83. A Note on Certain Infinite Products

By Masao TOYOIZUMI

Department of Mathematics, Toyo University (Communicated by Shokichi IYANAGA, M. J. A., Dec. 14, 1992)

1. Statement of result. Let M be a positive integer, χ a real nonprincipal primitive character modulo M, $L(s, \chi)$ the associated L-series and $\zeta_M = \exp(2\pi i/M)$. Given a sequence $a(1), a(2), a(3), \cdots$ of integers such that $a(n) = O(n^c)$ for some c > 0, we define, for Im(z) > 0,

(1)
$$f_{\chi}(z) = \exp(2\pi i a z) \prod_{h=0}^{M-1} \prod_{n=1}^{\infty} (1 - \zeta_{M}^{h} q(\lambda)^{n})^{\chi(h)a(n)},$$

where $q(\lambda) = \exp(2\pi i z/\lambda)$, $\lambda > 0$ and *a* is a real number. Then the infinite product converges absolutely and uniformly in every compact subset of the upper half plane *H*. Hence $f_{\chi}(z)$ is holomorphic in *H*. To state our theorem, let $\phi(s)$ be a convergent Dirichlet series defined by

$$\phi(s) = \sum_{n=1}^{\infty} a(n) n^{-s}.$$

Theorem. Assume that $\phi(s)$ can be continued through the whole s-plane as a non-zero meromorphic function with a finite number of poles and that there exists a real number k such that

(2) $f_{\chi}(-1/z) = (z/i)^{k} f_{\chi}(z).$ Then $(\lambda/M)^{2}$ is an integer, a = k = 0 and $f_{\chi}(z)$ is given by (3) $f_{\chi}(z) = \prod_{m \mid (\lambda/M)^{2}} \psi_{\chi}(mz)^{c(m)},$

where

$$\psi_{\chi}(z) = \prod_{h=0}^{M-1} \prod_{n=1}^{\infty} (1 - \zeta_M^h q(\lambda)^n)^{\chi(h)\chi(n)},$$

and c(m), defined for *m* dividing $(\lambda/M)^2$, are integers such that $c(m) = \chi(-1)c((\lambda/M)^2/m)$ for any divisor *m* of $(\lambda/M)^2$.

Conversely, let $(\lambda/M)^2$ be an integer and let c(m), for integers m dividing $(\lambda/M)^2$, be arbitrary integers such that $c(m) = \chi(-1)c((\lambda/M)^2/m)$ for any divisor m of $(\lambda/M)^2$. Further, define $f_{\chi}(z)$ by (3). Then $f_{\chi}(z)$ satisfies $f_{\chi}(-1/z) = f_{\chi}(z)$.

Remark. In case $\lambda = M$, $\phi_{\chi}(z)$ coincides with $\eta_3(\chi; z)$ which was first defined in Katayama [1].

2. Lemmas. For any y > 0, we put

$$G(y) = -\{\log f_{\chi}(iy) + 2a\pi y\}.$$

Then from (1), we have

(4)
$$G(y) = T(\chi) \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{\chi(m)a(n)}{m} \exp(-2mn\pi y/\lambda),$$

where $T(\chi)$ is the Gaussian sum defined by

$$T(\chi) = \sum_{h=0}^{M-1} \chi(h) \zeta_M^h.$$

Put

$$\xi(s) = T(\chi) (2\pi/\lambda)^{-s} \Gamma(s) \phi(s) L(s+1, \chi),$$

where $\Gamma(s)$ denotes the gamma function.

Lemma 1. Let k be a real number. Then the next two conditions are equivalent.

(A) $f_{\chi}(-1/z) = (z/i)^k f_{\chi}(z).$

(B) $\xi(s)$ can be continued through the whole s-plane as a meromorphic function satisfying $\xi(s) = \xi(-s)$ and

$$\xi(s) + \frac{k}{s^2} + 2a\pi \left(\frac{1}{1+s} + \frac{1}{1-s}\right)$$

is entire and bounded in every vertical strip.

