77. Spectral Concentration and Resonances for Unitary Operators

By Kazuo Watanabe
Department of Mathematics, Gakushuin University
(Communicated by Kiyosi ITÔ, M. J. A., Dec. 14, 1992)

1. Introduction. Operator-theoretical approach to the theory of resonances for a family of selfadjoint operators H_{k} has been investigated by J. S. Howland ([1]), A. Orth ([4]) and W. Hunziker ([2]). (For other works see the references in these papers, and [3; VIII, §5].) In particular, Orth established a link between the theory of resonances and the limiting absorption principle, developed the theory without any analyticity assumptions, and applied it successfully to N-body Schrödinger operators using the Mourre estimate.

In the present note we are mainly interested in the abstract part of the work [4] and shall present a generalization which can cover H_{k} given by a form sum. (Note that in [4] it is supposed that $H_{k} \supset H_{0}+\kappa W$.) To this end we find it convenient to construct a counterpart of Orth's abstract results for a unitary operator family U_{k}. It will be given in §2. In §3 we transform the results to the selfadjoint families. This amounts to considering the Cayley transform $\left(H_{\kappa}-i\right)\left(H_{\kappa}+i\right)^{-1}$ of H_{κ}, or $\left(H_{\kappa}-d\right)^{-1}$ if H_{κ} is uniformly semibounded. In $\S 4$ we apply the results to a simple example in which a Dirichlet decoupled ordinary differential operator is perturbed by a delta type measure.

In this note we present only results. Detailed proofs will be published elsewhere ([5]).

The main instrument in [1] and [4] is the Livsic matrix. It is generally defined as follows.

Definition (L). Let T be a densely defined closed operator in a Hilbert space \mathbf{H} and P be a finite dimensional orthogonal projection. Then the Livsic matrix $B(T, z)$ of T in $P \mathbf{H}$ is a finite dimensional operator defined by

$$
P(T-z)^{-1} P=(B(z, T)-z)^{-1}
$$

where z belongs to the resolvent set $\rho(T)$ of T.
2. Spectral concentration for unitary operators. Let U be a unitary operator and P be an orthogonal projection onto the m-dimensional space $K=P \mathbf{H}(m<\infty)$. It is not necessary that U and P commute. We put $\Omega_{0}:=\{w \in C ;|w|>1\}$. We shall consider the Livsic matrix $B(w)$ of U in K. For $w \in \Omega_{0} B(w)$ is well-defined and given as

$$
B(w)=P U P-P U \bar{P}(\bar{U}-w)^{-1} \bar{P} U P
$$

where $\bar{U}=\bar{P} U \bar{P}$.
Let $U_{\kappa}=\int_{0}^{2 \pi} e^{i \theta} d F_{\kappa}(\theta), \kappa \geq 0$, be unitary operators such that $U_{\kappa} \rightarrow U_{0}$ in the strong sense as $\kappa \rightarrow 0$. And let $e^{i \theta_{0}}$ be an eigenvalue of U_{0}
with finite multiplicity m. In the case of $m \geq 2$ we shall assume

$$
U_{x}=U_{0}+a(\kappa) V_{x},
$$

where $a(\kappa)$ is a complex continuous function such that, as $\kappa \rightarrow 0, a(\kappa)$ tends to zero and $\lim \arg a(\kappa)$ exists and V_{κ} is a bounded operator such that V_{κ} tends to V_{0} in the strong sense. We denote by $B(z, \kappa)$ the Livsic matrix of U_{x} in the eigenspace of U_{0} corresponding to the eigenvalue $e^{i \theta_{0}}$. Corresponding to Definition 1.4 of [4] we shall introduce the following assumption.

Assumption (AU). There exist a neighborhood $C \subset[0,2 \pi]$ of θ_{0} and a complex neighborhood Ω_{1} of $e^{i \theta_{0}}$ such that $B(z, \kappa)$ has a continuous extension from $\Omega_{0} \cap \Omega_{1}$ to $e^{i c}$ and the continuation satisfies

$$
\|B(z, \kappa)-B(w, \kappa)\| \leq L(\kappa)|z-w|
$$

for $z, w \in \Omega:=\overline{\Omega_{0} \cap \Omega_{1}}$, where we assume

$$
L(\kappa)= \begin{cases}o(1), & \text { if } \quad m=1 \\ o(a(\kappa)), & \text { if } \quad m \geq 2\end{cases}
$$

Corresponding to Theorems 1.5 and 1.12 of [4] we have the following theorems.

