26. Regularity Theorems for Holonomic Modules

By Naofumi HONDA

Department of Mathematics, Hokkaido University (Communicated by Kiyosi ITÔ, M. J. A., May 12, 1993)

0. Introduction. The regularity theorem for a system of ordinary linear differential equations has a long history. Malgrange [17] has shown the regular singularity of the system is equivalent to the convergence of its formal power series solutions. Ramis [18] extended the results to the irregular singular case, that is, the irregularity is characterized by the Gevrey growth order of its formal power series solutions. In the real case, Komatsu [15] obtained a similar result comparing ultra-distribution and hyperfunction solutions.

One of the important problems is to extend these results to the higher dimensional case. The deep study of holonomic systems due to Kashiwara-Kawai [10] and Kashiwara [9] established the regularity theorems for holonomic modules in the regular singular case. The purpose of this paper is to give several regularity theorems for the irregular holonomic modules.

1. **Preliminary.** Let X be a complex manifold of dimension n and π : $T^*X \to X$ its cotangent bundle. Set $\mathring{T}^*X = T^*X \setminus T_X^*X$ and denote by $\mathring{\pi}$ the restriction of π to \mathring{T}^*X . We choose a local coordinate system of X as (x_1, \ldots, x_n) and that of T^*X as $(x_1, \ldots, x_n; \xi_1, \ldots, \xi_n)$. T^*X is endowed with the sheaf \mathscr{E}_X^{∞} of micro-differential operators of infinite order constructed by Sato-Kawai-Kashiwara [19].

We denote by \mathscr{E}_X (resp. $\mathscr{E}_X(m)$) the subsheaf of \mathscr{E}_X^{∞} consisting of micro-differential operators of finite order (resp. micro-differential operators of order at most m). For the theory of \mathscr{E}_X , see [19] and Schapira [20]. Now we define the subsheaf $\mathscr{E}_X^{(s)}$ of micro-differential operators of Gevrey growth order (s) for any $s \in (1, \infty)$.

Definition 1.1. For an open subset U of T^*X , a sum $\sum_{i \in \mathbb{Z}} P_i(x, \xi) \in \mathscr{B}^{\infty}_X(U)$ belongs to $\mathscr{B}^{(s)}_X(U)$ if and only if $\{P_i\}_{i \in \mathbb{N}}$ satisfies the following estimate (1.1); for any compact subset K of U, there exists a positive constant C_K such that

(1.1)
$$\sup_{K} |P_{i}(x, \xi)| \leq \frac{C_{K}^{i}}{i!^{s}} \quad (i \geq 0).$$

For convenience, we set $\mathscr{E}_X^{(1)} := \mathscr{E}_X^{\infty}$ and $\mathscr{E}_X^{(\infty)} := \mathscr{E}_X$.

Next we review briefly the definition of the sheaf of holomorphic microfunctions in Gevrey class. Let Y be a complex submanifold of X and T_Y^*X its conormal bundle. Then we define the subsheaf $\mathscr{C}_{Y|X}^{\mathbf{R},(s)}$ of the holomorphic microfunctions $\mathscr{C}_{Y|X}^{\mathbf{R}}$ as

$$\mathscr{C}_{Y|X}^{\boldsymbol{R},(s)} := \mathscr{E}_{X}^{(s)} \mathscr{C}_{Y|X}^{\boldsymbol{R},f}$$

where $\mathscr{C}_{Y|X}^{R,f}$ is the sheaf of tempered holomorphic microfunctions (for the definition, see Andronikof [1,2]). Remark that these sheaves are also defined by the functor $T - \mu^{(s)}_{\cdot}(\mathcal{O})$, which is a natural extension of tempered microlocalization functor $T - \mu$.(\mathcal{O}) constructed by Andronikof [1,2],

$$\mathscr{E}_{X}^{(s)} := \tau^{-1} \tau_{*} T - \mu_{X}^{(s)}(\mathscr{O}_{X \times X}) \otimes \mathscr{Q}_{X}[\dim X]$$

where $\tau : \mathring{T}^{*} X \to P^{*} X$ is a canonical projection, and
 $\mathscr{C}_{Y|X}^{\mathbf{R},(s)} := T - \mu_{Y}^{(s)}(\mathscr{O}_{X})[\operatorname{codim} Y].$

For the definition and properties of the Gevrey microlocalization functor, refer to Honda [5].

