2. Curves and Symmetric Spaces

By Shigeru Mukai
Department of Mathematics, School of Science, Nagoya University
(Communicated by Kunihiko Kodaira, M. J. A., Jan. 13, 1992)

This is an announcement of our research on the classification of curves, i.e., compact Riemann surfaces, of genus $g=7,8$ and 9 and their canonical rings by means of the symmetric spaces $X_{2 g-2}^{24-2 g} \subset \boldsymbol{P}^{22-g}$ studied in [3]. The details will be published elsewhere. A line bundle L on a curve C is a g_{d}^{r} if $\operatorname{deg} L=d$ and $\operatorname{dim} H^{0}(C, L) \geq r+1$.
$\S 1$. Linear section theorems. A non-hyperelliptic curve C embedded in \boldsymbol{P}^{g-1} by the canonical linear system $\left|K_{c}\right|$ is called a canonical curve. The canonical ring of C is isomorphic to the homogeneous coordinate ring of $C \subset \boldsymbol{P}^{g-1}$ by Noether's theorem.

Let $X_{12}^{8} \subset \boldsymbol{P}^{14}$ be the 8 -dimensional complex Grassmannian $U(6) /(U(2)$ $\times U(4))$ embedded in P^{14} by the Plücker coordinates. It is classically known that a transversal linear subspace P of dimension 6 cut out a curve C of genus 8 and that the embedding $C \subset P$ is canonical.

Theorem 1. A curve C of genus 8 is a transversal linear section of the 8-dimensional Grassmannian if and only if C has no g_{7}^{2}.

Complex Grassmannians are symmetric spaces of type AIII. Besides $X_{14}^{8} \subset \boldsymbol{P}^{14}$ two compact Hermitian symmetric spaces $X_{12}^{10} \subset \boldsymbol{P}^{15}$ and $X_{16}^{6} \subset \boldsymbol{P}^{13}$ yield canonical curves (of genus 7 and 9) as transversal linear sections. The former is $S O(10) / U(5)$ of type D III embedded in the projectivization of the space U^{16} of semi-spinors. Let $\mathrm{Alt}_{5} C$ be the space of skew-symmetric matrices of degree 5. Then $X_{12}^{10} \subset P^{15}$ is the compactification of the embedding

where A^{1}, \cdots, A^{5} are the principal minors of A. The latter is the compact dual $S p(3) / U(3)$ of the Siegel upper half space \mathscr{F}_{3} of degree 3 embedded in the projectivization of a 14 -dimensional irreducible representation U^{14} of $S p(3)$. Let $\mathrm{Sym}_{3} C$ be the space of symmetric matrices of degree 3. Then $X_{16}^{6} \subset \boldsymbol{P}^{13}$ is the compactification of the Veronese-like embedding

$$
\begin{aligned}
& \operatorname{Sym}_{3} C \longrightarrow P\left(C \oplus \operatorname{Sym}_{3} C \oplus \operatorname{Sym}_{3} C \oplus C\right), \\
& { }^{\mathcal{U}} \\
& A \longmapsto\left(1: A: A^{\prime}: \operatorname{det} A\right)
\end{aligned}
$$

where A^{\prime} is the cofactor matrix of A.
Theorem 2. A curve C of genus 7 (resp. 9) is a transversal linear section of $X_{12}^{10} \subset \boldsymbol{P}^{15}$ (resp. $X_{16}^{6} \subset \boldsymbol{P}^{13}$) if and only if C has no g_{5}^{1} (resp. g_{6}^{1}).

Example. The symmetric space $X_{12}^{10} \subset \boldsymbol{P}^{15}$ has a faithful action of the finite simple group $S L\left(2, F_{8}\right)$ of order 504 and has two invariant subspaces P_{1} and P_{2} of dimension 6 and 8, respectively. The intersection $C=P_{1} \cap X_{12}^{10}$ is a curve of genus 7 which satisfies \mid Aut $C \mid=84(g-1)$. This curve is constructed from a quaternion algebra over $\boldsymbol{Q}(\cos 2 \pi / 7)$ (cf. [5] Remark 3.19). The other intersection $P_{2} \cap X_{12}^{10}$ is a Fano 3 -fold of genus 7 with Picard number one.

