77. Spectral Concentration and Resonances for Unitary Operators

By Kazuo WATANABE

Department of Mathematics, Gakushuin University (Communicated by Kiyosi ITÔ, M. J. A., Dec. 14, 1992)

1. Introduction. Operator-theoretical approach to the theory of resonances for a family of selfadjoint operators H_k has been investigated by J. S. Howland ([1]), A. Orth ([4]) and W. Hunziker ([2]). (For other works see the references in these papers, and [3; VIII, §5].) In particular, Orth established a link between the theory of resonances and the limiting absorption principle, developed the theory without any analyticity assumptions, and applied it successfully to N-body Schrödinger operators using the Mourre estimate.

In the present note we are mainly interested in the abstract part of the work [4] and shall present a generalization which can cover H_k given by a form sum. (Note that in [4] it is supposed that $H_k \supset H_0 + \kappa W$.) To this end we find it convenient to construct a counterpart of Orth's abstract results for a unitary operator family U_k . It will be given in §2. In §3 we transform the results to the selfadjoint families. This amounts to considering the Cayley transform $(H_{\kappa} - i) (H_{\kappa} + i)^{-1}$ of H_{κ} , or $(H_{\kappa} - d)^{-1}$ if H_{κ} is uniformly semibounded. In §4 we apply the results to a simple example in which a Dirichlet decoupled ordinary differential operator is perturbed by a delta type measure.

In this note we present only results. Detailed proofs will be published elsewhere ([5]).

The main instrument in [1] and [4] is the Livsic matrix. It is generally defined as follows.

Definition (L). Let T be a densely defined closed operator in a Hilbert space **H** and P be a finite dimensional orthogonal projection. Then the Livsic matrix B(T, z) of T in P**H** is a finite dimensional operator defined by $P(T-z)^{-1}P = (B(z, T) - z)^{-1},$

P(I-z) P = (B(z, I) - z)where z belongs to the resolvent set $\rho(T)$ of T.

2. Spectral concentration for unitary operators. Let U be a unitary operator and P be an orthogonal projection onto the *m*-dimensional space $K = PH(m < \infty)$. It is not necessary that U and P commute. We put $\Omega_0 := \{w \in C ; |w| > 1\}$. We shall consider the Livsic matrix B(w) of U in K. For $w \in \Omega_0 B(w)$ is well-defined and given as

$$B(w) = PUP - PUP(U - w)^{-1}PUP$$

where $\overline{U} = \overline{P}U\overline{P}$.

Let $U_{\kappa} = \int_{0}^{2\pi} e^{i\theta} dF_{\kappa}(\theta)$, $\kappa \ge 0$, be unitary operators such that $U_{\kappa} \to U_{0}$ in the strong sense as $\kappa \to 0$. And let $e^{i\theta_{0}}$ be an eigenvalue of U_{0}

with finite multiplicity *m*. In the case of $m \ge 2$ we shall assume $U_{\kappa} = U_0 + a(\kappa) V_{\kappa}$

where $a(\kappa)$ is a complex continuous function such that, as $\kappa \to 0$, $a(\kappa)$ tends to zero and $\lim \arg a(\kappa)$ exists and V_{κ} is a bounded operator such that V_{κ} tends to V_0 in the strong sense. We denote by $B(z, \kappa)$ the Livsic matrix of U_{κ} in the eigenspace of U_0 corresponding to the eigenvalue $e^{i\theta_0}$. Corresponding to Definition 1.4 of [4] we shall introduce the following assumption.

Assumption (AU). There exist a neighborhood $C \subseteq [0, 2\pi]$ of θ_0 and a complex neighborhood Ω_1 of $e^{i\theta_0}$ such that $B(z, \kappa)$ has a continuous extension from $\Omega_0 \cap \Omega_1$ to e^{iC} and the continuation satisfies

$$\| B(z, \kappa) - B(w, \kappa) \| \le L(\kappa) | z - w |$$

for z, $w \in \Omega := \overline{\Omega_0 \cap \Omega_1}$, where we assume ($\alpha(1)$) if m = 1

$$L(\kappa) = \begin{cases} o(1), & \text{if } m < 1, \\ o(a(\kappa)), & \text{if } m \ge 2 \end{cases}$$

Corresponding to Theorems 1.5 and 1.12 of [4] we have the following theorems.

