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Introduction. Let (X, Y) be a smooth projective compactification of
C with the second Betti number b(X)=l. Then Y is an irreducible
ample divisor on X with PicXZ)x(Y) and the canonical divisor Kx can
be written as Kx--rY (rO, r e Z) (cf. [1]). Thus X is a Fano threefold
of first kind (cf. [6]). The integer r is called the index of X.

Two smooth compactifications (X, Y) and (X’, Y’) are said to be iso-
morphic, denoted by (X, Y)(X’, Y’), if there is a biregular morphism

X--+X’ such that (Y)= Y’.
Then we have"
Theorem. 1 ) r>4 > (X, Y) (p3, p), in fact, r-- 4
( 2 ) r=3 > (X, Y) (Q3, Q),
( 3 ) r-2 > (X, Y)-(Vs, H) or (Vs, H?),
( 4 ) r= 1 > (X, Y)-(V2, H2) or (V22, H).
Remark 1. (1) (p3, p2), (Q,Q), (V,HO), (V,Ho) are determined

uniquely up to. isomorphism (cf. [5], [8]).
(2) (V, H2), (V22, H2) are not unique, in fact, they have a 4-dimen-

sional family ([7]).
Notation. Q3’ a smooth quadric hypersurface in P’
Q" a quadric cone in Pa
V" a linear section Gr (2, 5) f3 P of the Grassmann Gr (2, 5) >PO

(Plticker embedding) by three hyperplanes in P, which is the Fano three-
fold of the index two, degree 5 in P

Hg’a normal hyperplane section of V with exactly one rational dou-
ble point of A-type, which is also the degenerated del-Pezzo surface of
degree 5
H a non-normal hyperplane section of V whose singular locus is a

line 2 with the normal bundle Nzz(--1)qz(1), in particular, H is
a ruled surface swept out by lines in V intersecting the line 2:

V.22" the Fano threefold of index one with the genus g=12, degree 22
in P (the anti-canonical embedding)

H. (resp. H2)" a non-normal hyperplane section of V22 whose singular
locus is a line Z with the normal bundle Nzt(C)z(-2)@@z(1), and the
multiplicity multzH2. (resp. multzH2) of H22 (resp. H2) at a general point
of Z is equal to two (resp. three), in particular, H is a ruled surface
swept out by conics in V22 intersecting the line Z.

The proof of Theorem in the case of r>2 was given in [2], [5], [8].
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In the case of r--l, we have to look carefully at the structure of non-
normal projective surfaces with the trivial dualizing sheaves and the dou-
ble projection of V from a line or a conic. The details will be published
elsewhere. Now, in this paper, we will show how these compactifications
of C are constructed from the well-known compactification P.

Construction. 1o Let L be a hyperplane in P. Then one can see
that P--LC, and thus we have the compactification (P, L) of C of the
index r-- 4.

2. Let (P, L) be as above. Let C be a conic in L and L’ a hyperplane
in p3 such that C. L’---2p (double point). Let ,c" Bc(P3)-P be the blowing
up of P along C and put C"=I(C)F (Hirzebruch surface). Let L,/’
be the proper transforms of L, L’ respectively.

Then we have"
(2.1) There is a birational morphism u" Bc(P)-Q of Bc(P) onto a

smooth quadric hypersurface Q in P, which contracts L-P to a smooth
point v" VL r(L).

We put (c,L)" o 21. p...Q, and Q" =(c,)(C)=(C’), Q"=(c,,)(L’)
(L’), g" =(,>(p) ((p)).
Then we have"

(c,) P-L Q- Q (isomorphic),
Q, Q’ are quadric cones in P, and the vertex of Q is the point

(2.2)
(2.3)

)---VL

(2.4)
(2.5)

g is a generating line of Q, Q’ with Q.Q’=2g (double line),
(Q, Q)= (Q, ’).

We put Q’=Q (-Q’). Then (Q’,Q) is the compactification of C of
the index r=3.

