9. The Structure of Compactifications of C^{3}

By Mikio Furushima
Department of Mathematics, College of Education, University of the Ryukyu

(Communicated by Heisuke Hironaka, m. J. a., Feb. 12, 1992)

Introduction. Let (X, Y) be a smooth projective compactification of C^{3} with the second Betti number $b_{2}(X)=1$. Then Y is an irreducible ample divisor on X with Pic $X \cong Z \mathcal{O}_{X}(Y)$ and the canonical divisor K_{X} can be written as $K_{X} \sim-r Y(r>0, r \in Z)$ (cf. [1]). Thus X is a Fano threefold of first kind (cf. [6]). The integer r is called the index of X.

Two smooth compactifications (X, Y) and (X^{\prime}, Y^{\prime}) are said to be isomorphic, denoted by $(X, Y) \cong\left(X^{\prime}, Y^{\prime}\right)$, if there is a biregular morphism $\alpha: X \rightarrow X^{\prime}$ such that $\alpha(Y)=Y^{\prime}$.

Then we have:
Theorem. (1) $r \geq 4 ら(X, Y) \cong\left(P^{3}, P^{2}\right)$, in fact, $r=4$;
(2) $r=3 \leftrightharpoons(X, Y) \cong\left(\boldsymbol{Q}^{3}, \boldsymbol{Q}_{0}^{2}\right)$,
(3) $r=2 \Rightarrow(X, Y) \cong\left(V_{5}, H_{5}^{0}\right)$ or $\left(V_{5}, H_{5}^{\infty}\right)$,
(4) $r=1 弓(X, Y) \cong\left(V_{22}, H_{22}^{0}\right)$ or $\left(V_{22}, H_{22}^{\circ}\right)$.

Remark 1. (1) ($\left.\boldsymbol{P}^{3}, \boldsymbol{P}^{2}\right),\left(\boldsymbol{Q}^{3}, \boldsymbol{Q}_{0}^{2}\right),\left(V_{5}, H_{5}^{0}\right),\left(V_{5}, H_{5}^{\infty}\right)$ are determined uniquely up to isomorphism (cf. [5], [8]).
(2) $\left(V_{22}, H_{22}^{0}\right),\left(V_{22}, H_{22}^{\infty}\right)$ are not unique, in fact, they have a 4-dimensional family ([7]).

Notation. \boldsymbol{Q}^{3} : a smooth quadric hypersurface in \boldsymbol{P}^{4}
\boldsymbol{Q}_{0}^{2} : a quadric cone in \boldsymbol{P}^{3}
V_{5} : a linear section $\operatorname{Gr}(2,5) \cap \boldsymbol{P}^{6}$ of the Grassmann $\operatorname{Gr}(2,5) \rightleftarrows \boldsymbol{P}^{9}$ (Plücker embedding) by three hyperplanes in P^{9}, which is the Fano threefold of the index two, degree 5 in P^{5}
H_{5}^{0} : a normal hyperplane section of V_{5} with exactly one rational double point of A_{4}-type, which is also the degenerated del-Pezzo surface of degree 5
H_{5}^{∞} : a non-normal hyperplane section of V_{5} whose singular locus is a line Σ with the normal bundle $N_{\Sigma \mid V_{5}} \cong \mathcal{O}_{\Sigma}(-1) \oplus \mathcal{O}_{\Sigma}(1)$, in particular, H_{5}^{∞} is a ruled surface swept out by lines in V_{5} intersecting the line Σ
V_{22} : the Fano threefold of index one with the genus $g=12$, degree 22 in P^{13} (the anti-canonical embedding)
$H_{22}^{0}\left(\right.$ resp. $\left.H_{22}^{\infty}\right)$: a non-normal hyperplane section of V_{22} whose singular locus is a line Z with the normal bundle $N_{Z \mid V_{22}} \cong \mathcal{O}_{Z}(-2) \oplus \mathcal{O}_{Z}(1)$, and the multiplicity mult ${ }_{z} H_{22}^{0}\left(\right.$ resp. mult $\left.{ }_{z} H_{22}^{\infty}\right)$ of $H_{22}^{0}\left(\right.$ resp. $\left.H_{22}^{\infty}\right)$ at a general point of Z is equal to two (resp. three), in particular, H_{22}^{∞} is a ruled surface swept out by conics in V_{22} intersecting the line Z.

The proof of Theorem in the case of $r \geq 2$ was given in [2], [5], [8].

