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Let g be a finite-dimensional complex Lie algebra, and U (g) be the uni-
versal enveloping algebra of g. In this paper, we give simple and useful
criteria for finitely generated U (g)-modules H to remain finite under the
restriction to subalgebras A C U (g), by using the algebraic varieties in g*
associated to H and A. It is shown that, besides the finiteness, the
U (g)-modules H satisfying our criteria preserve some important invariants
under the restriction.

Applying the criteria to Harish-Chandra modules of a semisimple Lie
algebra g, we specify among other things, a large class of Lie subalgebras of
g on which all the Harish-Chandra modules are of finite type. This allows us
to extend largely the finite multiplicity theorems for induced representations
of a semisimple Lie group, established in our earlier work [8].

1. Associated varieties for finitely generated U (g)-modules. We begin
with defining three important invariants: the associated variety, the Bern-
stein degree and the Gelfand-Kirillov dimension, of finitely generated mod-
ules over a complex Lie algebra (cf. [6]).

Let V be a finite-dimensional complex vector space. We denote by S(V)
=®;_,S“(V) the symmetric algebra of V, where S*(V) is the
homogeneous component of S(V) of degree k. Let M = @;_, M, be a finite-
ly generated, nonzero, graded S (V)-module, on which S(V) acts in such a
way as SYvyM, c M., (k, ¥ = 0). Then each homogeneous component
M, of M is finite-dimensional.

Proposition 1 (Hilbert-Serre, see [9, Ch. VII, 8§12]). (1) There exists a
unique polynomial ¢,,(q) in q such that ¢, (q) = dim(M, + M, + --- + M)
for sufficiently large q.

(2) Let (c(M)/d(M))g*™ be the leading term of ©p. Then c(M) is a
positive integer, and the degree d (M) of this polynomial coincides with the
dimension of the associated algebraic cone
(1.1) v(M) :={2€ V*|f(Q) = 0 for all f € Anng, M} .

Here, Anng,,M denotes the annihilator of M in S(V), V™ the dual space of V,
and S(V) is identified with the polynomial ring over V™ in the canonical way.

For a finite-demensional complex Lie algebra g, let (U, (g));o,.. denote
the natural filtration of enveloping algebra U (g) of g, where U,(g) is the
subspace of U (g) generated by elements X,...X,, with m < k and X; € g1
< j < m). We identify the associated commutative ring gr U(g) = D >,
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U,(@) /U, (g) (U_,(g) : = (0)) with the symmetric algebra S(g) = P,
S*(g) of g in the canonical way.

Now let H be a finitely generated, non-zero U (g)-module. Take a
finite-dimensional generating subspace H, of H : H= U(g)H, Setting
H,=U/J(gH, for k=1,2,..., and H_; = (0), we get a finitely generated,
graded S (g)-module
(1.2) M=gr(H; H) := EkB M, with M, = H,/H,_,.

The variety v(M) < g*, the integers ¢ (M) and d (M) defined for this
M as in Proposition 1, are independent of the choice of a generating sub-
space H,. These three invariants of H are called respectively the associated
variety, the Bernstein degree and the Gelfand-Kirillov dimension of H. We de-
note V(M), c(M) and d(M) respectively by v(g; H), c(g; H) and
d(g; H), emphasizing that H is being considered as a U (g) -module.

2. Restriction of U (g)-modules to subalgebras. Let A be a subalgebra
of U(g) containing the identity element 1 € U(g). We denote by R the
graded subalgebra of S(g) = gr U (g) associated to A: R=grA:=@D -,
A,/A,_, with A, = A N U,(g). We say that a finitely generated U (g)-
module H has the good restriction to A if there exists a finite-dimensional
generating subspace H, of H for which the associated graded
S (g)-module gr(H ; H,) is finitely generated over R.

The following theorem characterizes, by means of the associated
varieties, the U (g)-modules H having the good restriction to A.

Theorem 1. (1) The restriction of H to A is good whenever the condition
(2.1) v(g; H) N R} = (0)
on algebraic varieties in g* is satisfied. Here Rf ={1e g* | f(A) =0 forall f
€ R,} denotes the variety in g* associated to the maximal graded ideal R, :=
D5o(R N S* (@) of R =grA.

(2) Conversely, if R is Noetherian and if H # (0) admits the good restric-
tion to A, one necessarily has (2.1).

Let n be a Lie subalgebra of g. Applying this theorem to the case
A=U(Mm) (R= S is obviously Noetherian), we obtain immeédiately the
following

Corollary 1. A finitely generated U (g) -module H # (0) has the good re-
striction to U (n) if and only if v(g; H) N n* = (0) holds, where n* := {4 €
g* | <2, X> =0 for all X € n} is the orthogonal of n ing .

