83. A Note on Certain Infinite Products

By Masao Toyoizumi
Department of Mathematics, Toyo University
(Communicated by Shokichi IYanaga, M. J. A. . Dec. 14, 1992)

1. Statement of result. Let M be a positive integer, χ a real nonprincipal primitive character modulo $M, L(s, \chi)$ the associated L-series and $\zeta_{M}=\exp (2 \pi i / M)$. Given a sequence $a(1), a(2), a(3), \cdots$ of integers such that $a(n)=O\left(n^{c}\right)$ for some $c>0$, we define, for $\operatorname{Im}(z)>0$,

$$
\begin{equation*}
f_{x}(z)=\exp (2 \pi i a z) \prod_{n=0}^{M-1} \prod_{n=1}^{\infty}\left(1-\zeta_{M}^{h} q(\lambda)^{n}\right)^{x(h) a(n)} \tag{1}
\end{equation*}
$$

where $q(\lambda)=\exp (2 \pi i z / \lambda), \lambda>0$ and a is a real number. Then the infinite product converges absolutely and uniformly in every compact subset of the upper half plane H. Hence $f_{\chi}(z)$ is holomorphic in H. To state our theorem, let $\phi(s)$ be a convergent Dirichlet series defined by

$$
\phi(s)=\sum_{n=1}^{\infty} a(n) n^{-s} .
$$

Theorem. Assume that $\phi(s)$ can be continued through the whole s-plane as a non-zero meromorphic function with a finite number of poles and that there exists a real number k such that

$$
\begin{equation*}
f_{\chi}(-1 / z)=(z / i)^{k} f_{\chi}(z) \tag{2}
\end{equation*}
$$

Then $(\lambda / M)^{2}$ is an integer, $a=k=0$ and $f_{\chi}(z)$ is given by

$$
\begin{equation*}
f_{\chi}(z)=\prod_{m \mid(\lambda / M)^{2}} \psi_{x}(m z)^{c(m)} \tag{3}
\end{equation*}
$$

where

$$
\phi_{\chi}(z)=\prod_{n=0}^{M-1} \prod_{n=1}^{\infty}\left(1-\zeta_{M}^{n} q(\lambda)^{n}\right)^{x(n) x(n)}
$$

and $c(m)$, defined for m dividing $(\lambda / M)^{2}$, are integers such that $c(m)=$ $\chi(-1) c\left((\lambda / M)^{2} / m\right)$ for any divisor m of $(\lambda / M)^{2}$.

Conversely, let $(\lambda / M)^{2}$ be an integer and let $c(m)$, for integers m dividing $(\lambda / M)^{2}$, be arbitrary integers such that $c(m)=\chi(-1) c\left((\lambda / M)^{2} / m\right)$ for any divisor m of $(\lambda / M)^{2}$. Further, define $f_{\chi}(z)$ by (3). Then $f_{\chi}(z)$ satisfies $f_{\chi}(-1 / z)=f_{\chi}(z)$.

Remark. In case $\lambda=M, \psi_{\chi}(z)$ coincides with $\eta_{3}(\chi ; z)$ which was first defined in Katayama [1].
2. Lemmas. For any $y>0$, we put

$$
G(y)=-\left\{\log f_{x}(i y)+2 a \pi y\right\}
$$

Then from (1), we have

$$
\begin{equation*}
G(y)=T(\chi) \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{\chi(m) a(n)}{m} \exp (-2 m n \pi y / \lambda) \tag{4}
\end{equation*}
$$

where $T(\chi)$ is the Gaussian sum defined by

$$
T(\chi)=\sum_{h=0}^{M-1} \chi(h) \zeta_{M}^{h}
$$

Put

$$
\xi(s)=T(\chi)(2 \pi / \lambda)^{-s} \Gamma(s) \phi(s) L(s+1, \chi)
$$

where $\Gamma(s)$ denotes the gamma function.
Lemma 1. Let k be a real number. Then the next two conditions are equivalent.
(A) $f_{\chi}(-1 / z)=(z / i)^{\mathrm{k}} f_{\chi}(z)$.
(B) $\xi(s)$ can be continued through the whole s-plane as a meromorphic function satisfying $\xi(s)=\xi(-s)$ and

$$
\xi(s)+\frac{k}{s^{2}}+2 a \pi\left(\frac{1}{1+s}+\frac{1}{1-s}\right)
$$

is entire and bounded in every vertical strip.
Proof. By (4) and Mellin's inversion formula, we obtain

$$
\begin{equation*}
G(y)=\frac{1}{2 \pi i} \int_{v-i \infty}^{v+i \infty} \xi(s) y^{-s} d s \tag{5}
\end{equation*}
$$

where v is chosen large enough to be in the domain of absolute convergence of $\phi(s)$. Now assume (B). Then, shifting the line of integration in (5) to $R e(s)=-v$ and applying $\xi(s)=\xi(-s)$, we see that

$$
\begin{equation*}
G(y)=G(1 / y)+\frac{2 a \pi}{y}-2 a \pi y+k \log y \tag{6}
\end{equation*}
$$

which yields

$$
\begin{equation*}
\log f_{\chi}(i / y)=k \log y+\log f_{x}(i y) \tag{7}
\end{equation*}
$$