Proof. By (4) and Mellin's inversion formula, we obtain

(5)
$$G(y) = \frac{1}{2\pi i} \int_{v-i\infty}^{v+i\infty} \xi(s) \ y^{-s} \ ds,$$

where v is chosen large enough to be in the domain of absolute convergence of $\phi(s)$. Now assume (B). Then, shifting the line of integration in (5) to Re(s) = -v and applying $\xi(s) = \xi(-s)$, we see that

(6)
$$G(y) = G(1/y) + \frac{2a\pi}{y} - 2a\pi y + k \log y,$$

which yields

$$\log f_{\chi}(i/y) = k \log y + \log f_{\chi}(iy).$$

Therefore

(7)

$$f_{\chi}(i/y) = y^{\kappa} f_{\chi}(iy),$$

which is (A).

Next, we note that

$$\xi(s) = \int_0^\infty G(y) y^s d^* y$$

for Re(s) sufficiently large, where $d^*y = \frac{dy}{y}$. It is easy to check that

$$\xi(s) = \int_1^\infty G(y) y^s d^x y + \int_1^\infty G(1/y) y^{-s} d^x y$$

Assuming (A), we have (7) for any y > 0, so that we get (6) for any y > 0. Hence

$$\xi(s) + \frac{k}{s^2} + 2a \pi \left(\frac{1}{1+s} + \frac{1}{1-s} \right) = \int_1^\infty G(y) (y^s + y^{-s}) d^* y.$$

Then the assertion (B) follows at once by noticing that $G(y) \ll \exp(-\pi y / \lambda)$ when $y \ge 1$.

Lemma 2. Let k be a real number. If (2) holds, then $\phi(s)$ satisfies the following four conditions.

(a) $\phi(s)$ can be continued through the whole s-plane as a meromorphic function.

- (b) $s(s-1)\phi(s)L(s+1, \chi)$ is entire of finite order.
- (c) $(\lambda/M)^{s}\phi(s)L(-s,\chi) = \chi(-1)(\lambda/M)^{-s}\phi(-s)L(s,\chi).$
- (d) Res_{s=0} $\phi(s) = -\frac{k}{T(\chi)L(1, \chi)}$

[Vol. 68(A),

No. 10] and

$$\operatorname{Res}_{s=1} \phi(s) = \frac{4a\pi^2}{\lambda T(\chi)L(2,\chi)}.$$

Proof. Noting that $\xi(s) = \xi(-s)$ is equivalent to (c) by the functional equation for $L(s, \chi)$, this follows easily from (B) of Lemma 1. So we omit the proof.

3. Proof of the theorem. We prove the first assertion. By our assumptions, $\phi(s)$ satisfies the four conditions of Lemma 2. Hence, putting $D(s) = \phi(s)/L(s, \chi)$, D(s) can be continued through the whole *s*-plane as a meromorphic function of finite order and $(\lambda/M)^s D(s) = \chi(-1) (\lambda/M)^{-s} D(-s)$. Further, by (b), (c) and the assumption of $\phi(s)$, we see that D(s) has a finite number of poles in the whole *s*-plane and $D(-s) = O(|(\lambda/M)^{2s}|)$ for Re(s) sufficiently large. Then we can deduce from Lemma 5 in (2) that

$$D(s) = \sum_{m=1}^{K} c(m) m^{-s},$$

where K is the integral part of $(\lambda/M)^2$. By using the same argument as in the proof of Lemma 6 in [2], we find that $(\lambda/M)^2$ is an integer and

$$D(s) = \sum_{m \mid (\lambda/M)^2} c(m) m^{-s},$$

where c(m), for *m* dividing $(\lambda/M)^2$, are integers such that $c(m) = \chi(-1)c((\lambda/M)^2/m)$ for any divisor *m* of $(\lambda/M)^2$. Therefore we get

(8)
$$\phi(s) = \left(\sum_{m \mid (\lambda/M)^2} c(m) m^{-s}\right) L(s, \chi).$$

Then it is easily verified that $\xi(s)$ is an integral function which is bounded in every vertical strip and satisfies $\xi(s) = \xi(-s)$. Hence, a = k = 0 and $f_x(z)$ is given by (3).

The remaining part of the theorem follows immediately from Lemma 1 since $\phi(s)$ is given by (8).

References

- [1] K. Katayama: Zeta-functions, Lambert series and arithmetic functions. II. J. Reine Angew. Math., 268/269, 251-270 (1974).
- [2] M. Toyoizumi: On certain infinite products. II. Mathematika, 61, 1-11 (1984).