19. A Note on Untwisted Deform-spun 2-knots

By Masakazu TERAGAITO

Department of Mathematics, Faculty of Science, Kobe University

(Communicated by Heisuke HIRONAKA, M. J. A., April 13, 1992)

In [5] Litherland introduced the process of deform-spinning of which twist-spinning [8], roll-spinning [1] are particular examples. Given a 1-knot (S^3, K) , let g be a self-homeomorphism of (S^3, K) with g=id on a tubular neighbourhood $K \times D^2$ of K. The deform-spun 2-knot corresponding to g is defined as follows.

Fix a point z on K. Take a ball neighbourhood K_{-} of z in K, and set $B_{-} = K_{-} \times D^{2}$. Let (B_{+}, K_{+}) be the complementary ball pair of (B_{-}, K_{-}) which is the standard ball pair. Then we construct $\partial(B_{+}, K_{+}) \times B^{2} \cup_{\partial} (B_{+}, K_{+}) \times_{\partial} \partial B^{2}$, where

 $(B_+, K_+) \times_g \partial B^2 = (B_+, K_+) \times I/((x, 0) \sim (g(x), 1) \text{ for all } x \in B_+).$ This is a locally-flat sphere pair depending only on the isotopy class γ of g (rel $K \times D^2$). (See [5].) We denote this 2-knot by $(S^4, \gamma K)$, and call it the *deform-spun knot* of K corresponding to γ , or g.

Let $\mathcal{H}(K)$ be the group of self-homeomorphisms g of (S^3, K) with g=idon $K \times D^2$ and let $\mathcal{D}(K)$ be $\mathcal{H}(K)$ modulo isotopy rel $K \times D^2$. We call elements of $\mathcal{D}(K)$ deformations of K. It is well-known ([4], [7]) that the exterior $X(K) = \operatorname{cl}(S^3 - K \times D^2)$ admits a map $p: X(K) \to \partial D^2$ such that $p|_{\partial X(K)}: \partial X(K) = K \times \partial D^2 \to \partial D^2$ is the projection. We will refer to such a map as a projection for K. (We always assume that $K \times \theta$ is null-homologous in X(K) for $\theta \in \partial D^2$.) A deformation $\gamma \in \mathcal{D}(K)$ is said to be untwisted if there is a projection p for K and a representative g of γ with $p(g|_{X(K)})$ = p. If γ is untwisted, we say that γK is untwisted.

For any 1-knot K, twist-spinning $\tau \in \mathcal{D}(K)$ can be defined. (See [5].) Zeeman showed that any ± 1 -twist-spun knot $\tau^{\pm 1}K$ of K is unknotted [8]. But the deformation τ is *not* untwisted.

In this note we prove:

Theorem. There exist infinitely many 1-knots K and untwisted deformations γ of K such that the corresponding untwisted deform-spun 2knots γK are unknotted.

Proof of Theorem. For a projection $p: X(K) \rightarrow \partial D^2$, if $\theta \in \partial D^2$ is a regular value, then $F^{\theta} = p^{-1}(\theta)$ is a compact, codimension 1 submanifold of X(K) and $\partial F^{\theta} = K \times \{\theta\}$. That is, F^{θ} is a *Seifert surface* for K. (See [4], [7].) Let $\gamma \in \mathcal{D}(K)$ be an untwisted deformation and let g be a representative of γ with $p(g|_{X(K)}) = p$. Then $g(F^{\theta}) = F^{\theta}$ for each $\theta \in \partial D^2$. A tubular neighbourhood of γK is $\partial K_+ \times D^2 \times B^2 \cup K_+ \times D^2 \times \partial B^2$ and so γK has the exterior

M. TERAGAITO

$$X(\gamma K) = K_{-} \times \partial D^{2} \times B^{2} \cup X(K) \times_{a} \partial B^{2}.$$

The space $K_{-} \times \{\theta\} \times B^2 \cup F^{\theta} \times_{g} \partial B^2$ gives a Seifert (hyper) surface for γK , which is denoted by γF^{θ} .

