79. On the Starlikeness of the Alexander Integral Operator

By Chunyi Gao
Department of Mathematics, Changsha Communications Institute, People's Republic of China
(Communicated by Kiyosi ITÔ, M. J. A., Dec. 14, 1992)

Abstract

Denote by A the class of functions $f(z)$ analytic in the unit disk D and normalised so that $f(0)=f^{\prime}(0)-1=0$. For $f(z) \in A$, let $F(z)=\int_{0}^{z}[f(t) / t] d t$ for $z \in D$. We find estimate on β so that $\operatorname{Re} f^{\prime}(z)>-\beta$ will ensure the starlikeness of $F(z)$. Our conclusion improves the well-known results.

1. Introduction. Denote by A the class of functions $f(z)$ which are analytic in the unit disc $D=\{z:|z|<1\}$ and normalised so that $f(0)$ $=f^{\prime}(0)-1=0$. Let R_{α} be the subclass of A satisfying $\operatorname{Re} f^{\prime}(z)>\alpha$ for $z \in D$ and S^{*} be the subset of starlike functions, i. e.

$$
S^{*}=\left\{f(z) \in A: \operatorname{Re}\left[z f^{\prime}(z) / f(z)\right]>0 \text { for } z \in D\right\}
$$

For $f(z) \in A$, let

$$
\begin{equation*}
F(z)=\int_{0}^{z}[f(t) / t] d t \quad z \in D \tag{1}
\end{equation*}
$$

This integral operator was first introduced by J. W. Alexander. In paper [1], R. Singh and S . Singh showed that if $f(z) \in R_{0}$, then $\operatorname{Re}[F(z) / z]>1 / 2$ $(z \in D)$, and if $\operatorname{Re} f^{\prime}(z)>-1 / 4$, then $F(z) \in S^{*}$. Recently M. Nunokawa and D. K. Thomas [2] improved the second result by showing that if $\operatorname{Re} f^{\prime}(z)>-0.262$, then $F(z) \in S^{*}$.

In this paper we will improve both two conclusions.
2. Results and proofs. In proving our results, we need the following lemmas.

Lemma 1 ([3]). Let $f(z)$ be analytic and $g(z)$ convex in D (that is, in $D, g(z)$ satisfies $\left.\operatorname{Re}\left[1+z g^{\prime \prime}(z) / g^{\prime}(z)\right]>0\right)$. If $f(z) \prec g(z)(z \in D)$, then we have

$$
z^{-1} \int_{0}^{z} f(t) d t \prec z^{-1} \int_{0}^{z} g(t) d t
$$

where " $<$ " denotes the subordination.
Lemma $2([4])$. If $g(z) \in K$ - the normalised class of convex functions, then

$$
G(z)=\frac{2}{z} \int_{0}^{z} g(t) d t \in K
$$

Lemma 3 ([5]). Let $w(z)$ be a non-constant regular function in $D, w(0)=0$. If $|w(z)|$ attains its maximum value on the circle $|z|=$ $r<1$ at z_{0}, then we have $z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right)$, where k is a real number,
$k \geqslant 1$.
Theorem 1. Let $f(z) \in R_{\alpha}$, then

$$
\begin{aligned}
& \text { 1. Let } f(z) \in R_{\alpha} \text {, then } \\
& \operatorname{Re}[F(z) / z]>2 \alpha-1+(1-\alpha) \frac{\pi^{2}}{6} \quad(z \in D),
\end{aligned}
$$

where $F(z)$ is defined by (1).
Proof. From the definition of $F(z)$, we have

$$
\begin{equation*}
F^{\prime}(z)+z F^{\prime \prime}(z)=f^{\prime}(z) \tag{2}
\end{equation*}
$$

for $f(z) \in R_{\alpha}$, we have

$$
F^{\prime}(z)+z F^{\prime \prime}(z)=f^{\prime}(z)<\frac{1+(1-2 \alpha) z}{1-z}=p_{\alpha}(z) \quad(z \in D)
$$

