19. A Note on Untwisted Deform-spun 2-knots

By Masakazu Teragaito
Department of Mathematics, Faculty of Science, Kobe University
(Communicated by Heisuke Hironaka, m. J. A., April 13, 1992)

In [5] Litherland introduced the process of deform-spinning of which twist-spinning [8], roll-spinning [1] are particular examples. Given a 1 -knot (S^{3}, K), let g be a self-homeomorphism of (S^{3}, K) with $g=i d$ on a tubular neighbourhood $K \times D^{2}$ of K. The deform-spun 2-knot corresponding to g is defined as follows.

Fix a point z on K. Take a ball neighbourhood K_{-}of z in K, and set $B_{-}=K_{-} \times D^{2}$. Let $\left(B_{+}, K_{+}\right)$be the complementary ball pair of (B_{-}, K_{-}) which is the standard ball pair. Then we construct $\partial\left(B_{+}, K_{+}\right) \times B^{2} U_{\partial}\left(B_{+}\right.$, $\left.K_{+}\right) \times_{g} \partial B^{2}$, where

$$
\left(B_{+}, K_{+}\right) \times_{g} \partial B^{2}=\left(B_{+}, K_{+}\right) \times I /\left((x, 0) \sim(g(x), 1) \text { for all } x \in B_{+}\right)
$$

This is a locally-flat sphere pair depending only on the isotopy class γ of g (rel $K \times D^{2}$). (See [5].) We denote this 2 -knot by ($S^{4}, \gamma K$), and call it the deform-spun knot of K corresponding to γ, or g.

Let $\mathscr{H}(K)$ be the group of self-homeomorphisms g of $\left(S^{3}, K\right)$ with $g=i d$ on $K \times D^{2}$ and let $\mathscr{D}(K)$ be $\mathscr{H}(K)$ modulo isotopy rel $K \times D^{2}$. We call elements of $\mathscr{D}(K)$ deformations of K. It is well-known ([4], [7]) that the exterior $X(K)=\operatorname{cl}\left(S^{3}-K \times D^{2}\right)$ admits a map $p: X(K) \rightarrow \partial D^{2}$ such that $\left.p\right|_{\partial X(K)}: \partial X(K)=K \times \partial D^{2} \rightarrow \partial D^{2}$ is the projection. We will refer to such a map as a projection for K. (We always assume that $K \times \theta$ is null-homologous in $X(K)$ for $\theta \in \partial D^{2}$.) A deformation $\gamma \in \mathscr{D}(K)$ is said to be untwisted if there is a projection p for K and a representative g of γ with $p\left(\left.g\right|_{X(K)}\right)$ $=p$. If γ is untwisted, we say that γK is untwisted.

For any 1-knot K, twist-spinning $\tau \in \mathscr{D}(K)$ can be defined. (See [5].) Zeeman showed that any ± 1-twist-spun knot $\tau^{ \pm 1} K$ of K is unknotted [8]. But the deformation τ is not untwisted.

In this note we prove:
Theorem. There exist infinitely many 1-knots K and untwisted deformations γ of K such that the corresponding untwisted deform-spun 2knots γK are unknotted.

Proof of Theorem. For a projection $p: X(K) \rightarrow \partial D^{2}$, if $\theta \in \partial D^{2}$ is a regular value, then $F^{\theta}=p^{-1}(\theta)$ is a compact, codimension 1 submanifold of $X(K)$ and $\partial F^{\theta}=K \times\{\theta\}$. That is, F^{θ} is a Seifert surface for K. (See [4], [7].) Let $\gamma \in \mathscr{D}(K)$ be an untwisted deformation and let g be a representative of γ with $p\left(\left.g\right|_{X(K)}\right)=p$. Then $g\left(F^{\theta}\right)=F^{\theta}$ for each $\theta \in \partial D^{2}$. A tubular neighbourhood of γK is $\partial K_{+} \times D^{2} \times B^{2} \cup K_{+} \times D^{2} \times \partial B^{2}$ and so γK has the exterior

$$
X(\gamma K)=K_{-} \times \partial D^{2} \times B^{2} \cup X(K) \times_{g} \partial B^{2} .
$$

The space $K_{-} \times\{\theta\} \times B^{2} \cup F^{\theta} \times{ }_{g} \partial B^{2}$ gives a Seifert (hyper) surface for γK, which is denoted by γF^{θ}.