Theorem 2.1. Let $e^{i\theta_0}$ be a simple eigenvalue of U_0 and ϕ be an eigenvector corresponding to the eigenvalue $e^{i\theta_0}$ with $\|\phi\| = 1$. Suppose that the Livsic matrix $B(z, \kappa)$ of U_{κ} in the eigenspace $\{\alpha\phi\}$ satisfies Assumption (AU). Then, for sufficiently small $\kappa (0 \leq \kappa \leq \kappa_0)$ the following assertions (1)-(3) hold.

(1) There exists a unique solution of the equation

 $z(\kappa) = (B(z(\kappa)/|z(\kappa)|,\kappa)\phi,\phi)$

such that $|z(\kappa)| \leq 1$. Put $z(\kappa) = r(\kappa)e^{i\theta(\kappa)}$

(2) There exists $\delta(\kappa) \ge 0$ such that $\delta(\kappa) = 0$ if $r(\kappa) = 1$ and if $r(\kappa) \leq 1$ and $\kappa \rightarrow 0$, then

 $\max(\delta(\kappa), L(\kappa)^{1/2}\delta(\kappa)/(1-r(\kappa)), (1-r(\kappa))/\delta(\kappa)) \to 0 \text{ as } \kappa \to 0.$ (3) For any $\delta(\kappa)$ in (2) put $C(\kappa) = [\theta(\kappa) - \delta(\kappa), \theta(\kappa) + \delta(\kappa)]$. Then $F_{\kappa}(C(\kappa)) \rightarrow P, \ \kappa \rightarrow 0,$

in the strong sense.

Let $e^{i\theta_0}$ be a degenerate eigenvalue with a finite multiplicity Theorem 2.2. m of the unitary operator U_0 . Suppose that the Livsic matrix of the unitary operators satisfy Assumption (AU) and that PV_0P has only simple eigenvalues μ_1, \ldots, μ_m . Then the following assertions (1)-(3) hold.

(1) We can find the unique solutions $z_1(\kappa), \ldots, z_m(\kappa)$ of

$$\det(B(z/|z|, \kappa) - z) = 0$$

satisfying $|z_{k}(\kappa) - e^{i\theta_{0}} - a(\kappa)u_{k}| = o(a(\kappa))$. We put

$$z_j(\kappa) = r_j(\kappa)e^{i\theta_j(\kappa)} \text{ and } B_j(\kappa) = B(e^{i\theta_j(\kappa)}, \kappa).$$

(2) There exists $\delta_i(\kappa) \geq 0$ such that, for $r_i(\kappa) = 1$, $\delta_i(\kappa) = 0$, and for $r_i(\kappa) < 1$,

$$\max(\delta_j(\kappa)/|a(\kappa)|, L(\kappa)^{1/2}\delta_j(\kappa)/|a(\kappa)|^{1/2}(1-r_j(\kappa)), (1-r_j(\kappa))/\delta_j(\kappa)) \to 0, \text{ as } \kappa \to 0.$$

(3) Let $C_i(\kappa) = [\theta_i(\kappa) - \delta_i(\kappa), \theta_i(\kappa) + \delta_i(\kappa)]$ and $P_i(0)$ be the projection associated to the eigenvalue $z_i(0)$ of $B_i(0)$. Then we have

K. WATANABE

$$F_{\kappa}(C_j(\kappa)) \to P_j(0), \ \kappa \to 0,$$

in the strong sense.

