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Introduction. In this paper we show the following statement: Let &F
be a codimension-1 transversely oriented foliation of a closed oriented 3-
manifold M. The Godbillon-Vey invariant of & is zero if and only if & is
foliated cobordant to a codimension-1 transversely oriented foliation G of
a closed oriented 3-manifold N and there exists a sequence &G, of null-
cobordant codimension-1 foliations of N converging to G.

Two codimension-1 transversely oriented foliations (M, <F) and (N, G§)
of closed oriented n-manifolds are foliated cobordant if there exists a
codimension-1 transversely oriented foliation (W, ) of a compact oriented
(n+1)-manifold such that oW =(—M)UN, 4 is transverse to oW and the
restrictions J(|M and J(|N coincide with & and G, respectively. The
foliated cobordism classes form an additive group ¥#%,,. The foliations
(M, F) representing the zero of the foliated cobordism group are those
cobordant to the empty set. We say they are null-cobordant.

The Godbillon-Vey invariant for a codimension-1 transversely oriented
foliation & was defined as follows ([7]). Let o be a 1-form defining ¢F.
The integrability condition is the existence of 1-form 7 such that do=w/A7.
Then the 3-form »/\dy is closed and its cohomology class depends only on
the foliation &F. If & is a codimension-1 transversely oriented foliation of
a closed oriented 3-manifold M, then the Godbillon-Vey invariant is the
integral of this 3-form.

There are two properties which follow easily from the definition ([7]).
One is that this invariant depends only on the cobordism class of the folia-
tions. This is an easy consequence of the Stokes theorem. The other is
that this invariant varies continuously when we deform the foliation. The
reason is that the 1-form 5 can be taken to be the Lie derivative Lo,
where X is a vector field such that o(X)=1. The examples for these
continuous variations were given by Thurston ([15]), and hence we have a
surjective homomorphism GV: %0, ,—R. The natural question on the
injectivity is still an open question.

We can ask a weaker question. By the property of continuous varia-
tion of GV, if a foliation is approximated by null-cobordant foliations, its
GV is zero. Moreover, if a foliation is cobordant to such an approximable
foliation, then its GV is zero. Now the weaker question is whether the

*  This paper is dedicated to the memory of Itiro Tamura (1926-1991).
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converse is true. The above statement says the converse holds.

To give the precise statement and prove it, we need to enlarge the
domain of definition of the Godbillon-Vey invariant ([24]). We review it
in §1, and we give the precise statement of our main theorem. The proof
of our main theorem relies on a study of the group of piecewise linear
(PL) homeomorphisms of the real line in [26], which we review in § 2. We
give the proof of our main theorem in § 3.

§1. Main theorem. First we give the domain of definition of the
Godbillon-Vey invariant which we consider in this paper ([24]).

A foliated R-product with compact support over a suface 2 is a folia-
tion of the product 3 X R transverse to the fibers of the projection ¥ X R—2%
which coincides with the product foliation with leaves X X {x} outside a
compact set. (Foliated S'-products are defined similarly.) By considering
these foliated R-products with compact support over surfaces, the Godbillon-
Vey invariant gives rise to a 2-cocycle of the group of diffeomorphims of R
with compact support ([1]).

We formulate the domain of definition of the Godbillon-Vey 2-cocycle.

Let g be a real number not less than 1. For a function ¢ on R with
compact support, we put V,(p)=sup > ,|p(x,)—e(x;_)|’, where the su-
premum is taken over all finite subsets {x,, - - -, #;} (2, <---<x,) of R. We
call it the p-variation of ¢. The functions on R with compact support
whose p-variations are bounded form a normed linear space ¢{/, with res-
pect to the following g-norm ||| ||,: [|llelll,=V (e)"*.

Let G27#(R) be the group of Lipschitz homeomorphisms f with com-
pact support such that log f/(x—0) exist as elements of C{/,. This G*“#(R)
contains the group PL.R) of PL homeomorphisms of R with compact
support as well as the group G.*#(R) of diffeomorphisms of class C'**/# of
R with compact support.

We have the following proposition ([24]).

Proposition 1.1. G>Vs(R) (1<p) has the following right invariant
metric: For f,and f, of GZV*(R) (1< P), dist (f, f2)=||log (fio /7" (@ —0)|l[;.
There is a 2-cocycle GV for the group GE(R) (1<p<L2) which is an ex-
tension of the Godbillon-Vey cocycle, and (f,of,, f2)—>GV(f, f2) is con-
tinuous with respect to the above metric.

GV (f,, f2) is in fact the area enclosed by the curve (log (f,o /), log f})
in the Euclidean plane ([1], [10], [24]).