In the case of $r=1$, we have to look carefully at the structure of nonnormal projective surfaces with the trivial dualizing sheaves and the double projection of V_{22} from a line or a conic. The details will be published elsewhere. Now, in this paper, we will show how these compactifications of C^{3} are constructed from the well-known compactification \boldsymbol{P}^{3}.

Construction. 1. Let L be a hyperplane in P^{3}. Then one can see that $\boldsymbol{P}^{3}-L \cong C^{3}$, and thus we have the compactification $\left(\boldsymbol{P}^{3}, L\right)$ of C^{3} of the index $r=4$.
2. Let (\boldsymbol{P}^{3}, L) be as above. Let C be a conic in L and L^{\prime} a hyperplane in \boldsymbol{P}^{3} such that $C \cdot L^{\prime}=2 p$ (double point). Let $\lambda_{c}: B_{c}\left(\boldsymbol{P}^{3}\right) \rightarrow \boldsymbol{P}^{3}$ be the blowing up of P^{3} along C and put $C^{\prime}:=\lambda_{C}^{-1}(C) \cong \boldsymbol{F}_{2}$ (Hirzebruch surface). Let $\bar{L}, \bar{L}^{\prime}$ be the proper transforms of L, L^{\prime} respectively.

Then we have:
(2.1) There is a birational morphism $\pi_{\bar{L}}: B_{C}\left(\boldsymbol{P}^{3}\right) \rightarrow \boldsymbol{Q}^{3}$ of $B_{C}\left(\boldsymbol{P}^{3}\right)$ onto a smooth quadric hypersurface \boldsymbol{Q}^{3} in \boldsymbol{P}^{4}, which contracts $\bar{L} \cong \boldsymbol{P}^{2}$ to a smooth point $v:=v_{L}=\pi_{\bar{L}}(\bar{L})$.

We put $\varphi_{(c, L)}: \pi_{\bar{L}} \circ \lambda_{C}^{-1}: \boldsymbol{P}^{3} \ldots \rightarrow \boldsymbol{Q}^{3}$, and $Q:=\varphi_{(c, L)}(C)=\pi_{\bar{L}}\left(C^{\prime}\right), Q^{\prime}:=\varphi_{(c, L)}\left(L^{\prime}\right)$ $=\pi_{\bar{L}}\left(\overline{L^{\prime}}\right), g:=\varphi_{(c, L)}(p)=\pi_{\tilde{L}}\left(\lambda_{c}^{-1}(p)\right)$.

Then we have:
(2.2) $\varphi_{(c, L)}: \boldsymbol{P}^{3}-L \cong \boldsymbol{Q}^{3}-Q$ (isomorphic),
(2.3) Q, Q^{\prime} are quadric cones in P^{3}, and the vertex of Q is the point $v=v_{L}$,
(2.4) g is a generating line of Q, Q^{\prime} with $Q \cdot Q^{\prime}=2 g$ (double line),
(2.5) $\quad\left(\boldsymbol{Q}^{3}, Q\right) \cong\left(\boldsymbol{Q}^{3}, Q^{\prime}\right)$.

We put $Q:=\boldsymbol{Q}_{0}^{2}\left(\cong Q^{\prime}\right)$. Then $\left(\boldsymbol{Q}^{3}, \boldsymbol{Q}_{0}^{2}\right)$ is the compactification of \boldsymbol{C}^{3} of the index $r=3$.
3. Let $\left(\boldsymbol{Q}^{3}, Q\right),\left(\boldsymbol{Q}^{3}, Q^{\prime}\right), g, v$ be as above. Let D be a twisted cubic curve in Q such that $D \cap Q^{\prime}=D \cap g=\{v\}$. Such a D always exists (cf. [2]). Let $\lambda_{D}: B_{D}\left(\boldsymbol{Q}^{3}\right) \rightarrow \boldsymbol{Q}^{3}$ be the blowing up of \boldsymbol{Q}^{3} along $D \cong \boldsymbol{P}^{1}$ and put $D^{\prime}:=\lambda_{D}^{-1}(D)$ $\cong \boldsymbol{F}_{3}$. Let $\bar{Q}, \bar{Q}^{\prime}, \bar{g}$ be the proper transforms of Q, Q^{\prime}, g in $B_{D}\left(\boldsymbol{Q}^{3}\right)$, respectively.