Remark. (1) The representations U^{16} of $\operatorname{Spin}(10)$ and U^{14} of $S p(3)$ are studied in [2]. Both $\boldsymbol{P}\left(U^{18}\right)$ and $\boldsymbol{P}\left(U^{14}\right)$ have open dense orbits.
(2) A curve C of genus g is numerically Petri general if $h^{0}(L) h^{0}\left(\omega_{C} L^{-1}\right)$ $\leqq g$ holds for every line bundle L on C. In the case $g=7$ (rep. 8, 9), C is numerically Petri general if and only if it has no $g_{4}^{1}\left(\right.$ rep. g_{7}^{2}, g_{5}^{1}).
§ 2. Birational type of $\boldsymbol{M}_{\boldsymbol{g}}$. Let $C \subset \boldsymbol{P}^{6}$ be a canonical curve of genus 7 and $N_{c / P}^{*}$ its conormal bundle. We denote the space of quadratic forms on P^{6} vanishing on C by V and that of quartic forms vanishing doubly along C by W. By the Enriques-Petri theorem ([4]), the rank 5 vector bundle $N_{C / P}^{*} \otimes O_{c}(2 K)$ is generated by V if C has no g_{3}^{1}. Since $\operatorname{dim} V=10$, the pair ($V, N_{C / P}^{*} \otimes O_{c}(2 K)$) defines a morphism ψ of C to the 25 -dimensional Grassmannian $G(5, V)$. The embedding of C into X_{12}^{10} in Theorem 2 is constructed as follows:

Proposition 1. Let C be a curve of genus 7 without g_{4}^{1}. Then we have
(1) $\psi: C \rightarrow G(5, V)$ is an embedding, and
(2) the natural map $S^{2} V \rightarrow W$ is not injective and its kernel is generated by a non-degenerate symmetric tensor.

By (2) of the proposition, the image of ψ is contained in a symmetric space X_{12}^{10}.

In the case $g=8,9$, we construct special vector bundles in order to embed C into the corresponding symmetric spaces. A vector bundle is quasi-stable if it is a direct sum of stable vector bundles with the same slope.

Definition. $\quad E_{\sigma}(r, K)$ is the set of isomorphism classes of rank r quasistable vector bundles E on C with canonical determinant, i.e., $\Lambda^{r} E \simeq O_{C}(K)$. $\eta_{r}(C)$ is the maximum of $\operatorname{dim} H^{\circ}(C, E)$ when E runs over $E_{c}(r, K)$.

Proposition 2. (1) If C is a curve of genus 8 and has no g_{4}^{1}, then $\eta_{2}(C)=6$ and the maximum is attained by the unique 2-bundle $E_{\max } \in$ $E_{c}(2, K)$.
(2) If C is a curve of genus 9 and has no g_{5}^{1}, then $\eta_{3}(C)=6$ and the maximum is attained by the unique 3 -bundle $E_{\max } \in E_{c}(3, K)$.

The embeddings of C into X_{14}^{8} and X_{16}^{6} in Theorems 1 and 2 are constructed from the complete linear system associated to $E_{\text {max }}$. Hence the embeddings are strongly rigid:

Theorem 3. Assume that two linear subspaces P_{1} and P_{2} cut out curves C_{1} and C_{2} from the symmetric space $X_{2 g-2}^{24-2 g} \subset P^{22-g}(g=7,8$ or 9$)$,
respectively. Then any isomorphism from C_{1} onto C_{2} extends to an automorphism ϕ of $X_{2 g-2}^{24-2 g} \subset \boldsymbol{P}^{22-g}$ with $\phi\left(P_{1}\right)=P_{2}$.

Let M_{g} be the moduli space of curves of genus g. By the theorem, we have the following :

g	7	8	9
$\operatorname{dim} M_{g}$	18	21	24
Birational type of M_{g}	$G\left(7, U^{16}\right) / \operatorname{Spin}(10)$	$G\left(8, U^{15}\right) / S L(6)$	$G\left(9, U^{14}\right) / S p(3, C)$

§ 3. Syzygies of canonical rings. Let R_{X} be the homogeneous coordinate ring of the symmetric space $X_{16}^{6} \subset \boldsymbol{P}^{13} . \quad R_{X}$ is generated by 14 linear forms and the relation ideal is generated by 21 quadratic relations. Let S be the polynomial ring of 14 variables. As an S-module, R_{X} has the following minimal free resolution :

where U^{i} denotes an i-dimensional irreducible representation of $S p(3)$. If a curve C is a transversal linear section of $X_{16}^{6} \subset \boldsymbol{P}^{13}$, then its canonical ring

$$
R_{C}=\bigoplus_{n \geq 0} H^{0}\left(C, O_{c}(n K)\right)
$$

has the same type of resolution as a module over the polynomial ring of 9 variables. Hence Theorem 2 answers Green's conjecture ([1]) affirmatively in the case genus 9 since non-existence of g_{5}^{1} is equivalent to Cliff $C=4$.