We also consider a similar group G*»“#(S") (1< g) as well as the groupoid
I'tve of germs of such homeomorphisms. We say a foliation is of class
CEve if it is a I'Ye-structure with local projections being smooth sub-
mersions ([9]).

Thus we can consider the family of foliations of class C»¥# with 1<f
<2 as a domain of definition of the Godbillon-Vey invariant. Note that
the family of foliations of class C»%# (1<p<2) contains the foliations of
class C'*# (1/>1/2) where Hurder and Katok defined the Godbillon-Vey
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invariant ([10]) as well as the transversely PL foliations where Ghys and
Sergiescu defined the discrete Godbillon-Vey invariant ([6], [4]). The defi-
nition of the 2-cocycle in Proposition 1.1 is an extension of both of these.
This domain of definition is almost optimal ([23], see also [22], [25]).

Now we can state our theorem.

Theorem 1.2. Let F be a codimension-1 transversely oriented folia-
tion of class C'** (1/2<a<1) of a closed oriented 3-manifold M. The
Godbillon-Vey invariant of F is zero if and only if F is foliated cobordant
to a codimension-1 transversely oriented foliation G of class C'** of & closed
oriented 3-manifold N and there exists a sequence G, of codimension-1
null-cobordant foliations of class C»“v= of N converging to G in the C»V¢
topology (1/a<p<2).

As we will see in the proof, G is a foliated S'-product over a surface
3 and the meaning of convergence is that for any y e n,(2), the holonomy
along y converges.

We have the following generalization of Theorem 1.2.

Theorem 1.3. Let F be a codimension-1 transversely oriented folia-
tion of class C=¢ of a closed oriented 3-manifold M. The Godbillon-Vey
invariant of F is zero if and only if F is foliated cobordant to a codimen-
sion-1 transversely oriented foliation G of class C*V¢ of a closed oriented 3-
manifold N and there exists a sequence G, of codimension-1 null-cobordant
foliations of class C»¥¢ of N converging to G in the C»¥# topology (B<p
<2).

In Theorem 1.3, G is a foliated S!-product over a surface 3 as before.
However, we should be careful about meaning of the convergence because
G»¥5(S") is not a topological group. The convergence means that after
fixing a triangulation with one vertex of 3, the holonomy along any edge
converges. In Theorem 1.2 we did not meet such difficulty because the
composition and the inversion of G»¥4(S") are continuous at the elements of
G1+1/p( Sl).

To obtain our main theorems, we need to approximate a foliation by
foliations which we can control their cobordism classes. We use the
transversely PL foliations which are investigated by Greenberg ([8]) and
Ghys-Sergiescu ([6]) (see also [27]). Though transversely PL foliations
are not smooth foliations, they are in our domain of definition of the God-
billon-Vey invariant and the invariant varies continuously with respect to
the topology introduced above.

Remark. There are PL foliations defined by Gel’fand and Fuks ([3]).
They are related to the above transversely PL foliations but they are
different from them.

§ 2. The group of piecewise linear homeomorphisms. We study the
PL-foliated R-products over surfaces. It turns out to be important to
write a PL homeomorphism of R with compact support close to the identity
as a product of a fixed number of commutators of PL homeomorphisms of
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R close to the identity. Then we get an information on the second homology
of the group PL.,R) of PL homeomorphisms of R with compact support.
We proved the following theorems in [26]. A PL homeomorphism of R
with compact support is said to be elementary if it has at most 3 non-
differentiable points.

Theorem 2.1. Let B be a real number not less than 1. There exist
positive real numbers ¢ and C satisfying the following conditions. Let ¢
be a positive real number such that e<c. Let f be an elementary PL home-
omorphism of R with support in [1/8, 7/8]. Assume that ||log f|||,<e.
Then f is written as a product (composition) of 3 commutators of PL
homeomorphisms of R as follows: [f=Ilg,,g9.ll9s 9.1l9: 9,], where the
supports of g, (=1, - - -, 6) are contained in [0,1] and ||log g;||| ;< Ce.

Theorem 2.2. Let 8 be a real number not less than 1. Let q be a
positive integer and d, a positive real number. There exist positive real
numbers ¢ and C satisfying the following conditions. Let ¢ be a positive
real number such that e<c. Let f be a PL homeomorphism of R with
support in [1/4,3/4] such that the number of the nondifferentiable points
of f is at most 4e 42 and ||log f'||,<de’. Then [f=T[i¥"" [gs;_1s G2,
where the supports of g, (=1, -..,32(q+1)) are contained in [0,1] and
lllog (g, Il ,<Cc.