3. Application to the selfadjoint problems. We shall consider the following situation. H_{κ} , $\kappa \ge 0$, is a selfadjoint operator in **H**. H_{κ} converges to H_0 in the strong resolvent sense. λ_0 is an eigenvalue of H_0 with a finite multiplicity. Let P be the orthogonal projection associated to the eigenvalue λ_0 of H_0 , K = Range P, $m = \dim K < \infty$ and $\overline{P} := I - P$.

In this section we use a linear fractional function $g(H_{\kappa})$ of H_{κ} . We shall first assume

Assumption (G.1). g(z) = (az + b)/(cz + d), $a, b, c, d \in C$ with $ad - bc \neq 0$. There exists $\kappa_0 > 0$ such that $c\lambda + d \neq 0$ for any $\lambda \in \bigcup_{0 \leq \kappa \leq \kappa_0} \sigma(H_{\kappa})$.

We shall write the Livsic matrix $B(g(z), g(H_{\kappa}))$ in K as $B_g(g(z), \kappa)$, that is

$$P(g(H_{x}) - g(z))^{-1} P = (B_{g}(g(z), \kappa) - g(z))^{-1}, Imz \neq 0.$$

If $K \subseteq D(g(H_{\kappa}))$, we can write $B_{g}(g(z), \kappa)$ as

$$B_{\underline{g}}(g(z), \kappa) = Pg(H_{\underline{x}})P - Pg(H_{\underline{x}})\overline{P}(\overline{g}(H_{\underline{x}}) - g(z))^{-1}\overline{P}g(H_{\underline{x}})P,$$

where $g(H_{\kappa}) = Pg(H_{\kappa})P$. In the case that $m \ge 2$ we assume in addition to Assumption (G.1) the following condition:

Assumption (G.2). $g(H_{\kappa}) = g(H_0) + a(\kappa)V_{\kappa}$ where $a(\kappa) \neq 0$, $\kappa \neq 0$, is a complex valued continuous function with $a(\kappa) \rightarrow 0$ as $\kappa \rightarrow 0$ with $\lim \arg a(\kappa)$ existing and V_{κ} are bounded operators such that $V_{\kappa} \rightarrow V_0$ as $\kappa \rightarrow 0$. And PV_0P has only simple eigenvalues μ_1, \ldots, μ_m .

Assumption (AG). There exist a real neighborhood I of λ_0 and a complex neighborhood Ω of λ_0 such that $B_g(g(z), \kappa)$ has a continuous extension from $C \setminus R$ to I and the continuation satisfies

 $\|B_g(g(z), \kappa) - B_g(g(w), \kappa)\| \le L(\kappa) |z - w|$ for any $z, w \in \Omega$, where

$$L(\kappa) = \begin{cases} o(1), & \text{if } m = 1, \\ o(a(\kappa)), & \text{if } m \ge 2 \end{cases}$$

We shall define the resonances as follows.

Definition 1 (simple resonance). We call λ_0 a simple resonance of the operator family $\{H_{x}\}$, if λ_0 is the simple eigenvalue of H_0 and if there exists a function g satisfying (G.1) and the Livsic matrix of $g(H_x)$ satisfies Assumption (AG).

Definition 2 (resonance). We call λ_0 a *resonance* of the operator family $\{H_{\kappa}\}$, if there exists a function g such that g satisfies (G.1), $g(H_{\kappa})$ satisfies (G.2) and the Livsic matrix of $g(H_{\kappa})$ satisfies (AG).

Then we have the following theorems. E_{κ} is the spectral resolution of H_{κ} .

Theorem 3.1. Let λ_0 be a simple resonance of the operator family $\{H_{\kappa}\}$. Then there exist closed intervals $J(\kappa)$ approaching λ_0 such that the length of $J(\kappa)$ tends to 0 and $E_{\kappa}(J(\kappa))$ converges to P in the strong sense as $\kappa \to 0$.

Theorem 3.2. Let λ_0 be a resonance of the operator family of $\{H_{\kappa}\}$. Then

there exist closed intervals $J_j(\kappa)$ approaching λ_0 such that the length of $J_j(\kappa)$ tend to 0 and $E_{\kappa}(J_j(\kappa)) \rightarrow P_j$ as $\kappa \rightarrow 0$ where P_j is the projection onto the μ_j -associated eigenspace of PV_0P .