Theorem 2.1. Let $e^{i \theta_{0}}$ be a simple eigenvalue of U_{0} and ϕ be an eigenvector corresponding to the eigenvalue $e^{i \theta_{0}}$ with $\|\phi\|=1$. Suppose that the Livsic matrix $B(z, \kappa)$ of U_{κ} in the eigenspace $\{\alpha \phi\}$ satisfies Assumption (AU). Then, for sufficiently small $\kappa\left(0 \leq \kappa \leq \kappa_{0}\right)$ the following assertions (1)-(3) hold.
(1) There exists a unique solution of the equation

$$
z(\kappa)=(B(z(\kappa) /|z(\kappa)|, \kappa) \phi, \phi)
$$

such that $|z(\kappa)| \leq 1$.
Put $z(\kappa)=r(\kappa) e^{i \theta(\kappa)}$.
(2) There exists $\delta(\kappa) \geq 0$ such that $\delta(\kappa)=0$ if $r(\kappa)=1$ and if $r(\kappa)<1$ and $\kappa \rightarrow 0$, then
$\max \left(\delta(\kappa), L(\kappa)^{1 / 2} \delta(\kappa) /(1-r(\kappa)),(1-r(\kappa)) / \delta(\kappa)\right) \rightarrow 0$ as $\kappa \rightarrow 0$.
(3) For any $\delta(\kappa)$ in (2) put $C(\kappa)=[\theta(\kappa)-\delta(\kappa), \theta(\kappa)+\delta(\kappa)]$. Then

$$
F_{\kappa}(C(\kappa)) \rightarrow P, \kappa \rightarrow 0,
$$

in the strong sense.
Theorem 2.2. Let $e^{i \theta_{0}}$ be a degenerate eigenvalue with a finite multiplicity m of the unitary operator U_{0}. Suppose that the Livsic matrix of the unitary operators satisfy Assumption ($A U$) and that $P V_{0} P$ has only simple eigenvalues μ_{1}, \ldots, μ_{m}. Then the following assertions (1)-(3) hold.
(1) We can find the unique solutions $z_{1}(\kappa), \ldots, z_{m}(\kappa)$ of

$$
\operatorname{det}(B(z /|z|, \kappa)-z)=0
$$

satisfying $\left|z_{j}(\kappa)-e^{i \theta_{0}}-a(\kappa) \mu_{j}\right|=o(a(\kappa))$. We put

$$
z_{j}(\kappa)=r_{j}(\kappa) e^{i \theta_{j}(\kappa)} \text { and } B_{j}(\kappa)=B\left(e^{i \theta_{j}(\kappa)}, \kappa\right) .
$$

(2) There exists $\delta_{j}(\kappa) \geq 0$ such that, for $r_{j}(\kappa)=1, \delta_{j}(\kappa)=0$, and for $r_{j}(\kappa)<1$,
$\max \left(\delta_{j}(\kappa) /|a(\kappa)|, L(\kappa)^{1 / 2} \delta_{j}(\kappa) /|a(\kappa)|^{1 / 2}\left(1-r_{j}(\kappa)\right),\left(1-r_{j}(\kappa)\right) / \delta_{j}(\kappa)\right)$ $\rightarrow 0$, as $\kappa \rightarrow 0$.
(3) Let $C_{j}(\kappa)=\left[\theta_{j}(\kappa)-\delta_{j}(\kappa), \theta_{j}(\kappa)+\delta_{j}(\kappa)\right]$ and $P_{j}(0)$ be the projection associated to the eigenvalue $z_{j}(0)$ of $B_{j}(0)$. Then we have

$$
F_{\kappa}\left(C_{j}(\kappa)\right) \rightarrow P_{j}(0), \kappa \rightarrow 0,
$$

in the strong sense.
3. Application to the selfadjoint problems. We shall consider the following situation. $H_{\kappa}, \kappa \geq 0$, is a selfadjoint operator in $\mathbf{H} . H_{\kappa}$ converges to H_{0} in the strong resolvent sense. λ_{0} is an eigenvalue of H_{0} with a finite multiplicity. Let P be the orthogonal projection associated to the eigenvalue λ_{0} of $H_{0}, K=$ Range $P, m=\operatorname{dim} K<\infty$ and $\bar{P}:=I-P$.