Lemma. Let (S^3, K_i) be a 1-knot with projection $p_i: X(K_i) \rightarrow \partial D^2$, i = 1, 2. Let $F_i = p_i^{-1}(\theta)$ be a Seifert surface for K_i . Let $\gamma_i \in \mathcal{D}(K_i)$ be an untwisted deformation and let g_i be a representative with $p_i(g_i|_{X(K_i)}) = p_i$. If there exists a homeomorphism $h: F_1 \rightarrow F_2$ such that $hg_1 = g_2h$, then untwisted deform-spun 2-knots $\gamma_1 K_1$ and $\gamma_2 K_2$ have homeomorphic Seifert (hyper) surfaces $\gamma_1 F_1$ and $\gamma_2 F_2$.

The proof is straightforward, so we omit it.

We will denote the knot in Fig. 1 by K(m, n), where $n \ge 3$ is an odd integer, and 2m+1 indicates the number of half-twists (left-handed if $m\ge 0$, right-handed if m<0). Note that K(0, n) and K(-1, n) are torus knots of type (2, n) and (2, -n), respectively.

Fig. 1

We see that K = K(m, n) has two periods, n and 2. That is, there are orientation-preserving self-homeomorphisms g_1 and g_2 of (S^3, K) such that the set J_i of fixed points of g_i is a 1-sphere disjoint from K, and g_1 and g_2 are of period n and 2, respectively. We may assume that J_1 , J_2 are oriented so that $lk(K, J_1) = 2$, $lk(K, J_2) = (-1)^m n$, $lk(J_1, J_2) = 1$. Furthermore we assume that g_1 corresponds to the rotation through $2\pi/n$ around the axis J_1 .

We will define an untwisted deformation of K using g_1 and g_2 .

Let $q: S^3 \to S^3/g_1g_2$ be the quotient map and let $\overline{K} = q(K)$, $\overline{J}_i = q(J_i)$. The map q is the $Z_n \oplus Z_2$ -branched cover branched over $\overline{J}_1 \cup \overline{J}_2$ corresponding to $Ker[\pi_1(S^3 - \overline{J}_1 \cup \overline{J}_2) \to H_1(S^3 - \overline{J}_1 \cup \overline{J}_2) \to Z_n \oplus Z_2]$, where the first map is the Hurewicz homomorphism and the second sends a meridian t_1 (t_2 resp.) of \overline{J}_1 (\overline{J}_2 resp.) to (1, 0) ((0, 1) resp.) $\in Z_n \oplus Z_2$. Let $\overline{p}: X(\overline{K}) \to \partial D^2$ be a projection for \overline{K} , where a tubular neighbourhood $\overline{K} \times D^2$ of \overline{K} is taken to be disjoint from \overline{J}_i . Then $q^{-1}(\overline{K} \times D^2)$ is a g_i -invariant tubular neighbourhood $K \times D^2$ of K such that q(x, v) = (2nx, v) for $x \in K$, $v \in D^2$. Here, a circle is identified with the quotient space \mathbb{R}/\mathbb{Z} . We see that $g_1g_2|_{K \times D^2}$ is given by $(x, v) \to (x+1/2n, v)$. Take a g_i -invariant collar $\partial X(K) \times I$ of $\partial X(K)$ in X(K)such that $\partial X(K)$ is identified with $\partial X(K) \times \{0\}$, and define a self-homeomorphism h of (S^3, K) by

$$\begin{aligned} h(x,\theta,\phi) &= (x - (1 - \phi)/2n, \theta, \phi) & \text{for } (x,\theta,\phi) \in K \times \partial D^2 \times I, \\ h(x,v) &= (x - 1/2n, v) & \text{for } (x,v) \in K \times D^2, \\ h(y) &= y & \text{for } y \in X(K) - \partial X(K) \times I. \end{aligned}$$

Then $hg_1g_2|_{K\times D^2} = id$, $hg_1g_2|_{cl(X(K)-\partial X(K)\times I)} = g_1g_2$, and $\overline{p}q(hg_1g_2|_{X(K)}) = \overline{p}q$. Let ω be the class of hg_1g_2 in $\mathcal{D}(K)$. It is now evident that ω is untwisted with respect to a projection $\overline{p}q$ for K.