Lemma. Let $\left(S^{3}, K_{i}\right)$ be a 1-knot with projection $p_{i}: X\left(K_{i}\right) \rightarrow \partial D^{2}, i=$ 1,2. Let $F_{i}=p_{i}^{-1}(\theta)$ be a Seifert surface for K_{i}. Let $\gamma_{i} \in \mathscr{D}\left(K_{i}\right)$ be an untwisted deformation and let g_{i} be a representative with $p_{i}\left(\left.g_{i}\right|_{X\left(K_{i}\right)}\right)=p_{i}$. If there exists a homeomorphism $h: F_{1} \rightarrow F_{2}$ such that $h g_{1}=g_{2} h$, then untwisted deform-spun 2-knots $\gamma_{1} K_{1}$ and $\gamma_{2} K_{2}$ have homeomorphic Seifert (hyper) surfaces $\gamma_{1} F_{1}$ and $\gamma_{2} F_{2}$.

The proof is straightforward, so we omit it.
We will denote the knot in Fig. 1 by $K(m, n)$, where $n \geq 3$ is an odd integer, and $2 m+1$ indicates the number of half-twists (left-handed if $m \geq 0$, right-handed if $m<0)$. Note that $K(0, n)$ and $K(-1, n)$ are torus knots of type ($2, n$) and ($2,-n$), respectively.

Fig. 1
We see that $K=K(m, n)$ has two periods, n and 2. That is, there are orientation-preserving self-homeomorphisms g_{1} and g_{2} of (S^{3}, K) such that the set J_{i} of fixed points of g_{i} is a 1 -sphere disjoint from K, and g_{1} and g_{2} are of period n and 2 , respectively. We may assume that J_{1}, J_{2} are oriented so that $l k\left(K, J_{1}\right)=2, l k\left(K, J_{2}\right)=(-1)^{m} n, l k\left(J_{1}, J_{2}\right)=1$. Furthermore we assume that g_{1} corresponds to the rotation through $2 \pi / n$ around the axis J_{1}.

We will define an untwisted deformation of K using g_{1} and g_{2}.
Let $q: S^{3} \rightarrow S^{3} / g_{1} g_{2}$ be the quotient map and let $\bar{K}=q(K), \bar{J}_{i}=q\left(J_{i}\right)$. The $\operatorname{map} q$ is the $Z_{n} \oplus \boldsymbol{Z}_{2}$-branched cover branched over $\bar{J}_{1} \cup \bar{J}_{2}$ corresponding to $\operatorname{Ker}\left[\pi_{1}\left(S^{3}-\bar{J}_{1} \cup \bar{J}_{2}\right) \rightarrow H_{1}\left(S^{3}-\bar{J}_{1} \cup \bar{J}_{2}\right) \rightarrow Z_{n} \oplus Z_{2}\right]$, where the first map is the Hurewicz homomorphism and the second sends a meridian t_{1} (t_{2} resp.) of $\bar{J}_{1}\left(\bar{J}_{2}\right.$ resp.) to (1,0) $\left((0,1)\right.$ resp.) $\in \boldsymbol{Z}_{n} \oplus Z_{2}$. Let $\bar{p}: X(\bar{K}) \rightarrow \partial D^{2}$ be a projection for \bar{K}, where a tubular neighbourhood $\bar{K} \times D^{2}$ of \bar{K} is taken to be disjoint from \bar{J}_{i}. Then $q^{-1}\left(\bar{K} \times D^{2}\right)$ is a g_{i}-invariant tubular neighbourhood $K \times D^{2}$ of K such that $q(x, v)=(2 n x, v)$ for $x \in K, v \in D^{2}$. Here, a circle is identified with the quotient space R / Z. We see that $\left.g_{1} g_{2}\right|_{K \times D^{2}}$ is given by $(x, v) \rightarrow(x+1 / 2 n, v)$. Take a g_{i}-invariant collar $\partial X(K) \times I$ of $\partial X(K)$ in $X(K)$ such that $\partial X(K)$ is identified with $\partial X(K) \times\{0\}$, and define a self-homeomorphism h of $\left(S^{3}, K\right)$ by

$$
\begin{aligned}
h(x, \theta, \phi) & =(x-(1-\phi) / 2 n, \theta, \phi) & & \text { for }(x, \theta, \phi) \in K \times \partial D^{2} \times I, \\
h(x, v) & =(x-1 / 2 n, v) & & \text { for }(x, v) \in K \times D^{2}, \\
h(y) & =y & & \text { for } y \in X(K)-\partial X(K) \times I .
\end{aligned}
$$