Using Theorem 2.1 and a construction which is a combination of those
in [18] and in [20], we showed the following theorem in [25].

Theorem 2.3. Let a, b, o/, b’ be real numbers such that ab=a’b’.
Let f, and f,. be PL homeomorphisms of R with support in [—1,0] such
that log fi(—0)=a and log f.(—0)=a’, respectively, and let g, and g, be
PL homeomorphisms of R with support in [0,1] such that log g;,(+0)=0>
and log g,(+0)=0b', respectively. Then the 2-cycles (f,, 9,)—(9,, f.) and
(far» 95)—(9ys fo) are homologous in BG*7*# (8>1).

Now the foliated cobordism group FQ7Ff of transversely PL foliations is
isomorphic to H,(BPL,(R) ; Z) (see for example [21]). Greenberg ([8]) showed
that FQIT is generated by the PL Reeb foliations of S* which is defined as
follows. Consider the foliation of R*X[0, ) by planes R*X {x}. This
foliation is invariant under the similarity transformation with center (0, 0,
0) and with ratio e* and the foliation induces a foliation of the solid torus
(R*x[0, 00)—(0,0,0))/(x, ¥, 2)~e“(x,y,2). By attaching two such foliated
solid tori, we obtain a PL Reeb foliation of S®. The PL Reeb foliation of
S? whose compact toral leaf has the germs at 0 of f, and g, above as holo-
nomies is mapped to the class of (f., 9,)—(9;, f.) in H(BPL,R); Z) by the
isomorphism. Since the (discrete) Godbillon-Vey invariant of such foliation
is equal to ab ([6]), we have the following corollary.

Corollary 2.4. The foliated cobordism class as foliations of class
C-78 (1< B<2) of transversely oriented transversely PL foliations of closed
oriented 3-manifolds is characterized by its (discrete) Godbillon-Vey class.

As to the approximation of a foliation by PL foliations, the following
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stable approximation theorems are obtained as an application of Theorem
2.2 ([26]).

Theorem 2.5. Let G be a foliated R-product of class C'** with support
in [1/4, 3/4] over the closed oriented surface X, of genus N. Let B bea
positive real number greater than 1/a. Then there are a positive integer
M and a family of PL-foliated R-products G, over the connected sum
Yty such that G, converges to Gx P in the C*V¢ topology, where P be
the trivial foliated R-product over X,. In particular, if 1/a<p<2, the
Godbillon-Vey invariant GV(G,) converges to GV(G).

Theorem 2.6. Let G be a foliated R-product of class C*Vé with support
in [1/4,3/4] over a closed oriented surface 2 of genus N with a triangula-
tion with one vertex. Let B’ be a positive real number greater than B.
Then there exist a positive integer M, a closed oriented surface 3., of
genus N+M with a triangulation with one vertex, a simplicial map
8: Xy, u—2y of degree 1 and a family of PL-foliated R-products G, over
Yy Such that G, converges to the induced foliated product s*G in the
C»v# topology. In particular, if f<p'<2, the Godbillon-Vey invariant
GV(G,) converges to GV (G).

We have the following corollary to these theorems.

Corollary 2.7. If the Godbillon-Vey invariant of the foliated R-prod-
uct G in Theorems 2.5 or 2.6 is zero, then G, can be taken so that their
Godbillon-Vey invariants are zero.

§ 3. Proof of the main theorem. Let & be a transversely oriented
foliation of a closed oriented manifold M of class C'** (#>>1/2) such that
the Godbillon-Vey invariant is zero. First we use the following theorem.

Theorem 3.1. Any codimention-1 transversely oriented foliation is
cobordant to a foliated S'-product over the closed oriented surface 3, of
genus 2.

This is shown by using a theorem of Mather ([12], [16], [13], [14]) and
the theorem of existence of foliations of Thurston ([17]). (See also [18], [21].)
The foliated S'-product over ¥, can be taken so that the foliation coincides
with the product foliation on X, x[1/2,11C 3, X (R/Z).

Using Theorem 3.1, we obtain a C'**-foliated S'-product &’ over J,.
Let g be a real number such that 1/a<g<2. By Theorem 2.5 and Corol-
lary 2.7, there exist an integer M and a family of PL-foliated R-products
Gy over the connected sum 3,43, such that the Godbillon-Vey invariant of
G, is zero and the sequence G, converges to G« P in the C»%s topology.
Then Corollary 2.4 assures that G, are null-cobordant as foliations of class
C%»%s, Thus we proved Theorem 1.2.

Theorem 1.3 is shown in the same way except that we use Theorem
2.6 instead of Theorem 2.5.
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