29. Eigenvalues of the Laplace-Beltrami Operator and the von-Mangoldt Function

By Akio FujiI
Department of Mathematics, Rikkyo University
(Communicated by Shokichi Iyanaga, M. J. A., May 12, 1993)

§ 1. Introduction. Let $\Lambda(n)$ be the von-Mangoldt function defined by $\Lambda(n)= \begin{cases}\log p & \text { if } n=p^{k} \text { with a prime number } p \text { and an integer } k \geq 1 \\ 0 & \text { otherwise } .\end{cases}$
Let $\lambda_{0}=0 \leq \lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{j} \leq \ldots$ run over the eigenvalues of the discrete spectrum of the Laplace-Beltrami operator on $L^{2}(H / \Gamma)$, where H is the upper half of the complex plane and we take $\Gamma=P S L(2, Z)$. It is well known that $\lambda_{1}>\frac{1}{4}$. We put $\lambda_{j}=\frac{1}{4}+r_{j}^{2}$ for $j \geq 0$. Here we are concerned with the relation between $\Lambda(n)$ and λ_{j}.

We recall first the following result which has been proved in the author's [1]-[3]. It shows that an individual $\Lambda(n)$ can be expressed by the eigen-values. For any positive α, let $Z_{\alpha}(s)$ be defined by

$$
Z_{\alpha}(s)=\sum_{r_{r}>0} \frac{\sin \left(\alpha r_{j}\right)}{r_{j}^{s}} \text { for } \Re(s)>1
$$

This function is shown to be an entire function of s. Then we have
(I) : For any integer $n \geq 2$,

$$
\Lambda(n)=\pi n \lim _{\alpha \rightarrow 2 \log n}(\alpha-2 \log n) Z_{\alpha}(0)
$$

We recall secondly the following result which has been proved by Venkov [11]. It shows that the sum

$$
\sum_{n \leq X} \Lambda(n)
$$

can be written down in terms of the eigen-values and the remainder term of the prime geodesic theorem. Let $\{P\}$ run over the set of the hyperbolic conjugacy classes of the conjugacy elements in Γ and $N(P)=N\left(P_{0}\right)^{k}$, where $\{P\}=\left\{P_{0}\right\}^{k}$ with the primitive hyperbolic conjugacy class $\left\{P_{0}\right\}$ and $N\left(P_{0}\right)$ is the norm of P_{0}. We put

$$
\tilde{\Lambda}(P)=\frac{\log N\left(P_{0}\right)}{1-(N(P))^{-1}}
$$

and

$$
\tilde{\phi}(X)=\sum_{N(P) \leq X} \tilde{\Lambda}(P)
$$

Then Venkov's result may be stated as follows.
(II) : For $X>X_{0}$, we have

$$
\begin{aligned}
\sum_{n \leq X} \Lambda(n)= & \frac{X}{2} \lim _{t \rightarrow+0} \sum_{r_{j}>0} \frac{\cos \left(2 r_{j} \log X\right)+2 r_{j} \sin \left(2 r_{j} \log X\right)}{\lambda_{j}} e^{-t \lambda_{j}} \\
& -\frac{1}{2}\left(\tilde{\phi}\left(X^{2}\right)-X^{2}\right)+O\left(X^{\varepsilon}\right)
\end{aligned}
$$

where ε is an arbitrary positive number.

Here we should recall the prime geodesic theorem (cf. Huber [5] and Iwaniec [7]) which states that for any positive ε and for $X>X_{o}$,

$$
\tilde{\phi}(X)-X=O\left(X^{\frac{35}{48}+\varepsilon}\right)
$$

and

$$
\sum_{N\left(P_{o}\right) \leq X} \log N\left(P_{o}\right)-X=O\left(X^{\frac{35}{48}+\varepsilon}\right)
$$

where $\left\{P_{0}\right\}$ runs over the set of all primitive hyperbolic conjugacy classes of the conjugacy elements in Γ.