Then $\left.h g_{1} g_{2}\right|_{K \times D^{2}}=i d,\left.h g_{1} g_{2}\right|_{\operatorname{ci}(X(K)-\partial X(K) \times I)}=g_{1} g_{2}$, and $\bar{p} q\left(\left.h g_{1} g_{2}\right|_{X(K)}\right)=\bar{p} q$. Let ω be the class of $h g_{1} g_{2}$ in $\mathscr{D}(K)$. It is now evident that ω is untwisted with respect to a projection $\bar{p} q$ for K.

As shown in Fig. 2, $K(m, n)$ has a Seifert surface $F(m, n)$ of genus $(n-1) / 2$, which is invariant under g_{i} and $J_{1} \cap F=\{2$ points $\}, J_{2} \cap F=$ \{n points\}. Note that $F(0, n)$ and $F(-1, n)$ are fiber surfaces for $K(0, n)$ $K(-1, n)$, respectively.

Fig. 2
Proof of Theorem. By Lemma, $\omega K(m, n)$ and $\omega K(0, n)$ have homeomorphic Seifert surfaces. The map $h g_{1} g_{2}$ is just the monodromy map on the fiber surface $F(0, n)$ (cf. [6: §9], [3: Chapter 19]). It follows that $\omega F(0, n)$ is a 3 -cell. This completes the proof.

Remarks. (1) Moreover, we can prove that for any integer $r \geq 2$ the untwisted deform-spun 2-knot $\omega^{r} K(m, n)$ has a Seifert surface homeomorphic to the punctured Brieskorn 3-manifold $\Sigma(2, n, r)^{\circ}$. The r-fold cyclic branched covering of the $(2, n)$-torus knot is $\Sigma(2, n, r)$. Hence the r-twist-spun knot of the $(2, n)$-torus knot has a fiber $\Sigma(2, n, r)^{\circ}$. The knot $K(m, n)$ is a torus knot if and only if $m=0,-1$. We might expect that any nontrivial untwisted deform-spun 2-knot $\omega^{r} K(m, n)$ is non-fibered unless $K(m, n)$ is a torus knot. But I have been unable to prove this. In fact, Kanenobu [2] has observed that if $K(m, n)$ is not a torus knot and if $n \nmid m$ then $\omega^{2} K(m, n)$ is non-fibered with Seifert surface $\Sigma(2, n, 2)^{\circ}=L(n, 1)^{\circ}$, the punctured lens space of type $(n, 1)$.
(2) If $K(m, n)$ is a torus knot, then $\omega=\tau$ in $\mathscr{D}(K)$ [5: Cor. 6.5]. But if $K(m, n)$ is not a torus knot, the untwisted deformation ω is not contained in the subgroup $\langle\tau\rangle$ of $\mathscr{D}(K)$ generated by τ [5: Cor. 6.3].

References

[1] R. H. Fox: Rolling. Bull. Amer. Math. Soc., 72, 162-164 (1966).
[2] T. Kanenobu: Untwisted deform-spun knots: Examples of symmetry-spun 2-knots. Transformation Groups (ed. K. Kawakubo). Lect. Notes in Math., vol. 1375, Springer-Verlag, New York, pp. 145-167 (1990).
[3] L. H. Kauffman: On knots. Annals of Math. Studies, vol. 115, Princeton Univ. Press, Princeton (1987).
[4] M. Kervaire and C. Weber: A survey of multidimensional knots. Lect. Notes in Math., vol. 685, Springer-Verlag, pp. 61-134 (1978).
[5] R. A. Litherland: Deforming twist-spun knots. Trans. Amer. Math. Soc., 250, 311-331 (1979).
[6] J. W. Milnor: Singular points of complex hypersurfaces. Annals of Math. Studies, 61, Princeton Univ. Press, Princeton (1968).
[7] D. Rolfsen: Knots and Links. Math. Lecture Series 7, Publish or Perish Inc., Berkeley (1976).
[8] E. C. Zeeman: Twisting spun knots. Trans. Amer. Math. Soc., 115, 471-495 (1965).