The U (g)-modules admitting the good restriction enjoy nice properties
as follows.

Theorem 2. Suppose that H has the good vestriction to a subalgebra
AcC U(g.

(1) H is finitely generated as an A-module.

(2) Ir A= Um) for a Lie subalgebra n of g, then H is of finite type over
U ), and so one can define the associated variety v(n; H), Bernstein degree
c(n; H), and Gelfand-Kirillov dimension d(n; H) of H as a U (n)-module as
well as those as a U (g) -module. These two kinds of quantities have the relations
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(2.2) c(@g; H) =c(n; H),d(g; H) =d(n; H),
and hence

(2.3) dim v(g; H) =dimyv(n; H).
Moreover one has

(2.4) p*v@@; H) Cv(n; H),

where p* : g* — 1™ denotes the restriction map of linear forms.

We can give two interesting consequences of the above theorems, as fol-
lows.

Corollary 2. Let n be a Lie subalgebra of g, and H be a finitely generated
U (g)-module satisfying the condition v(g; H) N nt = (0). Then, the
n-homology groups H,(n, H) (k = 0,1,...) of H (see e.g., |2] for the definition)
are all finite- demensional.

Corollary 3. If a finitely generated U (g)-module H has the good restric-
tion to U (n), the Gelfand- Kivillov dimension d(g; H) of H does not exceed dim
n.

3. Nilpotent variety / (p) and good restriction of Harish—-Chandra mod-
ules. Now, assume g to be semisimple, and let g = £ €D p be a symmetric de-
composition of g determined by an involutive automorphism of g. We consid-
er the category C(f) of finitely generated U (g)-modules H on which the
subalgebra U (£) Z (g) acts locally finitely, where Z (g) denotes the center of
U (g). Such an H in C(t) is called a Harish-Chandra (g, £)-module. We re-
gard the varieties v(g; H) C g* as algebraic cones in g by identifying g*
with g through the Killing form of g.

Lemma. The associated wvariety v(g; H) of any Harish-Chandra
(g,%) -module H is contained in the variety N (p) of all nilpotent elements of p.
Moreover, there exists an H in C (€) such that v(g; H) coincides with the whole
N(p).

Theorem 1 together with this lemma yields the following result.

Theorem 3. All the Harish-Chandra (g,t)-modules have the good vestric-
tion to a subalgebra A of U (g) if N(p) N Ri = (0) holds for R = gr A. The
converse is also true provided that R is Noetherian.

4. Large Lie subalgebras of a real semisimple Lie algebra. Let g, be a
real semisimple Lie algebra, and g, = £, & p, be the Cartan decomposition of
g, determined by an involution 6. Conventionally, we write § (< g) for the
complexification of a real vector subspace §, of g, by dropping the subscript
‘0.

A Lie subalgebra n, of g, is said to be large in g, if there exists an ele-
ment x € Int(g,) for which every Harish-Chandra (g,f)-module has the
good restiction to U (x-n). By Theorem 3, this amounts to a simple geomet-
ric condition :
(4.1) (xn)* N N(p) = (0) for some x € Int(g,).
Here Int(g,) denotes the group of inner automorphisms of g, Notice that the
largeness of a Lie subalgebra does not depend on the choice of a t,.

We now specify many of large Lie subalgebras of g,.

At first, here are two kinds of typical large Lie subalgebras.
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Proposition 2. (1) Let g, = £, + a,0 + W, be an Iwasawa decomposition
of o- Then the maximal nilpotent Lie subalgebra u,,, of g, is large.

(2) The symmetrizing Lie subalgebra §, = {X € g,| 6X = X} is large in
Qo for any involutive automorphism o of g,.

The claim (1), together with Theorem 3, covers the results of
Casselman-Osborne [3, Th.2.3] and Joseph [4, II, 5.6] on the restriction of
Harish-Chandra modules to u,. The second one allows us to deduce the fi-
nite multiplicity theorem of van den Ban, for the quasi-regular representa-
tion on L*(G/H), associated to a semisimple symmetric space G /H (cf. [8]).

Now let g, be any parabolic subalgebra of g,, and q, = [, + u, with [, =
0o N 6q,, be its Levi decomposition. Since the Levi component [, is reductive,
one can define large Lie subalgebras of [, just in the same way.

The largeness of Lie subalgebras is preserved by parabolic induction.

Proposition 3. If Y, is a large Lie subalgebra of 1, the semidivect product
Lie subalgebra §, + u, is large in g,.