Then we have:
(3.1) There is a birational morphism $\pi_{\bar{Q}}: B_{D}\left(\boldsymbol{Q}^{3}\right) \rightarrow V_{5}$ of $B_{D}\left(\boldsymbol{Q}^{3}\right)$ onto a Fano threefold V_{5} of the first kind with the index two, degree 5 in P^{6} (see Notation), which contracts the ruled surface $\bar{Q} \cong F_{2}$ to a line $\Sigma:=\pi_{\bar{Q}}(\bar{Q})$ in V_{5}.

We put $\varphi_{(D, Q)}: \pi_{\bar{Q}} \circ \lambda_{D}^{-1}: \boldsymbol{Q}^{3} \cdots V_{5} \longrightarrow \boldsymbol{P}^{6}$, and $H_{5}:=\varphi_{(D, Q)}(D)=\pi_{\bar{Q}}\left(D^{\prime}\right), H_{5}^{\prime}:=$ $\varphi_{(D, Q)}\left(Q^{\prime}\right)=\pi_{\bar{Q}}\left(\overline{Q^{\prime}}\right), w:=w_{g}=\varphi_{(D, Q)}(g)=\pi_{\bar{Q}}(\bar{g})$ (a point of $\left.V_{5}\right)$.

Then we have:
(3.2) $\varphi_{(D, Q)}: \boldsymbol{Q}^{3}-Q \cong V_{5}-H_{5}$ (isomorphic),
(3.3) Σ is a line on V_{5} with the normal bundle $N_{\Sigma \mid V_{5}} \cong \mathcal{O}_{\Sigma}(-1) \oplus \mathcal{O}_{\Sigma}(1)$,
(3.4) H_{5} is a non-normal hyperplane section of V_{5} whose singular locus is the line Σ, in particular, H_{5} is a ruled surface swept out by lines intersecting the line Σ,
(3.4) H_{5}^{\prime} is a normal hyperplane section of V_{5} with exactly one rational double point $w=w_{g}$ of A_{4}-type,
(3.5) $H_{5} \cap H_{5}^{\prime}=\Sigma$ (as a set), and $H_{5} H_{5}^{\prime}=5 \Sigma$,
(3.6) $\quad V_{5}-H_{5} \cong \boldsymbol{C}^{3} \cong V_{5}-H_{5}^{\prime}$,
(3.7) $\left(V_{5}, H_{5}\right),\left(V_{5}, H_{5}^{\prime}\right)$ are determined uniquely up to isomorphism (cf. [5]).

We put $H_{5}^{\infty}:=H_{5}, H_{5}^{0}:=H_{5}^{\prime}$ respectively. Then $\left(V_{5}, H_{5}^{\infty}\right)\left(V_{5}, H_{5}^{0}\right)$ are the compactification of C^{3} of the index $r=2$.
4. Let $\left(V_{5}, H_{5}\right),\left(V_{5}, H_{5}^{\prime}\right), \Sigma, w=w_{g}$ be as above. Let E be a smooth rational curve of degree 5 in $H_{5} \longrightarrow V_{5}$ such that $E \cap H_{5}^{\prime}=E \cap \Sigma=\{w\}$. Such an E always exists (cf. [4]). Let $\lambda_{E}: B_{E}\left(V_{5}\right) \rightarrow V_{5}$ be the blowing up of V_{5} along $E \cong \boldsymbol{P}^{1}$ and put $E^{\prime}:=\lambda_{E}^{-1}(E)$. Let $\bar{H}_{5}, \bar{H}_{5}^{\prime}, \bar{\Sigma}$ be the proper transforms of $H_{5}, H_{5}^{\prime}, \Sigma$ in $B_{E}\left(V_{5}\right)$, respectively.

Then we have:
(4.1) There is a birational map, called a "flop", $\mu: B_{E}\left(V_{5}\right) \cdots \rightarrow$ of $B_{E}\left(V_{5}\right)$ onto a smooth projective threefold U such that $\mu: B_{E}\left(V_{5}\right)-\bar{\Sigma} \cong U$ $-\Delta$, where Δ is some smooth rational curve in U with the normal bundle $N_{\Delta \mid U} \cong \mathcal{O}_{\Delta}(-2) \oplus \mathcal{O}_{\Delta}$.

Let $H, H^{\prime}, Z^{\prime}$ be the proper transforms of $E^{\prime}, \bar{H}_{5}, \bar{H}^{\prime}$ respectively. Then we have:
(4.2) There is a birational morphism $\pi_{Z^{\prime}}: U \rightarrow V_{22}$ of U onto a Fano threefold V_{22} of the first kind with the index one, the genus $g=12$ (see Notation), which contracts the surface $Z^{\prime} \cong F_{3}$ to a line $Z:=\pi_{Z^{\prime}}\left(Z^{\prime}\right)$.