Let V be a regular or maximally degenerate involutive submanifold of codimension $d \ge 1$ in $\mathring{T}^*X := T^*X \setminus T^*_XX$. We define the subsheaf $I_v \subset$ $\mathscr{E}_{x}(1)$ by

$$I_{v} := \{ P \in \mathscr{E}_{x}(1) ; \delta_{1}(P) \mid_{v} \equiv 0 \}.$$

Here we denote the symbol map of degree 1 by $\delta_1(\cdot)$. Now we define the sheaf of rings $\mathscr{E}_{V}^{(\sigma)}$ in $\mathring{T}^{*}X$ for a rational number $\sigma \in [1, \infty)$.

$$\mathscr{E}_{V}^{(\sigma)} := \sum_{n \geq 0} \mathscr{E}_{X} \left(\frac{(1-\sigma)n}{\sigma} \right) I_{V}^{n}.$$

In case $\sigma = 1$, this sheaf coincides with the sheaf \mathscr{E}_v defined in Kashiwara-Oshima [10] and [12].

We list up some main properties of the sheaf $\mathscr{E}_{\nu}^{(\sigma)}$.

(1) $\mathscr{E}_{V}^{(\sigma)}$ is a subring of \mathscr{E}_{X} . (2) $\mathscr{E}_{X}(0) \subset \mathscr{E}_{V}^{(\sigma)}$, and $\mathscr{E}_{V}^{(\sigma)}$ is a left and right $\mathscr{E}_{X}(0)$ module.

(3) $\mathscr{E}_V^{(\sigma)}$ is a sheaf of Noetherian ring, and any coherent \mathscr{E}_X module is pseudocoherent over $\mathscr{E}_{V}^{(\sigma)}$.

(4) If $P \in \mathscr{E}_{V}^{(\sigma)}$, then its formal ajoint operator P^{*} belongs to $\mathscr{E}_{V}^{(\sigma)}$. Let \mathscr{M} be a holonomic \mathscr{E}_{X} modules in a neighborhood of $p \in \mathring{T}^{*}X$. We first define the weak irregularity of $\mathcal M$ at a smooth point of its support. Given $p \notin \text{supp } (\mathcal{M})_{sing} \cup T_X^* X$.

Definition 1.2. \mathcal{M} has weak irregularity at most σ at p if and only if \mathcal{M} satisfies the following conditions.

There exist an open neighborhood U of p, maximally degenerate involulive submanifold V with its singular locus supp(\mathcal{M}), and an $\mathscr{E}_{V}^{(\sigma)}$ module \mathcal{M}_{0} on U which generates \mathcal{M} over \mathscr{E}_X and is finitely generated over $\mathscr{E}_X(0)$ at any point of a dense subset in $supp(\mathcal{M}) \cap U$.

Next we define weak irregularity in the general case.

Definition 1.3. (1) A holonomic \mathscr{E}_X module \mathscr{M} has weak irregularity at most σ at p if and only if there exist an open neighborhood U of p and a closed analytic subset $Z \supset \operatorname{supp}(\mathcal{M})_{sing}$ with $\operatorname{codim} Z \ge \dim X + 1$ such that \mathcal{M} has weak irregularity at most σ at any point in $U \setminus Z \cap \mathring{T}^* X$.

(2) A holonomic $\mathscr{D}_{\mathbf{X}}$ module \mathscr{N} has weak irregularity at most σ if and only if $\mathscr{E}_X \otimes_{\mathscr{D}_Y} \mathscr{N}$ has irregularity at most σ at any point in \mathring{T}^*X .

2. Statement of main theorem.

Main theorem. Let $U \subseteq T^*X$ be a C^{\times} conic open set, \mathcal{M} a holonomic \mathscr{E}_X modules on U and $\sigma \geq 1$ a rational number. Then the following conditions (1),

(2) and (3) are equivalent.

