) \in C^{\times}/k^{\times}$$

is determined by the restriction (\mathscr{E}, ∇) on U and it is independent of the lattice \mathscr{E}_X on X. Let $D_i^* = D_i - \bigcup_{j \neq i} D_j$ and c_i be the Euler chracteristic of $D_i^* \otimes_{k_i} C$.

Theorem. Let $\mathcal{M} \in M_k(U, F)$ and $1 = ((\mathcal{O}_U, d), F, 1)$ be the identity object of $M_k(U, F)$. Assume the compactification X of U is projective. Then we have

$$per(\mathcal{M}) / per(1)^{rank\mathcal{M}} = (\det \mathcal{M}, c_{X \mod D}) \times \prod_{i \in I} \Gamma(-\nabla_i)^{-c_i}$$

in $k^{\times} \setminus C^{\times} / F^{\times}$.

Proof will be given somewhere else, the rough idea is as follows. Along the same lines as in [2], by taking a Lefschetz pencil and by induction on dimension of X, it is reduced to the case $X = \mathbf{P}^1$, which is proved in [3].

References

- P. Deligne: Valeurs de fonctions L et périodes d'intégrales. Proc. of Symp. in Pure Math., 33, part 2, 313-346 (1979).
- [2] T. Saito: ε-factor of a tamely ramified sheaf on a variety (to appear in Inventiones Math.).
- [3] T. Terasoma: A product formula for period integrals (preprint).