In this article, we shall supplement to these by adding another explicit relation between $\Lambda(n)$ and λ_{j}. It shows that the average of the sum of $\Lambda(n)$, namely,

$$
\int_{0}^{X} \sum_{n \leq y} \Lambda(n) d y
$$

can be written down in terms of the eigen-values and the average of the remainder term of the prime geodesic theorem. To state our result, let $Z(s)$ be the Selberg zeta function defined by

$$
Z(s)=\prod_{\left\{P_{0}\right\}} \prod_{k=0}^{\infty}\left(1-\left(N\left(P_{0}\right)\right)^{-s-k}\right) \text { for } \Re s>1
$$

It is well-known that $Z(s)$ has meromorphic continuation to the whole complex plane (cf. Selberg [10]). $Z(s)$ satisfies the following functional equation (cf. Selberg [10], Venkov [12], Vigneras [13] and Kurokawa [8]).

$$
\begin{aligned}
\frac{Z^{\prime}}{Z}(s)+\frac{Z^{\prime}}{Z} & (1-s)=-\left(s-\frac{1}{2}\right) \frac{\pi}{3} \cot (\pi s)+2 \log \frac{2}{\pi}+2 \frac{\zeta^{\prime}}{\zeta}(2-2 s)+2 \frac{\zeta^{\prime}}{\zeta}(2 s) \\
& +\frac{\Gamma^{\prime}}{\Gamma}(1-s)+\frac{\Gamma^{\prime}}{\Gamma}(s)+\frac{\Gamma^{\prime}}{\Gamma}\left(\frac{3}{2}-s\right)+\frac{\Gamma^{\prime}}{\Gamma}\left(s+\frac{1}{2}\right) \\
& +\frac{1}{4} \frac{\Gamma^{\prime}}{\Gamma}\left(\frac{1-s}{2}\right)+\frac{1}{4} \frac{\Gamma^{\prime}}{\Gamma}\left(\frac{s}{2}\right)-\frac{1}{4} \frac{\Gamma^{\prime}}{\Gamma}\left(\frac{1+s}{2}\right)-\frac{1}{4} \frac{\Gamma^{\prime}}{\Gamma}\left(\frac{2-s}{2}\right) \\
& +\frac{2}{9} \frac{\Gamma^{\prime}}{\Gamma}\left(\frac{s}{3}\right)+\frac{2}{9} \frac{\Gamma^{\prime}}{\Gamma}\left(\frac{1-s}{3}\right)-\frac{2}{9} \frac{\Gamma^{\prime}}{\Gamma}\left(\frac{s+2}{3}\right)-\frac{2}{9} \frac{\Gamma^{\prime}}{\Gamma}\left(\frac{3-s}{3}\right)
\end{aligned}
$$

where $\zeta(s)$ is the Riemann zeta function and $\Gamma(s)$ is the Γ-function.
The position and the multiplicities of the zeros and poles of $Z(s)$ are well-known (cf. Venkov [12] and p. 141 of Kurokawa [9]). In particular, we put

$$
A_{o}=\lim _{s \rightarrow-\frac{1}{2}}\left(\frac{Z^{\prime}}{Z}(s)+\frac{1}{s+\frac{1}{2}}\right)
$$

and

$$
B_{o}=\lim _{s \rightarrow 0}\left(\frac{Z^{\prime}}{Z}(s)+\frac{1}{s}\right)
$$

From the above functional equation it is easily shown that

$$
\begin{aligned}
A_{o}= & -\frac{Z^{\prime}}{Z}\left(\frac{3}{2}\right)+2\left(\frac{\zeta^{\prime}}{\zeta}(3)-\frac{\zeta^{\prime}}{\zeta}(2)\right)+2 \log 2+\frac{10}{3}+\frac{\Gamma^{\prime}}{\Gamma}\left(\frac{3}{2}\right)+\frac{\Gamma^{\prime}}{\Gamma} \\
& +\frac{1}{2}\left(\frac{\Gamma^{\prime}}{\Gamma}\left(\frac{3}{4}\right)-\frac{\Gamma^{\prime}}{\Gamma}\left(\frac{5}{4}\right)\right)+\frac{2}{9}\left(\frac{\Gamma^{\prime}}{\Gamma}\left(\frac{5}{6}\right)-\frac{\Gamma^{\prime}}{\Gamma}\left(\frac{7}{6}\right)\right)
\end{aligned}
$$