Therefore

$$
f_{x}(i / y)=y^{k} f_{x}(i y)
$$

which is (A).
Next, we note that

$$
\xi(s)=\int_{0}^{\infty} G(y) y^{s} d^{\times} y
$$

for $\operatorname{Re}(s)$ sufficiently large, where $d^{\times} y=\frac{d y}{y}$. It is easy to check that

$$
\xi(s)=\int_{1}^{\infty} G(y) y^{s} d^{\times} y+\int_{1}^{\infty} G(1 / y) y^{-s} d^{\times} y
$$

Assuming (A), we have (7) for any $y>0$, so that we get (6) for any $y>0$. Hence

$$
\xi(s)+\frac{k}{s^{2}}+2 a \pi\left(\frac{1}{1+s}+\frac{1}{1-s}\right)=\int_{1}^{\infty} G(y)\left(y^{s}+y^{-s}\right) d^{\times} y
$$

Then the assertion (B) follows at once by noticing that $G(y) \ll \exp (-\pi y$ $/ \lambda$) when $y \geqq 1$.

Lemma 2. Let k be a real number. If (2) holds, then $\phi(s)$ satisfies the following four conditions.
(a) $\phi(s)$ can be continued through the whole s-plane as a meromorphic function.
(b) $s(s-1) \phi(s) L(s+1, \chi)$ is entire of finite order.
(c) $(\lambda / M)^{s} \phi(s) L(-s, \chi)=\chi(-1)(\lambda / M)^{-s} \phi(-s) L(s, \chi)$.
(d) $\operatorname{Res}_{s=0} \phi(s)=-\frac{k}{T(\chi) L(1, \chi)}$
and

$$
\operatorname{Res}_{s=1} \phi(s)=\frac{4 a \pi^{2}}{\lambda T(\chi) L(2, \chi)}
$$

Proof. Noting that $\xi(s)=\xi(-s)$ is equivalent to (c) by the functional equation for $L(s, \chi)$, this follows easily from (B) of Lemma 1 . So we omit the proof.
3. Proof of the theorem. We prove the first assertion. By our assumptions, $\phi(s)$ satisfies the four conditions of Lemma 2. Hence, putting $D(s)=$ $\phi(s) / L(s, \chi), D(s)$ can be continued through the whole s-plane as a meromorphic function of finite order and $(\lambda / M)^{s} D(s)=\chi(-1)(\lambda / M)^{-s} D$ $(-s)$. Further, by (b), (c) and the assumption of $\phi(s)$, we see that $D(s)$ has a finite number of poles in the whole s-plane and $D(-s)=O\left(\left|(\lambda / M)^{2 s}\right|\right)$ for $R e(s)$ sufficiently large. Then we can deduce from Lemma 5 in (2) that

$$
D(s)=\sum_{m=1}^{K} c(m) m^{-s}
$$

where K is the integral part of $(\lambda / M)^{2}$. By using the same argument as in the proof of Lemma 6 in [2], we find that $(\lambda / M)^{2}$ is an integer and

$$
D(s)=\sum_{m \mid(\lambda / M)^{2}} c(m) m^{-s}
$$

where $c(m)$, for m dividing $(\lambda / M)^{2}$, are integers such that $c(m)=$ $\chi(-1) c\left((\lambda / M)^{2} / m\right)$ for any divisor m of $(\lambda / M)^{2}$. Therefore we get

$$
\begin{equation*}
\phi(s)=\left(\sum_{m \mid(\lambda / M)^{2}} c(m) m^{-s}\right) L(s, \chi) . \tag{8}
\end{equation*}
$$

Then it is easily verified that $\xi(s)$ is an integral function which is bounded in every vertical strip and satisfies $\xi(s)=\xi(-s)$. Hence, $a=k=0$ and $f_{x}(z)$ is given by (3).

The remaining part of the theorem follows immediately from Lemma 1 since $\phi(s)$ is given by (8).

References

[1] K. Katayama: Zeta-functions, Lambert series and arithmetic functions. II. J. Reine Angew. Math., 268/269, 251-270 (1974).
[2] M. Toyoizumi: On certain infinite products. II. Mathematika, 61, 1-11 (1984).