(1) There exists a holonomic \mathscr{E}_X module \mathscr{M}_{reg} with regular singularities satisfying

$$\mathscr{E}_{X}^{(s)} \otimes_{\mathscr{E}_{X}} \mathscr{M} \simeq \mathscr{E}_{X}^{(s)} \otimes_{\mathscr{E}_{X}} \mathscr{M}_{reg}$$

in U for all $s \in [1, -\sigma]$.

(2) For any submanifold
$$Y \subseteq X$$
 and any $s \in \left[1, \frac{\sigma}{\sigma - 1}\right]$, we have

$$\boldsymbol{R} \operatorname{Hom}_{\mathscr{E}_{X}}(\mathscr{M}, \, \mathscr{C}_{Y|X}^{\boldsymbol{R}, (s)}) \, \big|_{U} \simeq \boldsymbol{R} \operatorname{Hom}_{\mathscr{E}_{X}}(\mathscr{M}, \, \mathscr{C}_{Y|X}^{\boldsymbol{R}}) \, \big|_{U}.$$

(3) \mathcal{M} has weak irregularity at most σ in U.

Sketch of proof. (3) implies (1), as was shown in [4].

We will show (1) implies (2). Employing a quantized contanct transformation, we may assume $Y = \{x_1 = 0\}$ and $p = (0; dx_1)$. On account of the condition (1), it is enough to show that for a holonomic right \mathcal{D}_X module \mathcal{M} with regular singularity,

$$\mathcal{M} \bigotimes_{\mathcal{D}_{X}}^{L} \frac{\mathscr{C}_{Y|X_{p}}^{R}}{\mathscr{C}_{Y|X_{p}}^{R,(s)}} = 0$$

Now we define a map $f : X \to X$ by $x_1 = x_1^N$ and $x_j = x_j (j \ge 2)$ for a positive integer N. Then the classical ramification method (cf. [11; Lemma 4.1.5]) implies for a large N,

(2.1)
$$\operatorname{char}(H^{0}Lf^{*}\mathcal{M}) \subset Y \underset{\mathbf{x}}{\times} T^{*}X$$

in a neighborhood of p, and

$$\operatorname{supp}(H^{k}Lf^{*}\mathcal{M}) \subset Y$$

for any $k \ge 1$. Moreover we have the isomorphism

(2.2)
$$\mathcal{M}_{\pi(p)} \overset{L}{\otimes}_{\mathcal{D}_{X}} \frac{\mathscr{C}_{Y|X_{p}}^{\mathbf{n}}}{\mathscr{C}_{Y|X_{p}}^{\mathbf{R},(s)}} \simeq (Lf^{*}\mathcal{M})_{\pi(p)} \overset{L}{\otimes}_{\mathcal{D}_{X}} C$$

where C is the \mathscr{E}_{X_p} module induced from $\frac{\mathscr{C}_{Y|X_p}^R}{\mathscr{C}_{Y|X_p}^R}$ by a formal coordinate

change with the map f. Under the situation (2.1), we may assume $Lf^*\mathcal{M}$ has a simple form on account of [12; Theorem 3.1], and we can show the right handside of (2.2) is equal to zero by a calculation. By reducing the problem to one dimensional case on account of the Cauchy formula for \mathscr{B}_X modules. We can prove that (2) implies (3). For the details of the proof, see [6].

Using the same technique as above, we can prove the following corollary.

Corollary 1. Let M be a real analytic manifold with its complexification X. If \mathcal{M} be a holonomic \mathscr{E}_X modules at $p \in T^*X$ with weak irregularity at most σ , then we have the isomorphism for all $s \in [1, \frac{\sigma}{\sigma - 1}]$,

$$\boldsymbol{R}$$
 Hom _{$\mathscr{B}_{\boldsymbol{X}}$} $(\mathscr{M}, \mathscr{C}_{\boldsymbol{M}}^{(s)}) \simeq \boldsymbol{R}$ Hom _{$\mathscr{B}_{\boldsymbol{X}}$} $(\mathscr{M}, \mathscr{C}_{\boldsymbol{M}})$

where \mathscr{C}_{M} and (resp. $\mathscr{C}_{M}^{(s)}$) is the sheaf of microfunctions (resp. microfunctions of Gevrey class (s)).