:. Let (Q, Q), (Q, Q’), g, v be as above. Let D be a twisted cubic
curve in Q such that D Q’=D g={v}. Such a D always exists (cf. [2]).
Let " B(Q)-.Q be the blowing up of Q along D-p1 and put D’ =I(D)
--Y. Let Q, Q’, y be the proper transforms of Q, Q’, g in B(Q), respec-
tively.

Then we have"
(3.1) There is a birational morphism " B,(Q3)-V5 of B(Q) onto a

Fano threefold V, of the first kind with the index two, degree 5 in P" (see
Notation), which contracts the ruled surface QF to a line X’==(Q) in

We put (,)" o 1" Q...V5 P, and H" =(,)(D)=(D’), H’=
(.,;(Q’)=u(Q’), w’=w=(,,)(g)=r() (a point of V).

Then we have"
Q(3.2) (,) -Q-Vs-H (isomorphic),

(3.3) 27 is a line on V with the normal bundle N,(C):.(--1)(z(1),
(3.4) H is a non-normal hyperplane section of V whose singular

locus is the line X, in particular, H is a ruled surface swept out by lines
intersecting the line
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(3.4)’ H is a normal hyperplane section of V with exactly one ra-
tional double point w=w o:f A4-type,

(3.5) HH’=X (as a set), and HH’=5,
(3.6) V-H C V-H,
(3.7) (V,H), (Vs, H) are determined uniquely up to isomorphism

(c. [5]).
We put H’--Hs, H’=H respectively. Then (Vs, H) (V, H) are the

compactification of C of the index r--2.
4. Let (V,H), (V,H’), , w=w, be as above. Let E be a smooth

rational curve of degree 5 in H >V such that EH--E27={w}.
Such an E always exists (cf. [4]). Let E" BE(V)--+V5 be the blowing up
of V along E-P’ and put E"=2’(E). Let H, H, 2 be the proper trans-
forms of H, H, 27 in B(V), respectively.

Then we have"
(4.1) There is a birational map, called a "flop", /" B(V)...-)U of

B(V) onto a smooth projective threefold U such that /" B,(V)--Z--U
-, where is some smooth rational curve in U with the normal bundle
N ((--2).

Let H, H’, Z’ be the proper transforms of E’, H, H’ respectively.
Then we have"

(4.2) There is a birational morphism z," U-+V of U onto a Fano
threefold V of the first kind with the index one, the genus g=12 (see
Notation), which contracts the surface Z’F to a line Z" ==z,(Z’).

We put , "=z, o/ ,. V...+V--p’, and H’=,m(E)=
z,(H), H’=q(,)(H)=z,(H’). In particular, Z=(,)(H). Then we
have"

(4.3) (,) V-H- V--H (isomorphic),
(4.4) Z is a line on V with the normal bundle N.-G(-2)G(1),
(4.5) H is a non-normal hyperplane section of V whose singular

locus is the line Z, and multzH=3 (the multiplicity of H at a general
point of Z), in particular, H is a ruled surface swept out by conics inter-
secting the line Z.

(4.5)’ H is also a non-normal hyperplane section of V whose sin-
gular locus is the same line Z, and multzH=2,

(4.6) V--H-C V--H (el. [4]),
(4.7) (Vz,Hz), (Vzz, H) are not determined uniquely up to isomor-

phism, they have a 4-dimensional family (cf. [7]).
We put Hzz =H, H" H, respectively. Then these (V, Hzz), (Vzz,

H) are the compactifications of the index r--1.
Thus we have finally the following sequence of birational maps among

the compactifications of C"
(P, L) (Q, Q) (V, H) /(V, H)

( C, L D Q) 0(E,Hs)

(P, L’) -(Q, Q’) -(y, Hg) ,(V,
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Conclusion. Any smooth projective compactification of C with the
second Betti number equal to one can be obtained from the compactifica-
tion (P, P) by the above way.
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