and

$$
B_{o}=-\lim _{s \rightarrow 0}\left(\frac{Z^{\prime}}{Z}(1-s)+\frac{1}{s}\right)+2 \frac{\Gamma^{\prime}}{\Gamma}(1)+2 \frac{\Gamma^{\prime}}{\Gamma}\left(\frac{1}{2}\right)
$$

$$
+\frac{2}{9} \frac{\Gamma^{\prime}}{\Gamma}\left(\frac{1}{3}\right)-\frac{2}{9} \frac{\Gamma^{\prime}}{\Gamma}\left(\frac{2}{3}\right)+\frac{5}{3}+2 \frac{\zeta^{\prime}}{\zeta}(2)+4 \log 2
$$

where we have

$$
\lim _{s \rightarrow 0}\left(\frac{Z^{\prime}}{Z}(1-s)+\frac{1}{s}\right)=1+\int_{1}^{\infty} \frac{\sum_{N(P) \leq y} \tilde{\Lambda}(P)-y}{y^{2}} d y
$$

Now our result may be stated as follows.
Theorem. For $X>1$, we have

$$
\begin{aligned}
\int_{0}^{X} \sum_{n \leq y} \Lambda(n) d y= & \frac{X^{2}}{2} \Re\left(\sum_{r_{j}>0} \frac{X^{2 i r_{j}}}{\left(\frac{1}{2}+i r_{j}\right)\left(1+i r_{j}\right)}\right)-\frac{1}{2} \int_{0}^{X}\left(\sum_{N(P) \leq y^{2}} \tilde{\Lambda}(P)-y^{2}\right) d y \\
& -X \log X+X\left(\frac{1}{2} B_{o}+1-\log 2 \pi\right)+\log X \\
& +\log 2 \pi-\frac{1}{2} A_{o}+C_{o}-\frac{\zeta^{\prime}}{\zeta}(2)+G(X)
\end{aligned}
$$

where A_{o} and B_{o} are defined above, C_{o} is the Euler constant and we put

$$
\begin{aligned}
G(X)= & \sum_{k=1}^{\infty} \frac{X^{-2 k}}{k(2 k+1)}-\sum_{k=1}^{\infty} \frac{X^{1-2 k}}{k(2 k-1)} \\
& +\frac{1}{2} X^{3} \sum_{\substack{k=2 \\
k=1(6)}}^{\infty} \frac{X^{-2 k}}{(k-1)(2 k-3)}\left(2\left[\frac{k}{6}\right]-1\right) \\
& +\frac{1}{2} X^{3} \sum_{\substack{k=2 \\
k \neq 1(6)}}^{\infty} \frac{X^{-2 k}}{(k-1)(2 k-3)}\left(2\left[\frac{k}{6}\right]+1\right) .
\end{aligned}
$$

We shall prove our theorem in a standard way (cf. Ingham [6] and Hejhal [4]) and some of the details and references will be omitted.
§2. Proof of Theorem. Let N be a sufficiently large integer. We can choose $T=T_{N}$ in $N \leq T \leq N+1$ such that $Z(s)$ has no zeros or poles in $|\mathfrak{J s}-T| \leq \frac{C}{T}$ with some positive constant C. Let $b=1+\delta$ with $\delta=\frac{1}{\log T}$. We shall evaluate the integral

$$
I \equiv \frac{1}{2 \pi i} \int_{b-i T}^{b+i T} \frac{Z^{\prime}}{Z}(s) \frac{X^{2 s+1}}{s(2 s+1)} d s
$$

We have on one hand

$$
\begin{aligned}
I= & X \sum_{\{P\}} \tilde{\Lambda}(P) \frac{1}{2 \pi i} \int_{b-i T}^{b+i T} \frac{\left(\frac{\mathrm{X}}{\sqrt{N(P)}}\right)^{2 s}}{s(2 s+1)} d s=X \sum_{N(P) \leq X^{2}} \tilde{\Lambda}(P)\left(1-\frac{\sqrt{N(P)}}{X}\right) \\
& +O\left(\frac{X}{T} \sum_{\{P\}} \tilde{\Lambda}(P)\left(\frac{X}{\sqrt{N(P)}}\right)^{2 b} \min \left(1, \frac{1}{T\left|\log \frac{X}{\sqrt{N(P)}}\right|}\right)\right)=I_{1}+I_{2}, \text { say }
\end{aligned}
$$