Let g, = m, +a,, + u,, be a minimal parabolic subalgebra of g,
where m, denotes the centralizer of a,, in ;. We say that a Lie subalgebra
n, of g, is quasi-spherical if there exists a z € Int(g,) such that z-n, + q,,,
= g, This is equivalent to saying that, if G is a connected Lie group with
Lie algebra g, the analytic subgroup of G corresponding to n, has an open
orbit on the flag variety G/@,, with @, a minimal parabolic subgroup of G
(ct. [1], [5]).

It is easy to verify that the large Lie subalgebras in Proposition 2 are
quasi-spherical. The next theorem is the principal result of this section.

Theorem 4. Quasi-spherical Lie subalgebras arve always large in g,.

Remark. One can see from Theorem 3, coupled with a recent result of
Bien and Oshima, that the converse is also true in the above theorem under
the assumption that a large Lie subalgebra 1, is algebraic in g,.

5. Finite multiplicity criteria for induced representations. Let G be a
connected semisimple Lie group with finite center, and K be a maximal com-
pact subgroup of G. The corresponding Lie algebras are denoted respectively
by g, and £, We have a Cartan decomposition g, = £, & p, of g, as in §4.

Let H be a Harish-Chandra (g,t)-module on which the compact group K
acts in such a way as

kv=3 (1/n))X"v
n=0

for v€H and k=expX with X€¥,. Such an H 1is called a
Harish-Chandra (g, K)-module. A fundamental theorem of Harish-Chandra
says that the (irreducible) Harish-Chandra (g, K)-modules correspond to
the (irreducible) admissible representations of G, by passing to the K-finite
part (see e.g., [7, Chap.8]).

If (n, E) is a smooth Fréchet representation (cf. [8, I, 2.1]) of a closed
subgroup N of G, the group G acts on the space & (G ; 1) of real analytic
functions f : G — E satisfying

fgn) = n(m)"'f(g) for (n,g) € N X G,
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by left translation L. & (G ; n) has the structure of a U (g)-module through
differentiation. We call the gained (L, & (G ; 1)) the G-representation or the
U (g) -module analytically induced from 1.

We study U (g)-homomorphisms from a Harish-Chandra (g, K)-
module H into & (G ; 1), and especially the intertwining numbers
(5.1) Iy (H, 4(G ; 1)) = dim Homy,, (H, 4 (G ; 1)),
which give the multiplicities of H in & (G ; 1) as U (g)-submodules for irre-
ducible H'’s.

For a Harish-Chandra (g, K)-module H, we can and do take a
finite-dimensional, K-stable generating subspace H, of H. Then the associ-
ated graded S(g)-module M = gr(H ; H)) = @, M, has a natural K-module
structure.

The intertwining number IU(Q,(H, A (G ;n)) from H to 4(G ;1) can be
estimated as in

Proposition 4. For each x € G, one has the inequality

(5.2) Iy, 4(Gm) < 2 dim Homyn,yys (M /(@ 1) M), Ey),

where ((xm)M), =M, N (x'n) M) with x'n=Ad@)n, is KN
xNx ") -stable, and (n,, E,) denotes the representation of tNx ™" on E defined
by R (xnx™") = nn) (n € N).

This proposition together with Theorem 1, enables us to deduce a useful
criterion for the finiteness of intertwining numbers IU@(H, A(G ;n)), as
follows.

Theorem 5. The intertwining number Iy (H, 4(G;n)) from a
Harish-Chandra (g, K)-module H to an induced U (g)-module 4 (G ;n) takes
finite value if there exists an x € G such that

(5.3) v(g; H) N (x'n)* = (0),
and that
(5.4) dim Homg,y,-(V,, E,) < © holds

for every irreducible constituent V, of (K N xNx_l)-module M/(x-n)M. Here
M = gr(H ; H)) with K-stable H,, and v(g; H) is the associated variety of H.

We say that the induced module & (G ; 1) has the finite multiplicity prop-
erty if the intertwining number Iyq (H, 4(G;n)) is finite for every
Harish-Chandra (g, K)-module H. As a consequence of Theorem 5, we
establish

Theorem 6. Let N be a closed subgroup of G whose Lie algebra n, is large
in o and take an element x € G such that (z-n)* N N () = (0). Then, for a
smooth Fréchet representation (n, E) of N, the induced module A (G ; 1) has
the finite multiplicity property if so is the restriction of N to the compact subgroup
' Kx N N.

Corollary 4. If n,= Lie(N) is large in g, the representation (L,
A(G ; n)) is of multiplicity finite for any finite- dimensional N-representation
7.

The above theorem extends one of the principal results in our previous
work [8, I, Th.2.12], where we studied the case of semidirect product large
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Lie subalgebras n, = §, + u, specified in Proposition 3 with symmetrizing
o, through the theory of (K, N)-spherical functions.
The details of this article will appear elsewhere.
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