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0. Introduction. The regularity theorem for a system of ordinary
linear differential equations has a long history. Malgrange [17] has shown
the regular singularity of the system is equivalent to the convergence of its

formal power series solutions. Ramis [18] extended the results to the irregu-

lar singular case, that is, the irregularity is characterized by the Gevrey
growth order of its formal power series solutions. In the real case, Komatsu
[15] obtained a similar result comparing ultra-distribution and hyperfunc-
tion solutions.

One of the important problems is to extend these results to the higher

dimensional case. The deep study of holonomie systems due to Kashiwara-
Kawai [10] and Kashiwara [9] established the regularity theorems for holono-
mie modules in the regular singular ease. The purpose of this paper is to
give several regularity theorems for the irregular holonomie modules.

1. Preliminary. Let X be a complex manifold of dimension n and 7c:

T*X X its cotangent bundle. Set "/’*X- T’X\ Tx*X and denote by the
restriction of zc to *X. We choose a local coordinate system of X as (xl,...,
xn) and that of T*X as (xl,...,x,;,...,n). T*X is endowed with the
sheaf $x of micro-differential operators of infinite order constructed by
Sato-Kawai-Kashiwara [19].

We denote by $x (resp. $x(m))the subsheaf of $x consisting of
micro-differential operators of finite order (resp. micro-differential oper-
ators of order at most m). For the theory of $x, see [19] and Schapira [20].

(s)Now we define the subsheaf ’x of micro-differential operators of Gevrey
growth order (s) for any s (1, oo).

Definition 1.1. For an open subset U of T’X, a sum ,P(x, )
(s)8x(U) belongs to ’x (U) if and only if {Pi)iN satisfies the following estimate

(1.1); for any compact subset K of U, there exists a positive constant CK such

(1.1) supKlP(x, )lE C (i--> 0).

(oo)For convenience, we set 8)" 8c and x 8x.
Next we review briefly the definition of the sheaf of holomorphic micro-

functions in Gevrey class. Let Y be a complex submanifold of X and TX its
conormal bundle. Then we define the subsheaf rlx of the holomorphic
microfunctions r[x as

(s) R,f
YtX x Ylx

that
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R,f
where (Y]X is the sheaf of tempered holomorphic microfunctions (for the
definition, see Androni’kof [1,2]). Remark that these sheaves are also defined
by the functor T--/2. (), which is a natural extension of tempered micro-

localization functor T-/2. () constructed by Andronikof [1,2],
-1 (s)

x v v,T--/2x (Oxx) ( 9x[dimX]
where " *X-’ P*X is a canonical projection, and

(R ,(s) (s)

fix T-/Zr (gx)[codim Y].

For the definition and properties of the Gevrey microlocalization functor,
refer to Honda [5].

Let V be a regular or maximally degenerate involutive submanifold of
codimension d > 1 in "*X T’X\ *TxX. We define the subsheaf Iv
$x(1) by

Iv "= {P $x(1) 6(P) Iv -= 0}.
Here we denote the symbol map of degree 1 by 61(’). Now we define the
sheaf of rings $va) in *X for a rational number a [1, oo).

8:,.= $x((1-- a)n)a Iv.

In case a-- 1, this sheaf coincides with the sheaf v defined in

Kashiwara-Oshima [10] and [12].
(a)We list up some main properties of the sheaf ’v

(a)(1) ’v is a subring of $x.
(a) (a)

(2) Sx(0) c ’v and Sv is a left and right Sx(0) module.
(a)

(3) Sv is a sheaf of Noetherian ring, and any coherent Sx module is
(a)pseudocoherent over ,v

(a) (a)(4) If P $ then its formal ajoint operator P* belongs to
Let / be a holonomic Sx modules in a neighborhood of p *X. We

first define the weak irregularity of at a smooth point of its support.
Given p supp ()se Tx X.

Definition 1.2. has weak irregularity at most a at p if and only if /

satisfies the following conditions.
There exist an open neighborhood U of p, maximally degenerate involu-

live submanifold V with its singular locus supp(/), and an $v) module /0
on U which generates / over Sx and is finitely generated over Sx(0) at any
point of a dense subset in supp(/) U.

Next we define weak irregularity in the general case.
Definition 1.3. (1) A holonomic Sx module / has weak irregularity at

most a at p if and only if there exist an open neighborhood U of p and a

closed analytic subset Z supp()s.e with codim Z _> dimX + 1 such
that has weak irregularity at most a at any point in U\ Z *X.
(2) A holonomic x module A has weak irregularity at most a if and only if

Sx ) xA has irregularity at most a at any point in *X.
2. Statement of main theorem.
Main theorem. Let U T*X be a C conic open set, l a holonomic Sx

modules on U and a >- 1 a rational number. Then the following conditions (1),
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(2) and (3) are equivalent.
(1) There exists a holonomic 8x module dPlre with regular singularities

satisfying
(s)

d ,q(s) ( dregX @ 8x X 8x

in U for all s 1, -- 1
(2) For any submanifold Y X and any s 1,

if-- 1 we have

R Hom(, R,(s R
rx [v R Hom$(, grtx) Iv.

(3) has weak irregularity at most a in U.
Sketch ofproofi (3) implies (1), as was shown in [4].
We will show (1) implies (2). Employing a quantized contanct trans-

formation, we may assume Y= {x 0} and p (0;dXl). On account of
the condition (1), it is enough to show that for a holonomic right x module

with regular singularity, R
L gftx

,n,(s O.
Y[X

NNow we define a mapf "XXby x =x and x =xQ’ 2) for a posi-
tive integer N. Then the classical ramification method (cf. [11; Lemma 4.1.5])
implies for a large N,
(2.1) char(HLf*) Y x T*X

x
in a neighborhood of p, and

supp(HLf*) Y
for any k 1. Moreover we have the isomorphism

R
L fix L

(2.2) n,(s (Lf*)( C
Y[X

where C is the Sx module induced from
gtx

by a formal coordinateR,(s)
Y [x

change with the map f Under the situation (2.1), we may assume Lf* has
a simple form on account of [12; Theorem 3.1], and we can show the right
handside of (2.2) is equal to zero by a calculation. By reducing the problem
to one dimensional case on account of the Cauchy formula for Sx modules.
We can prove that (2) implies (3). For the details of the proof, see [6].

Using the same technique as above, we can prove the following corol-
lary.

Corollary 1. Let M be a real analytic manifold with its complexification X.
If be a holonomic $x modules at p T*X with weak irregularity at most a,

then we have the isomorphism for all s 1,
_

1"
R Hom(, (s, R Hom( )
(s,where and (resp. is the sheaf of microfnctions (resp. microfunctions of

Gevrey class (s) ).
In the case that is regular singular and the solution sheaf is tempered
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microfunctions, this result is already obtained by Andronikof [3]. Finally we
remark that applying the functor r. to the result (2) of the main theorem, we
can recover the results of Laurent [16].

Corollary 2 [16]. Let l be a holonomic gx modules at p T*X with weak
irregularity at most . Then we have the following isomorphisms for all s

1,
_

1 and for any submanifold Y c X,

R Hom( (s)
’vlx, R Homa(/ g
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