In this section we use a linear fractional function $g\left(H_{x}\right)$ of H_{κ}. We shall first assume

Assumption (G.1). $g(z)=(a z+b) /(c z+d), a, b, c, d \in C$ with $a d$ $-b c \neq 0$. There exists $\kappa_{0}>0$ such that $c \lambda+d \neq 0$ for any $\lambda \in$ $\frac{-b c \neq 0 .}{U_{0<x<x_{0}} \sigma\left(H_{x}\right)}$.

We shall write the Livsic matrix $B\left(g(z), g\left(H_{x}\right)\right)$ in K as $B_{g}(g(z), \kappa)$, that is

$$
P\left(g\left(H_{\kappa}\right)-g(z)\right)^{-1} P=\left(B_{g}(g(z), \kappa)-g(z)\right)^{-1}, \operatorname{Im} z \neq 0 .
$$

If $K \subset D\left(g\left(H_{\kappa}\right)\right)$, we can write $B_{g}(g(z), \kappa)$ as

$$
B_{\underline{g}}(g(z), \kappa)=P g\left(H_{x}\right) P-P g\left(H_{\kappa}\right) \bar{P}\left(\bar{g}\left(H_{\kappa}\right)-g(z)\right)^{-1} \bar{P} g\left(H_{x}\right) P,
$$

where $\bar{g}\left(H_{x}\right)=\bar{P} g\left(H_{\chi}\right) \bar{P}$. In the case that $m \geq 2$ we assume in addition to Assumption (G.1) the following condition:

Assumption (G.2). $g\left(H_{x}\right)=g\left(H_{0}\right)+a(\kappa) V_{\kappa}$ where $a(\kappa) \neq 0, \kappa \neq 0$, is a complex valued continuous function with $a(\kappa) \rightarrow 0$ as $\kappa \rightarrow 0$ with $\lim \arg a(\kappa)$ existing and V_{\varkappa} are bounded operators such that $V_{\kappa} \rightarrow V_{0}$ as $\kappa \rightarrow 0$. And $P V_{0} P$ has only simple eigenvalues μ_{1}, \ldots, μ_{m}.

Assumption (AG). There exist a real neighborhood I of λ_{0} and a complex neighborhood Ω of λ_{0} such that $B_{g}(g(z), \kappa)$ has a continuous extension from $C \backslash R$ to I and the continuation satisfies

$$
\left\|B_{g}(g(z), \kappa)-B_{g}(g(w), \kappa)\right\| \leq L(\kappa)|z-w|
$$

for any $z, w \in \Omega$, where

$$
L(\kappa)= \begin{cases}o(1), & \text { if } \quad m=1, \\ o(a(\kappa)), & \text { if } \quad m \geq 2\end{cases}
$$

We shall define the resonances as follows.
Definition 1 (simple resonance). We call λ_{0} a simple resonance of the operator family $\left\{H_{\chi}\right\}$, if λ_{0} is the simple eigenvalue of H_{0} and if there exists a function g satisfying (G.1) and the Livsic matrix of $g\left(H_{x}\right)$ satisfies Assumption (AG).

Definition 2 (resonance). We call λ_{0} a resonance of the operator family $\left\{H_{\chi}\right\}$, if there exists a function g such that g satisfies (G.1), $g\left(H_{\chi}\right)$ satisfies (G.2) and the Livsic matrix of $g\left(H_{\kappa}\right)$ satisfies (AG).

Then we have the following theorems. E_{κ} is the spectral resolution of H_{x}.

Theorem 3.1. Let λ_{0} be a simple resonance of the operator family $\left\{H_{\chi}\right\}$. Then there exist closed intervals $J(\kappa)$ approaching λ_{0} such that the length of $J(\kappa)$ tends to 0 and $E_{\kappa}(J(\kappa))$ converges to P in the strong sense as $\kappa \rightarrow 0$.

Theorem 3.2. Let λ_{0} be a resonance of the operator family of $\left\{H_{x}\right\}$. Then
there exist closed intervals $J_{j}(\kappa)$ approaching λ_{0} such that the length of $J_{j}(\kappa)$ tend to 0 and $E_{\kappa}\left(J_{j}(\kappa)\right) \rightarrow P_{j}$ as $\kappa \rightarrow 0$ where P_{j} is the projection onto the μ_{j}-associated eigenspace of $P V_{0} P$.