We put $\varphi_{\left(E, H_{5}\right)}:=\pi_{Z} \circ \circ \mu \circ \lambda_{E}^{-1}: V_{5} \cdots V_{22} \longrightarrow P^{13}$, and $H_{22}:=\varphi_{\left(E, H_{5}\right)}(E)=$ $\pi_{Z^{\prime}}(H), H_{22}^{\prime}:=\varphi_{\left(E, H_{5}\right)}\left(H_{5}^{\prime}\right)=\pi_{Z^{\prime}}\left(H^{\prime}\right)$. In particular, $Z=\varphi_{\left(E, H_{5)}\right)}\left(H_{5}\right)$. Then we have:
(4.3) $\varphi_{\left(E, H_{5}\right)}: V_{5}-H_{5} \cong V_{22}-H_{22}$ (isomorphic),
(4.4) Z is a line on V_{22} with the normal bundle $N_{\Delta \mid V_{22}} \cong \mathcal{O}_{4}(-2) \oplus \mathcal{O}_{4}(1)$,
(4.5) $\quad H_{22}$ is a non-normal hyperplane section of V_{22} whose singular locus is the line Z, and mult $H_{22}=3$ (the multiplicity of H_{22} at a general point of Z), in particular, H_{22} is a ruled surface swept out by conics intersecting the line Z.
(4.5) $\quad H_{22}^{\prime}$ is also a non-normal hyperplane section of V_{22} whose singular locus is the same line Z, and mult ${ }_{Z} H_{22}^{\prime}=2$,
(4.6) $\quad V_{22}-H_{22} \cong \boldsymbol{C}^{3} \cong V_{22}-H_{22}^{\prime}$ (cf. [4]),
(4.7) $\left(V_{22}, H_{22}\right)$, $\left(V_{22}, H_{22}^{\prime}\right)$ are not determined uniquely up to isomorphism, they have a 4 -dimensional family (cf. [7]).

We put $H_{22} ;=H_{22}^{\infty}, H_{22}^{\prime}:=H_{22}^{0}$, respectively. Then these $\left(V_{22}^{\infty}, H_{22}\right),\left(V_{22}\right.$, H_{22}^{0}) are the compactifications of the index $r=1$.

Thus we have finally the following sequence of birational maps among the compactifications of C^{3} :

$$
\begin{aligned}
& \left(\boldsymbol{P}^{3}, L^{\prime}\right) \cdots \ldots \ldots \rightarrow\left(\boldsymbol{Q}^{3}, Q^{\prime}\right) \ldots \ldots \ldots \rightarrow\left(V_{5}, H_{5}^{\prime}\right) \cdots \ldots \ldots \rightarrow\left(V_{22}, H_{22}^{\prime}\right)
\end{aligned}
$$

Conclusion. Any smooth projective compactification of C^{3} with the second Betti number equal to one can be obtained from the compactification ($\boldsymbol{P}^{3}, \boldsymbol{P}^{2}$) by the above way.

Acknowledgements. The author wishes to express his hearty thanks to Professor H. Grauert and Professor H. Flenner for giving him the opportunity of visiting SFB 170 "Geometrie und Analysis".

References

[1] L. Brenton and J. Morrow: Compactifications of C^{n}. Trans. Amer. Math. Soc., 246, 139-158 (1979).
[2] M. Furushima: Singular del Pezzo surfaces and analytic compactifications of 3-dimensional complex affine space C^{3}. Nagoya Math. J., 104, 1-28 (1986).
[3] -: Mukai-Umemura's example of a Fano threefold of genus 12 as a compactification of C^{3} (1990) (preprint).
[4] --: A new example of a compactification of C^{3}. Mathematicá Göttingensis, Heft 33 (1991).
[5] M. Furushima and N. Nakayama: The family of lines on the Fano threefold V_{5}. Nagoya Math. J., 116, 111-122 (1989).
[6] V. A. Iskovskih: Anticanonical models of three-dimensional algebraic varieties. J. Soviet Math., 13-14, 745-814 (1980).
[7] S. Mukai: On Fano threefolds (to appear in Projective Geometry, Trieste, 1989).
[8] Th. Peternell and M. Schneider: Compactifications of C^{3}. I. Math. Ann., 280, 129145 (1988).