In the next theorem we only consider the case of g(z) = (z - i)/(z + i) for simplicity.

Theorem 3.3. Let λ_0 be a resonance of the operator family of H_{κ} and $\phi \in K$. Then we have for g(z) = (z - i)/(z + i), $0 \le \kappa \le \kappa_0$ and $t \ge 0$: (1) Simple case;

 $(\exp(-it H_{\kappa})\phi, \phi) = \exp(-iz(\kappa)t) \|\phi\|^2 + o(1),$

where $z(\kappa)$ is the solution of

$$g(z) = B_g(g(z)/|g(z)|, \kappa).$$

(2) Degenerate case;

 $(\exp(-it H_{\kappa})\phi, \phi) = \sum_{j=1}^{m} ||P_{j}\phi||^{2} \exp(-iz_{j}(\kappa)t) + o(1),$ where $z_{j}(\kappa)$ is the solution of

 $\det(B_g(g(z)/|g(z)|, \kappa) - g(z)) = 0$ and satisfies $|g(z_i(\kappa)) - g(\lambda_0) - a(\kappa)\mu_i| = o(a(\kappa)).$

These theorems generalize Theorems 1.5, 1.12, 1.8 and 1.14 of [4].

4. An Application. We shall consider the following second order ordinary differential operators on a half-line $[0, \infty)$, one with the Dirichlet condition at x = 1 and the other with a "jump condition" there. In this example H_x is defined as a form sum.

(I)

$$\begin{cases}
H_0 u = -\frac{d^2}{dx^2} u \text{ on } L^2(0, \infty), \\
u(0) = u(1 \pm 0) = 0. \\
H_{\kappa} u = -\frac{d^2}{dx^2} u \text{ on } L^2(0, \infty), \\
u(0) = 0, u(1 - 0) = u(1 + 0) \equiv u(1) \\
u'(1 + 0) - u'(1 - 0) = \frac{1}{\kappa} u(1), \kappa > 0.
\end{cases}$$

It is well-known that H_0 has embedded eigenvalues $\{m^2\pi^2\}_{m\geq 1}$ and a continuous spectrum $[0, \infty)$. Then we expect that these embedded eigenvalues are resonances.

Theorem 4.1. Let g(z) = 1/(z+1) and φ_m be a normalized eigenfunction of H_0 corresponding to the eigenvalue $\lambda_m = m^2 \pi^2$, i.e., $\varphi_m(x) = \sqrt{2} \sin m\pi x$ for $0 \le x \le 1$, = 0 for 1 < x. Let P be the orthogonal projection onto the eigenspace $\{\alpha\varphi_m\}_{a\in C}$. Then

(1) g satisfies Assumption (G.1) and $g(H_{\kappa}) = (H_{\kappa} + 1)^{-1}$ satisfies Assumption (AG). In particular, the spectral concentration as in Theorem 3.1 occurs.

(2) Furthermore we have

$$|\left(\exp\left(-it\,H_{\kappa}\right)\varphi_{m},\,\varphi_{m}\right)|=\exp\left(-4m^{3}\pi^{3}\kappa^{2}t\right)+o(1).$$

References

 J. S. Howland: The Livsic matrix in perturbation theory. J. Math. Anal. Appl., 50, 415-437 (1975).

- [2] W. Hunziker: Resonances, metastable states and exponential decay laws in perturbation theory. Comm. Math. Phys., 132, 177-188 (1990).
- [3] T. Kato: Preturbation Theory for Linear Operators. 2nd ed., Springer-Verlag (1976).
- [4] A. Orth: Quantum mechanical resonance and limiting absorption. The many body problem. Comm. Math. Phys., 126, 559-573 (1990).
- [5] K. Watanabe: Spectral concentration and resonances for unitary operators (preprint).