It is easily seen that

$$
\begin{gathered}
I_{1}=\int_{0}^{X} \sum_{N(P) \leq y^{2}} \tilde{\Lambda}(P) d y \\
I_{2} \ll \frac{X^{1+2 b}}{T}\left(\sum_{\substack{N(P) \leq \frac{X^{2}}{2} \\
N(P) \geq 2 X^{2}}}+\sum_{\frac{X^{2}}{2} \leq N(P) \leq X^{2}-h}+\sum_{X^{2}-h \leq N(P) \leq X^{2}+h}+\sum_{X^{2}+h \leq N(P) \leq 2 X^{2}}\right)
\end{gathered}
$$

$$
\cdot \frac{\tilde{\Lambda}(P)}{N(P)^{1+\delta}} \min \left(1, \frac{1}{T \left\lvert\, \log \frac{X}{\sqrt{N(P)}}\right.}\right)=I_{3}+I_{4}+I_{5}+I_{6}, \text { say },
$$

where we take $h=X^{\frac{35}{24}+\varepsilon}$

$$
\begin{aligned}
I_{4} & <\frac{X^{3}}{T^{2}} \sum_{X^{2}} \frac{\tilde{\Lambda}(P)}{X^{2} \leq N(P) \leq X^{2}-h} \\
& \ll \frac{X^{3}}{T^{2}} \sum_{1 \leq m \ll \frac{X^{2}}{h}} \frac{1}{m h}(P) \\
& \ll \frac{X^{3}}{T^{2}} \sum_{1 \leq m \ll \frac{X^{2}}{h}} \frac{1}{m h}\left(h+X^{\frac{35}{24}-\varepsilon}\right) \ll \frac{X^{3}}{T^{2}} \log X .
\end{aligned}
$$

Similarly, we get, using the prime geodesic theorem stated above,

$$
I_{2} \ll \frac{X^{3+2 \delta}}{T^{2}} \log T+\frac{X^{3}}{T^{2}} \log X+\frac{X^{\frac{59}{24}+\varepsilon}}{T}
$$

Thus we get

$$
I=\int_{0}^{X} \sum_{N(P) \leq y^{2}} \tilde{\Lambda}(P) d y+O\left(\frac{X^{3+2 \delta}}{T^{2}} \log T+\frac{X^{3}}{T^{2}} \log X+\frac{X^{\frac{59}{24}+\varepsilon}}{T}\right) .
$$

On the other hand, by Cauchy's theorem,

$$
\begin{aligned}
I= & I_{7}+\frac{X^{3}}{3}+\frac{1}{2} \sum_{\left|r_{j}\right| \leq T, j \geq 1} \frac{X^{2+2 i r_{j}}}{\left(\frac{1}{2}+i r_{j}\right)\left(1+i r_{j}\right)}+2 \sum_{|r| \leq 2 T} \frac{X^{\rho+1}}{\rho(\rho+1)}-X^{2} \\
& +X^{3} \sum_{2 \leq k \leq D+1} \frac{X^{-2 k}}{(1-k)(2-2 k+1)}\left(2\left[\frac{k}{6}\right]-1\right) \\
& +X^{3} \sum_{\substack{2 \leq k \leq D(6)}} \frac{X^{-2 k}}{(1-k \neq(16)(2-2 k+1)}\left(2\left[\frac{k}{6}\right]+1\right) \\
& +X^{2} \sum_{2 \leq l \leq D+\frac{1}{2}} \frac{X^{-2 l}}{\left(\frac{1}{2}-l\right)(2-2 l)}+X\left(B_{o}+2-2 \log X\right) \\
& -A_{o}+2+2 \log X,
\end{aligned}
$$

where ρ runs over the non-trivial zeros of $\zeta(s), \gamma=\mathfrak{\Im} \rho, D$ is sufficiently large and not near any "integer" or "integer- $\frac{1}{2}$ ", p. 141 of Kurokawa [9] is used and we put

$$
\begin{aligned}
I_{7} & =-\frac{1}{2 \pi i}\left(\int_{b+i T}^{-D+i T}+\int_{-D+i T}^{-D-i T}+\int_{-D-i T}^{b-i T}\right) \frac{Z^{\prime}}{Z}(s) \frac{X^{2 s+1}}{s(2 s+1)} d s \\
& =I_{8}+I_{9}+I_{10}, \text { say. }
\end{aligned}
$$

To estimate these terms, we shall use the functional equation of $Z(s)$ as stated in the introduction.