It is easy to know $p_{\alpha}(z)$ is convex in D, so using Lemma 1 , we get
that is,

$$
z^{-1} \int_{0}^{z}\left[F^{\prime}(t)+t F^{\prime \prime}(t)\right] d t \prec z^{-1} \int_{0}^{z} p_{\alpha}(t) d t
$$

$$
\begin{equation*}
F^{\prime}(z) \prec 2 \alpha-1-\frac{2(1-\alpha)}{z} \log (1-z)=\varphi_{1}(z) \tag{3}
\end{equation*}
$$

It is easy to know that if $f(z) \prec g(z)$, then $a f+b \prec a g+b(a, b$ are constants and $a \neq 0$) too, and if f is convex in D, then $a f+b$ (a, b are constants and $a \neq 0$) is convex in D too. So from Lemma 2, we know that $\varphi_{1}(z)$ is convex in D. Applying Lemma 1 to (3), we obtain

So we have

$$
F(z) / z \prec z^{-1} \int_{0}^{z} \varphi_{1}(t) d t=\varphi_{2}(z)
$$

$$
\operatorname{Re}[F(z) / z]>\min \operatorname{Re}\left[\varphi_{2}(z)\right] \quad(|z| \leqslant r)
$$ As indicated above, $\varphi_{2}(z)$ is convex in D, and it is easy to check that $\varphi_{2}(\bar{z})$

$=\overline{\varphi_{2}(z)}$, so $\varphi_{2}(z)$ maps $|z| \leqslant r$ onto a convex region which is symmetric with respect to the real axis. Comparing $\varphi_{2}(r)$ and $\varphi_{2}(-r)$ we know

$$
\min _{|z| \leqslant r} \operatorname{Re}\left[\varphi_{2}(z)\right]=\varphi_{2}(-r)=\frac{1}{r} \int_{0}^{r}\left[2 \alpha-1+\frac{2(1-\alpha)}{t} \log (1+t)\right] d t
$$

Similarly $\varphi_{2}(z)$ maps D onto a convex region which is symmetric with respect to the real axis, so we get

$$
\operatorname{Re}[F(z) / z]>\int_{0}^{1}\left[2 \alpha-1+\frac{2(1-\alpha)}{t} \log (1+t)\right] d t \quad(z \in D)
$$

Expanding the integrand into Taylor series about t and integrating it, we can obtain

$$
\begin{aligned}
\operatorname{Re}[F(z) / z] & >2 \alpha-1+2(1-\alpha) \cdot \sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{n^{2}} \\
& =2 \alpha-1+(1-\alpha) \cdot \frac{\pi^{2}}{6}
\end{aligned}
$$

The proof of the theorem is completed.
If we let $\alpha=0$, we have the following corollary.
Corollary 1. Let $f(z) \in R_{0}$, then

$$
\operatorname{Re}[F(z) / z]>\frac{\pi^{2}}{6}-1=0.6449 \cdots \quad(z \in D)
$$

The constant $\frac{\pi^{2}}{6}-1$ cannot be replaced by any larger one.

The second assertion can be seen from the function:

$$
f(z)=-z-2 \log (1-z) \in R_{0}
$$

Remark. This corollary improves and sharpens the corresponding result of R. Singh and S. Singh [1].

Theorem 2. Suppose that $f(z) \in A$ and $F(z)$ is given by (1). If $\operatorname{Re} f^{\prime}(z)$ $>-\beta=\frac{6-\pi^{2}}{24-\pi^{2}}=0.2738 \cdots(z \in D)$, then $F(z) \in S^{*}$.

Proof. First we prove that if $f(z)$ satisfies the hypothesis of the theorem, then we have $\operatorname{Re} F^{\prime}(z)>0(z \in D)$, thus $F(z)$ is univalent in D. In fact, from the condition and the definition of $F(z)$ we have

$$
\frac{F^{\prime}(z)+z F^{\prime \prime}(z)+\beta}{1+\beta}=\frac{f^{\prime}(z)+\beta}{1+\beta} \prec \frac{1+z}{1-z},
$$

using Lemma 1 we obtain

$$
\begin{equation*}
F^{\prime}(z) \prec(1+\beta)\left[-1-\frac{2}{z} \log (1-z)\right]-\beta \tag{4}
\end{equation*}
$$

So

$$
\begin{aligned}
\operatorname{Re} F^{\prime}(z) & >(1+\beta) \inf _{|z|<1} \operatorname{Re}\left[-1-\frac{2}{z} \log (1-z)\right]-\beta \\
& =(1+\beta)(-1+2 \log 2)-\beta>0 \quad(z \in D)
\end{aligned}
$$

