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Abstract Denote by A the class of functions f(z) analytic in

the unit disk D and normalised so that f(0) if(0) 1 0. For

fof(z) A, let F(z) [f(t)/t]dt for z D. We find estimate on

/ so that Ref’(z) > --/ will ensure the starlikeness of F (z). Our
conclusion improves the well-known results.

1. Introduction. Denote by A the class of functions f(z) which are an-

alytic in the unit disc D--{z’lzl < 1} and normalised so that f(0)
if(0) 1 0. Let Ra be the subclass of A satisfying Re f’(z) > c for

z D and S* be the subset of starlike functions, i. e.
S* {f (z) A" Re [zf" (z)/f (z) > 0 for z D}.

For f(z) A, let

f0(1) F (z) [f (t)/t]dt z D.

This integral operator was first introduced by J. W. Alexander. In paper [1],
R. Singh and S. Singh showed that if f(z) Ro, then Re[F(z)/z] > 1/2

(z D), and if Re f’(z) > 1/4, then F (z) S*. Recently M. Nunokawa
and D. K. Thomas [2] improved the second result by showing that if
Re f’(z) > 0.262, then F (z) S*.

In this paper we will improve both two conclusions.
2. Results and proofs. In proving our results, we need the following

lemmas.
Lemma 1 ([31). Let f (z) be analytic and g (z) convex in D (that is, in

D, g(z) satisfies Re[1 + zg"(z)/g’(z)] > 0). If f(z) -< g(z) (z D), then
we have

fo-iz f(t)dt -< g(t)dt,

where "-<" denotes the subordination.
Lemma 2 ([4]) If g(z) K-- the normalised class of convex functions,

then

G(z) - g(t)dt K.

Lemma 3 ([5]). Let w(z) be a non-constant regular function in

D, w(O)- O. If Iw(z) attains its maximum value on the circle zl-
r 1 at Zo, then we have ZoW’(Zo) --kW(Zo), where k is a real number,
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k>l.
Theorem 1. Let f (z) Ra, then

Re[F(z)/z] > 2a- 1 +(1- a)-6--
where F (z) is defined by (1).

Proof. From the definition of F (z), we have
(2) F’(z) + zF"(z) -f’(z)
for f (z) Ra, we have

1 + (1- 2a)zF" (z) + zF" (z) f’ (z) < l--z

(z D),

=p(z) (zD).

Re[F (z)/z] > 2a- 1 + 2(1 a). E (- 1) n-1 1
n= I/1

=2a--l+ (l--a). rr
6"

The proof of the theorem is completed.
If we let c 0, we have the following corollary.
Corollary 1. Let f(z) - Ro, then

Re[F(z)/z] > -g- 1 0.6449"" (z

The constant--- 1 cannot be replaced by any larger one.

It is easy to know that if f (z) -< g(z), then af + b < ag + b (a, b are
constants and a :: 0) too, and if f is convex in D, then af+ b (a, b are
constants and a :/: 0) is convex in D too. So from Lemma 2, we know that
ql(z) is convex in D. Applying Lemma 1 to (3), we obtain

F (z)/z -< z- q(t)dt q(z).
So we have

Re[F(z)/z] >min Re[qz(z)] ([ z] r).
zlr

As indicated above, e(z) is convex in D, and it is easy to check that (z
(z), so (z) maps z[ r onto a convex region which is symmetric

with respect to the real axis. Comparing (r) and z(-- r) we know

lr[ a) log(1 + t)]dtmin Re[(z) (-- r) 2a- 1 + 2(1

Similarly (z) maps D onto a convex region which is symmetric with re-
spect to the real axis, so we get

Re[F(z)/z] > 2-- 1+ t log(l+t) dt (D).

Expanding the integrand into Taylor series about t and integrating it, we can
obtain

It is easy to know p(z) is convex in D, so using Lemma 1, we get

f0 fo-1z [F’(t) + tF"(t)]dt-< z- p(t)dt,
that is,

(3) F’(z) -< 2a- 1--
2(1- a)

log(1- z) q(z).
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The second assertion can be seen from the function"
f(z) z- 2log (1 z) Ro.

Remark. This corollary improves and sharpens the corresponding re-
sult of R. Singh and S. Singh [1].

Theorem 2. Suppose that f (z) A and F (z) is given by (1). /f Re f’(z)

> _fl= 6-- rr 02738""(z D) thenF(z) S*.
24-- r

Proof. First we prove that if f(z) satisfies the hypothesis of the
theorem, then we have ReF’(z) > O(z D), thus F (z) is univalent in D.
In fact, from the condition and the definition of F (z) we have

F’(z) + zF"(z) + if(z) + ( 1 + z
1 + 1 + 1--z’

using Lemma I we obtain

(4) F’(z) "< (1 +/3)/- 1 --2__ log (1 z>/-
k z J

So

[ 2 ]ReF’(z) > (1 + fl) inf Re 1 ---log(1 z) fl
(1 +fl)(-- 1+21og2)--fl>0 (z D).

Second we estimate the lower bound of Re[F (z)/z]. Since the function
on the right-hand side of (4) is convex, using Lemma 1 again we get

lfoZF(z)/z-< (l+fl) 1-- - log (1-- t) dt--fl,

thus

(5)
/2

Re[F (z)/z] > (1 +/3) (-- 1) -/3- 2/3 (z D).

Now we can prove F (z) S*. Let
(6) [zF’(z)]/F (z) [1 + w(z)]/[1 w(z)].
Since F(z) is univalent in D, w(z) defined in (6) is analytic in D and
w(0) 0, w(z) 4= 1. From (6) we have

F(z) [[l+w(z)(7) F’(z) + zFrr (z) z l\l-w(z)] +
( w(z))J

We can claim that Iw(z) < 1 in D. In fact, if not, there exists a point
zo D such that maxlzl<lZol[W(Z) --IW(Zo)[ 1, then from Lemma 3 we
have ZoW’(Zo) kw(zo) kei for 0 < 0 2 r where k > 1. With z Zo,
it follows from (7) that

(8) Re[F’(z) +zF"(z)] Re{F (z) [(1. + e’)z,o + 2ke’,o)z]}z0 1 e (1 e

l+cos0+k {F (z0) }1 cos 0 Re
Zo

__<-,
where we used the inequality (5). From the definition of F(z) and (8) we
have Ref’(zo)

_
fl, which contradicts our hypothesis, so we have lw(z)

< 1 in D. Hence from (6) we know Re[zF’(z)/F(z)] > 0 (z D), which
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means F (z) S*.
Remark. For fi 0.2738"" > 0.262 > 1/4, so Theorem 2 is the im-

provement of the corresponding results obtained by [1] and [2].

Corollary 2. Let g(z) A and G (z) be defined by zG’(z) [g(t)

/t] dt. If Reg’(z) >- , (z D), then G(z) K where t3 is defined in

Theorem 2.
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