We get first

$$
I_{9} \ll X^{1-2 D} .
$$

We decompose I_{8} further as follows.

$$
I_{8}=\frac{1}{2 \pi i}\left(\int_{\frac{1}{2}+\delta+i T}^{b+i T}+\int_{\frac{1}{2}-\delta+i T}^{\frac{1}{2}+\delta+i T}+\int_{-1+i T}^{\frac{1}{2}-\delta+i T}+\int_{-D+i T}^{-1+i T}\right) \frac{Z^{\prime}}{Z}(s) \frac{X^{2 s+1}}{s(2 s+1)} d s
$$

$$
=I_{11}+I_{12}+I_{13}+I_{14}, \text { say. }
$$

We get first

$$
I_{11} \ll \int_{\frac{1}{2}+\delta}^{b} T^{2 \max (0,1-\sigma)} \log T \frac{X^{2 \sigma+1}}{T^{2}} d \sigma \ll \frac{X^{3+2 \delta} \log T}{T}
$$

To estimate I_{12}, we use the following expression of $\frac{Z^{\prime}}{Z}(s)$:

$$
\frac{Z^{\prime}}{Z}(\sigma+i T)=\sum_{\tilde{\rho}}^{*} \frac{1}{\sigma+i T-\tilde{\rho}}+O(T),
$$

where $\tilde{\rho}$ runs over all the zeros of $Z(s)$ in the critical strip such that

$$
\left|\tilde{\rho}-\frac{6}{5}-i T\right| \leq 2
$$

Now

$$
\begin{aligned}
I_{12} & =\frac{1}{2 \pi i} \sum_{\tilde{\rho}}^{*} \int_{\frac{1}{2}-\delta+i T}^{\frac{1}{2}+\delta+i T} \frac{X^{2 s+1}}{(s-\tilde{\rho}) s(2 s+1)} d s+O\left(\frac{X^{2+2 \delta}}{T \log T}\right) \\
& \ll \frac{X^{2+2 \delta}}{T} \log T . \\
I_{13} & =\frac{1}{2 \pi i} \int_{-1+i T}^{\frac{1}{2}-\delta+i T}\left(-\frac{Z^{\prime}}{Z}(1-s)+O(T)\right) \frac{X^{2 s+1}}{s(2 s+1)} d s \\
& \ll \int_{\frac{1}{2}+\delta}^{1} T^{2(1-\sigma)} \log T \frac{X^{3-2 \sigma}}{T^{2}} d \sigma+\frac{X^{2-2 \delta}}{T} \ll \frac{X^{2-2 \delta}}{T} .
\end{aligned}
$$

Using the functional equation of $Z(s)$ as stated in the introduction, we get

$$
I_{14} \ll \frac{1}{X T} .
$$

Thus we get

$$
S_{8}=O\left(\frac{X^{3+2 \delta}}{T} \log T\right)
$$

Estımating S_{10} in the same manner, we get

$$
I_{7}=O\left(X^{1-2 D}\right)+O\left(\frac{X^{3+2 \delta}}{T} \log T\right)
$$

Consequently, letting D tend to ∞, we get

$$
\begin{aligned}
I= & \frac{X^{3}}{3}+\frac{1}{2} \sum_{\left|r_{j}\right| \leq T, j \geq 1} \frac{X^{2+2 i r_{j}}}{\left(\frac{1}{2}+i r_{j}\right)\left(1+i r_{j}\right)}+2 \sum_{|r| \leq 2 T} \frac{X^{\rho+1}}{\rho(\rho+1)}-X^{2} \\
& +X^{3} \sum_{\substack{k=2 \\
k=1(6)}}^{\infty} \frac{X^{-2 k}}{(1-k)(2-2 k+1)}\left(2\left[\frac{k}{6}\right]-1\right) \\
& +X^{3} \sum_{\substack{k=2 \\
k \neq 1(6)}}^{\infty} \frac{X^{-2 k}}{(1-k)(2-2 k+1)}\left(2\left[\frac{k}{6}\right]+1\right) \\
& +X^{2} \sum_{l=2}^{\infty} \frac{X^{-2 l}}{\left(\frac{1}{2}-l\right)(2-2 l)}+X\left(B_{o}+2-2 \log X\right) \\
& -A_{o}+2+2 \log X+O\left(\frac{X^{3+2 \delta}}{T} \log T\right) .
\end{aligned}
$$

Letting N tend to ∞ and combining two expressions of I, we get first the following theorem.