Second we estimate the lower bound of $\operatorname{Re}[F(z) / z]$. Since the function on the right-hand side of (4) is convex, using Lemma 1 again we get

$$
F(z) / z \prec(1+\beta) \frac{1}{z} \int_{0}^{z}\left[-1-\frac{2}{t} \log (1-t)\right] d t-\beta,
$$

thus

$$
\begin{equation*}
\operatorname{Re}[F(z) / z]>(1+\beta)\left(\frac{\pi^{2}}{6}-1\right)-\beta=2 \beta(z \in D) \tag{5}
\end{equation*}
$$

Now we can prove $F(z) \in S^{*}$. Let

$$
\begin{equation*}
\left[z F^{\prime}(z)\right] / F(z)=[1+w(z)] /[1-w(z)] \tag{6}
\end{equation*}
$$

Since $F(z)$ is univalent in $D, w(z)$ defined in (6) is analytic in D and $w(0)=0, w(z) \neq 1$. From (6) we have

$$
\begin{equation*}
F^{\prime}(z)+z F^{\prime \prime}(z)=\frac{F(z)}{z}\left[\left(\frac{1+w(z)}{1-w(z)}\right)^{2}+\frac{2 z w^{\prime}(z)}{(1-w(z))^{2}}\right] \tag{7}
\end{equation*}
$$

We can claim that $|w(z)|<1$ in D. In fact, if not, there exists a point $z_{0} \in D$ such that $\max _{|z| \leqslant\left|z_{0}\right|}|w(z)|=\left|w\left(z_{0}\right)\right|=1$, then from Lemma 3 we have $z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right)=k e^{i \theta}$ for $0<\theta<2 \pi$ where $k \geqslant 1$. With $z=z_{0}$, it follows from (7) that

$$
\begin{align*}
\operatorname{Re}\left[F^{\prime}(z)+z F^{\prime \prime}(z)\right] & =\operatorname{Re}\left\{\frac{F\left(z_{0}\right)}{z_{0}}\left[\left(\frac{1+e^{i \theta}}{1-e^{i \theta}}\right)^{2}+\frac{2 k e^{i \theta}}{\left(1-e^{i \theta}\right)^{2}}\right]\right\} \tag{8}\\
& =-\frac{1+\cos \theta+k}{1-\cos \theta} \operatorname{Re}\left\{\frac{F\left(z_{0}\right)}{z_{0}}\right\} \\
& \leq-\beta
\end{align*}
$$

where we used the inequality (5). From the definition of $F(z)$ and (8) we have $\operatorname{Re} f^{\prime}\left(z_{0}\right) \leq-\beta$, which contradicts our hypothesis, so we have $|w(z)|$ <1 in D. Hence from (6) we know $\operatorname{Re}\left[z F^{\prime}(z) / F(z)\right]>0(z \in D)$, which
means $F(z) \in S^{*}$.
Remark. For $\beta=0.2738 \cdots>0.262>1 / 4$, so Theorem 2 is the improvement of the corresponding results obtained by [1] and [2].

Corollary 2. Let $g(z) \in A$ and $G(z)$ be defined by $z G^{\prime}(z)=\int_{0}^{z}[g(t)$ $/ t] d t$. If $\operatorname{Reg}^{\prime}(z)>-\beta,(z \in D)$, then $G(z) \in K$ where β is defined in Theorem 2.

References

[1]R. Singh and S. Singh: Convolution properties of a class of starlike functions. Proc. Amer. Math. Soc., 106, 145-152 (1989).
[2] Rosihan M. Ali and D. K. Thomas: On the starlikeness of the Bernardi integral operator. Proc. Japan Acad., 67A, 319-321 (1991).
[3] D. Hallenbeck and S. Ruscheweyh: Subordination by convex function. Proc. Amer. Math. Soc., 52, 191-195 (1975).
[4] R. Libera: Some classes of regular univalent functions. ibid., 16, 755-758 (1975).
[5] I. S. Jack: Functions starlike and convex of order α. J. London Math. Soc., (2) 3, 469-474 (1971).