Theorem 4. A canonical curve $C \subset \boldsymbol{P}^{8}$ of genus 9 satisfies Green's property $\left(N_{p}\right)$ if and only if Cliff $C>p$.
§ 4. Canonical curves of genus 7 and 8 . Let $C \subset P^{g-1}$ be a canonical curve of genus g.

Proposition 3. If C has $a g_{6}^{2}$, then we have one of the following:
a) $C \subset \boldsymbol{P}^{g-1}$ is a hyperquadric section of a normal surface $S \subset \boldsymbol{P}^{g-1}$ of degree $g-1$, or
b) C has a g_{3}^{1}, or
c) C is a smooth plane quintic.

In the case a), such surfaces are classified by del Pezzo. S is either the anticanonical model of a rational surface or the cone over an elliptic curve. In the case b) or c), the quadric hull of $C \subset \boldsymbol{P}^{g-1}$ is a surface of degree $g-2$ (cf. [4]).

If $g \neq 10$, every curve with a g_{6}^{2} has a g_{4}^{1}. If $g=8$, every curve with a g_{4}^{1} has a g_{7}^{2}. The classification of curves of genus 7 and 8 is completed by the following two propositions:

Proposition 4. Let C be a curve of genus 7. If C has a g_{4}^{1} but no g_{6}^{2}, then C is the complete intersection of three divisors of bidegree $(1,1)$, $(1,2)$ and $(1,2)$ in $\boldsymbol{P}^{1} \times \boldsymbol{P}^{3}$.

Proposition 5. Let C be a curve of genus 8.
(1) If C has a g_{4}^{1} but no g_{6}^{2}, then C is the complete intersection of four divisors of bidegree $(1,1),(1,1),(0,2)$ and $(1,2)$ in $\boldsymbol{P}^{1} \times \boldsymbol{P}^{4}$.
(2) If C has a g_{7}^{2} but no g_{4}^{1}, then we have either
a) C is the complete intersection of three divisors of bidegree $(1,1),(1,2)$ and $(2,1)$ in $\boldsymbol{P}^{2} \times \boldsymbol{P}^{2}$, or
b) C is the common zero locus of the five 4×4 Pfaffians of a skewsymmetric matrix

$$
\left(\begin{array}{ccccc}
0 & a_{1} & a_{2} & b_{1} & b_{2} \\
-a_{1} & 0 & a_{3} & b_{3} & b_{4} \\
-a_{2} & -a_{3} & 0 & b_{5} & b_{6} \\
-b_{1} & -b_{3} & -b_{5} & 0 & c \\
-b_{2} & -b_{4} & -b_{6} & -c & 0
\end{array}\right)
$$

in the weighted projective space $P(1: 1: 1: 2: 2)$, where a_{1}, a_{2}, a_{3} are linear forms, b_{1}, \cdots, b_{6} quadratic and c is a cubic form.

References

[1] M. Green: Koszul cohomology and the geometry of projective varieties. J. Diff. Geom., 19, 125-171 (1984).
[2] J. Igusa: Classification of spinors up to dimension twelve. Amer. J. Math., 92, 997-1028 (1970).
[3] S. Mukai: Curves, K3 surfaces and Fano 3 -folds of genus $\leqslant 10$. Algebraic Geometry and Commutative Algebra in Honor of Masayoshi Nagata. Kinokuniya, Tokyo, pp. 357-377 (1987).
[4] B. Saint-Donnat: On Petri's analysis of the linear system of quadrics through a canonical curve. Math. Ann., 206, 157-175 (1973).
[5] G. Shimura: Construction of a class fields and zeta functions of algebraic curves. Ann. of Math., 85, 58-159 (1967).