Theorem. For $X>1$, we have

$$
\begin{aligned}
\sum_{\rho} \frac{X^{\rho+1}}{\rho(\rho+1)}= & \frac{1}{2} \int_{0}^{X}\left(\sum_{N(P) \leq y^{2}} \tilde{\Lambda}(P)-y^{2}\right) d y-\frac{1}{2} \Re\left(\sum_{r_{j}>0} \frac{X^{2+2 i r_{j}}}{\left(\frac{1}{2}+i r_{j}\right)\left(1+i r_{j}\right)}\right) \\
& +\frac{1}{2} X^{2}-\frac{1}{2} X^{3} \sum_{\substack{k=2 \\
k=1(6)}}^{\infty} \frac{X^{-2 k}}{(1-k)(2-2 k+1)}\left(2\left[\frac{k}{6}\right]-1\right) \\
& -\frac{1}{2} X^{3} \sum_{\substack{k=2 \\
k \neq 1(6)}}^{\infty}(1-k)(2-2 k+1) \\
& \left.\left.-\frac{X^{2}}{4} \sum_{l=2}^{\infty} \frac{X^{-2 l}}{\left(\frac{1}{2}-l\right)(1-l)}-\frac{k}{6}\right]+1\right) \\
& -\frac{1}{2}\left(-A_{o}+2+2 \log X\right) .
\end{aligned}
$$

Since, by p. 73 of Ingham [6],

$$
\sum_{\rho} \frac{X^{\rho+1}}{\rho(\rho+1)}=\frac{X^{2}}{2}-\int_{0}^{X} \sum_{n \leq y} \Lambda(n) d y-X \frac{\zeta^{\prime}}{\zeta}(0)+\frac{\zeta^{\prime}}{\zeta}(-1)-\sum_{k=1}^{\infty} \frac{X^{1-2 k}}{2 k(2 k-1)}
$$

we get our theorem as stated in the introduction.

References

[1] A. Fujii: Zeros, eigenvalues and arithmetic. Proc. Japan Acad., 60A, 22-25 (1984).
[2] -: A zeta function connected with eigenvalues of the Laplace-Beltrami operator on the fundamental domain of the modular group. Nagoya J. of Math., 60, 22-25 (1984).
[3] -: Arithmetic of some zeta functions connected with the eigenvalues of the Laplace Beltrami operator. Advanced Studies in Pure Math., 13, 237-260 (1988).
$[4]$ D. Hejhal: The Selberg trace formula for $\operatorname{PSL}(2, R) .1$ (2). Lect. Notes in Math., vol. 548 (1002), Berlin, New York, 1976 (1983).
[5] H. Huber: Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen. II. Math. Ann., 142, 463-464 (1961).
[6] A. E. Ingham: The Distribution of Prime Numbers. Cambridge Univ. Press (1990).
[7] H. Iwaniec: Prime geodesic theorem. Crelle J., 349, 136-159 (1984).
[8] N. Kurokawa: Parabolic components of zeta functions. Proc. Japan Acad., 64A, 21-24 (1988).
[9] -: Special values of Selberg zeta function. Contemporary Math., 83, 133-150 (1989).
[10] A. Selberg: Collected Papers. Springer-Verlag, vol. 1 (1989); vol. 2 (1991).
[11] A. B. Venkov: A formula for the Chebyshev ψ-function. Math. Notes, 23, 271-274 (1978).
[12] -: On the remainder term in the Weyl-Selberg asymptotic formula. J. of Soviet Math., 17, 2083-2097 (1981).
[13] M. F. Vigneras: L'equation fonctionelle de la fonction zeta de Selberg du groupe modulaire $\operatorname{PSL}(2, Z)$. Astérique, 61, 235-249 (1979).