In the next theorem we only consider the case of $g(z)=(z-i) /$ $(z+i)$ for simplicity.

Theorem 3.3. Let λ_{0} be a resonance of the operator family of H_{κ} and $\phi \in K$. Then we have for $g(z)=(z-i) /(z+i), 0 \leq \kappa \leq \kappa_{0}$ and $t \geq 0$:
(1) Simple case ;

$$
\left(\exp \left(-i t H_{\kappa}\right) \phi, \phi\right)=\exp (-i z(\kappa) t)\|\phi\|^{2}+o(1)
$$

where $z(\kappa)$ is the solution of

$$
g(z)=B_{g}(g(z) /|g(z)|, \kappa)
$$

(2) Degenerate case;

$$
\left(\exp \left(-i t H_{\chi}\right) \phi, \phi\right)=\sum_{j=1}^{m}\left\|P_{j} \phi\right\|^{2} \exp \left(-i z_{j}(\kappa) t\right)+o(1)
$$ where $z_{j}(\kappa)$ is the solution of

$$
\operatorname{det}\left(B_{g}(g(z) /|g(z)|, \kappa)-g(z)\right)=0
$$

and satisfies $\left|g\left(z_{j}(\kappa)\right)-g\left(\lambda_{0}\right)-a(\kappa) \mu_{j}\right|=o(a(\kappa))$.
These theorems generalize Theorems 1.5, 1.12, 1.8 and 1.14 of [4].
4. An Application. We shall consider the following second order ordinary differential operators on a half-line $[0, \infty)$, one with the Dirichlet condition at $x=1$ and the other with a "jump condition" there. In this example H_{χ} is defined as a form sum.

$$
\begin{align*}
& \left\{\begin{array}{l}
H_{0} u=-\frac{d^{2}}{d x^{2}} u \text { on } L^{2}(0, \infty) \\
u(0)=u(1 \pm 0)=0
\end{array}\right. \tag{I}\\
& \left\{\begin{array}{l}
H_{\chi} u=-\frac{d^{2}}{d x^{2}} u \text { on } L^{2}(0, \infty) \\
u(0)=0, u(1-0)=u(1+0) \equiv u(1) \\
u^{\prime}(1+0)-u^{\prime}(1-0)=\frac{1}{\kappa} u(1), \kappa>0
\end{array}\right.
\end{align*}
$$

It is well-known that H_{0} has embedded eigenvalues $\left\{m^{2} \pi^{2}\right\}_{m \geq 1}$ and a continuous spectrum $[0, \infty)$. Then we expect that these embedded eigenvalues are resonances.

Theorem 4.1. Let $g(z)=1 /(z+1)$ and $\varphi_{m_{2}}$ be a normalized eigenfunction of H_{0} corresponding to the eigenvalue $\lambda_{m}=m^{2} \pi^{2}$, i.e., $\varphi_{m}(x)=\sqrt{2} \sin m \pi x$ for $0 \leq x \leq 1,=0$ for $1<x$. Let P be the orthogonal projection onto the eigenspace $\left\{\alpha \varphi_{m}\right\}_{a \in C}$. Then
(1) g satisfies Assumption (G.1) and $g\left(H_{\kappa}\right)=\left(H_{\kappa}+1\right)^{-1}$ satisfies Assumption (AG). In particular, the spectral concentration as in Theorem 3.1 occurs.
(2) Furthermore we have

$$
\mid\left(\exp \left(- \text { it } H_{x}\right) \varphi_{m}, \varphi_{m}\right) \mid=\exp \left(-4 m^{3} \pi^{3} \kappa^{2} t\right)+o(1)
$$

References

[1] J. S. Howland: The Livsic matrix in perturbation theory. J. Math. Anal. Appl., 50, 415-437 (1975).
[2] W. Hunziker: Resonances, metastable states and exponential decay laws in perturbation theory. Comm. Math. Phys., 132, 177-188 (1990).
[3] T. Kato: Preturbation Theory for Linear Operators. 2nd ed., Springer-Verlag (1976).
[4] A. Orth: Quantum mechanical resonance and limiting absorption. The many body problem. Comm. Math. Phys., 126, 559-573 (1990).
[5] K. Watanabe: Spectral concentration and resonances for unitary operators (preprint).