In the case that $\mathcal M$ is regular singular and the solution sheaf is tempered

No. 5]

N. HONDA

microfunctions, this result is already obtained by Andronikof [3]. Finally we remark that applying the functor τ_* to the result (2) of the main theorem, we can recover the results of Laurent [16].

Corollary 2 [16]. Let \mathcal{M} be a holonomic \mathscr{E}_X modules at $p \in T^*X$ with weak irregularity at most σ . Then we have the following isomorphisms for all $s \in [1, \frac{\sigma}{\sigma-1}]$ and for any submanifold $Y \subset X$, $\mathbf{R} \operatorname{Hom}_{\mathscr{E}_X}(\mathcal{M}, \mathscr{C}_{Y|X}^{(s)}) \simeq \mathbf{R} \operatorname{Hom}_{\mathscr{E}_X}(\mathcal{M}, \mathscr{C}_{Y|X}^{\infty}).$

References

- [1] E. Andronikof: Microlocalisation tempérée des distributions et des fonctions holomorphes. I.C.R.Acad. Sci., 303, 347-350 (1986).
- [2] ——: ditto. II. ibid., **304**, 511–514 (1987).
- [3] —: On the 𝒞[∞]-singularities of regular holonomic distributions. Ann. Inst. Fourier, 42, 695-704 (1992).
- [4] N. Honda: On the reconstruction theorem of holonomic modules in Gevrey classes. Publ. RIMS, Kyoto Univ., 27, 923-943 (1991).
- [5] : Microlocalization in Gevrey classes (in preparation).
- [6] —: Regularity theorems for holonomic modules (in preparation).
- [7] M. Kashiwara: On the maximally overdetermined systems of linear differential equations. I. Publ. RIMS, Kyoto Univ., 10, 563-579 (1975).
- [8] —: On the holonomic systems of linear differential equations. II. Inventiones Math., 49, 121-135 (1978).
- [9] —: The Riemann-Hilbert problem for holonomic systems. Publ. RIMS, Kyoto Univ., 20, 319-365 (1984).
- [10] M. Kashiwara and T. Kawai: On the holonomic systems of microdifferential equations. III. Publ. RIMS, Kyoto Univ., 17, 813-979 (1981).
- [11] —: Second microlocalization and asymptotic expansions. Lect. Notes Phys., 126, 21-76 (1980).
- [12] M. Kashiwara and T. Oshima: Systems of differential equations with regular singularities and their boundary value problems. Ann. of Math., 106, 145-200 (1977).
- [13] M. Kashiwara and P. Schapira: Microlocal study of sheaves. Astérisque, 128 (1985).
- [14] ----: Sheaves on manifolds. Grundlehren der Math., vol. 292, Springer-Verlag (1990).
- [15] H. Komatsu: On the regularity of hyperfunction solutions of linear ordinary differential equations with real analytic coeficients. J. Fac. Sci. Univ. Tokyo, Sec. IA, 20, 107-119 (1973).
- [16] Y. Laurent: Théorie de la deuxième microlocalisation dans le domine complexe. Progress in Mathematics, 53, Birkhäuser (1985).
- B. Malgrange: Sur les points singuliers des équations différentielles. Enseignement Math., 20, 147-176 (1974).
- [18] J. -P. Ramis: Devissage Gevrey. Asterisque, pp. 173-204 (1978).
- [19] M. Sato, T. Kawai and M. Kashiwara: Hyperfunctions and pseudodifferential equations. Lect. Notes in Math., vol. 287, Springer-Verlag, pp. 265-529 (1973).
- [20] P. Schapira: Microdifferential systems in the complex domain. Grundlehren der Math., vol. 269, Springer-Verlag (1985).