As shown in Fig. 2, K(m, n) has a Seifert surface F(m, n) of genus (n-1)/2, which is invariant under g_i and $J_1 \cap F = \{2 \text{ points}\}, J_2 \cap F = \{n \text{ points}\}$. Note that F(0, n) and F(-1, n) are fiber surfaces for K(0, n) K(-1, n), respectively.

Fig. 2

Proof of Theorem. By Lemma, $\omega K(m, n)$ and $\omega K(0, n)$ have homeomorphic Seifert surfaces. The map hg_1g_2 is just the monodromy map on the fiber surface F(0, n) (cf. [6: §9], [3: Chapter 19]). It follows that $\omega F(0, n)$ is a 3-cell. This completes the proof.

Remarks. (1) Moreover, we can prove that for any integer $r \ge 2$ the untwisted deform-spun 2-knot $\omega^r K(m, n)$ has a Seifert surface homeomorphic to the punctured Brieskorn 3-manifold $\Sigma(2, n, r)^\circ$. The *r*-fold cyclic branched covering of the (2, n)-torus knot is $\Sigma(2, n, r)$. Hence the *r*-twist-spun knot of the (2, n)-torus knot has a fiber $\Sigma(2, n, r)^\circ$. The knot K(m, n) is a torus knot if and only if m=0, -1. We might expect that any nontrivial untwisted deform-spun 2-knot $\omega^r K(m, n)$ is non-fibered unless K(m, n) is a torus knot. But I have been unable to prove this. In fact, Kanenobu [2] has observed that if K(m, n) is not a torus knot and if $n \nmid m$ then $\omega^2 K(m, n)$ is non-fibered with Seifert surface $\Sigma(2, n, 2)^\circ = L(n, 1)^\circ$, the punctured lens space of type (n, 1).

(2) If K(m, n) is a torus knot, then $\omega = \tau$ in $\mathcal{D}(K)$ [5: Cor. 6.5]. But if K(m, n) is not a torus knot, the untwisted deformation ω is not contained in the subgroup $\langle \tau \rangle$ of $\mathcal{D}(K)$ generated by τ [5: Cor. 6.3].

No. 4]

M. TERAGAITO

References

- [1] R. H. Fox: Rolling. Bull. Amer. Math. Soc., 72, 162-164 (1966).
- [2] T. Kanenobu: Untwisted deform-spun knots: Examples of symmetry-spun 2-knots. Transformation Groups (ed. K. Kawakubo). Lect. Notes in Math., vol. 1375, Springer-Verlag, New York, pp. 145-167 (1990).
- [3] L. H. Kauffman: On knots. Annals of Math. Studies, vol. 115, Princeton Univ. Press, Princeton (1987).
- [4] M. Kervaire and C. Weber: A survey of multidimensional knots. Lect. Notes in Math., vol. 685, Springer-Verlag, pp. 61-134 (1978).
- [5] R. A. Litherland: Deforming twist-spun knots. Trans. Amer. Math. Soc., 250, 311-331 (1979).
- [6] J. W. Milnor: Singular points of complex hypersurfaces. Annals of Math. Studies, 61, Princeton Univ. Press, Princeton (1968).
- [7] D. Rolfsen: Knots and Links. Math. Lecture Series 7, Publish or Perish Inc., Berkeley (1976).
- [8] E. C. Zeeman: Twisting spun knots. Trans. Amer. Math. Soc., 115, 471-495 (1965).