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1. Introduction. The Dirichlet forms on locally compact state spaces
have been studied by many authors. Recently this theory of Dirichlet forms
has been extended to non-locally compact state spaces. Albeverio and Ma [11
gave a necessary and sufficient condition for the Dirichlet form on a metriz-
able topological state space to be associated with a special standard process.
They called this Dirichlet form quasi-regular (cf. [3]). On the other hand,
Shigekawa and Taniguchi [12] showed that various results known for locally
compact state spaces, such as the Beurling-Deny formula, the uniqueness of
the c-potentials, are also valid for Lusinian separable metric state spaces.
The key lemma in [12] is a uniqueness statement for a measure which
charges no set of zero capacity. Its proof needs the Gel’land compactification
(cf. [4], [9]). To use the Gel’land compactification we must assume that there
exists a dense subset consisting of continuous functions in the
domain of the Dirichlet form. However, this assumption is not necessary for
the existence of the associated process (cf. [1]). In fact Albeverio, R0ckner
and Ma [3] showed the same results for quasi-Dirichlet form on general state
spaces. They also used another type of compactification (cf. [10]).

In this note we shall show for the quasi-regular Dirichlet form the
uniqueness statement of a measure charging no set of zero capacity without
using any type of compactification.

2. Preliminary. Let X be a Lusinian separable metric space and let
(X) be its topological Borel field. Let p be its metric. We fix a probability
measure m on (X, (X)) such that supp[m] X.

We consider a Dirichlet form (8, ) on L2(X, m) (for its definition see
e.g. [8]). We set

(2.1) l(f, g) =- 8(f, g) + (f, g), f, g ,
where (’,’) denotes the inner product of L2(X, m).

For an open subset G of X and any subset A of X, we define
(2.2) Cap(G) inf {8x(u, u) u and u >-- 1 m-a.e, on G},
(2.2) Cap(A) inf {Cap(G) G is open and A m G}.
Then we can show that this Cap is a Choquet capacity.

A statement depending on a: A is said to hold "quasi-everywhere" or
simply "q.e.", if it holds on A except for a set of zero capacity with respect to
Cap. A function u:X--+ lg is said to be quasi-continuous if there exists a

decreasing sequence {G}oo__ of open sets such that Cap(G) 0, and u]x\,
is continuous on each X\ G.

3. The main theorem. We assume that the Dirichlet form (8, ) saris-
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ties the following conditions:

(A.1) Cap(" is tight; for any s > 0, there exists a compact set K c X
such that Cap(X\K) < .

(A.2) There exists an 81-dense subset o of consisting of quasi-
continuous functions.

(A.3) There exists a countable subset 3 of o and a subset N 3(X)
with Cap(N) 0 such that

a{u Y30} Y3(X) f (X\N).
These conditions (A.1-3) are introduced by Albeverio and Ma [1]. Shigekawa
and Taniguchi [12] used instead of (A.2) the following condition:

(A.2’) There exists an 81-dense subset o of consisting of bounded
continuous functions.
However, the condition (A.1,2’,3) are not necessary for the existence of the
associated process. In fact, Albeverio and Ma proved that the above condi-
tions (A.1-3) are necessary and sufficient for (8, ) to be associated with a

special standard process ([1], [7]). They called this Dirichlet form quasi-
regular (cf. [3]). It is further known that, if a cemetery point A is
adjoined to X as an isolated point in X X A, this process is a Hunt
process (cf. [1], [2], [12]).

In this note, we assume in addition to (A.1-3) that
(A.4) 0 contains u 1 q.e.,
and show the uniqueness of a measure charging no set of zero capacity, im-
proving the result of Shigakawa and Taniguchi with (A.1,2’,3,4). Without

loss of generality, we may assume that o is a Q-algebra and closed under
the operations V0 and A1.

Theorem 1. Let (8, ) be a Dirichlet.form on L(X, m) and assume that
(, ;) satisfies (A.1-4). Let K be a compact subset of X. Denote the subset of
;o of the bounded functions by bo. Then there exists a sequence fn}=l in

b =o with 0 <--fn <- 1 such that

fn---*Ii, q.e.
In particular, if l-t and are finite measures on (X, Y3(X)) charging no set of
zero capacity such that

fxfdl2 fxfd, f bo,

then p .
Lemma 1. Let X be a separable metric space. Then is separable with re-

spect to the 1-norm.

Proof See [8, Section 1.3].
Lemma 2. Let F be a set. Consider a countable subset G of F and a count-

able collection S of mappings s of F F to F. Then there exists a countable set
H such that

(a) Gc Hc F,
(b) s(H H) H, s S.
Proof See [8, Lemma 6.1.1].
Lemma 3. There exists a countable subset of o consisting of
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quasi-continuous frictions such that

(1) contains u 1 q.e.,
(2) 3o c ,
(3) is dense in ; with respect to the
(4) J is an algebra over Q,
(5) 2g is closed under the operations V1 and /kO.

Proof. We define the mappings from o x o into :o as follows"

s(f, g) f + g, s,(f, g) fg, sa(f, g) f / O, s4(f, g) f A 1,
s (f, g) af, a Q. We set a3 {Sl, s2, sa, s4, s ;a
and (A.2), we can choose a countable subset {Un}n= of o such that

{Un}n= is dense in with respect to the $-norm, and we suppose

{Un}n= contains a function u o which is equal to 1 quasi-everywhere.
We can apply Lemma 2 with S a3, F- 1o and G {Un}n= U o to get

(e.g. [8, Lemma 6.1.2]).
In the following, denotes a subset of 0 which has the properties in

Lemma 3.
Lemma 4. separates the points ofX\ N.
Proof. Suppose that there exist x, y X\N such that f (x) --f(y)

for allf . We must have x, y szf-(f(x)). Since includes o
f-and 3o generates the Borel sets of X\N, sar (f(x)) is an atom of

X\N. Hence x, y {x}. This means x y (cf. [1. Lemma A.7]).
(1)

Lemma 5. There exists a sequence of closed subsets {Fk } ofX such that
C({F(} ),

and

where
Cap (X \ F )) ---+ O, as k --+ oo,

C({F()} k) =- {u;u ]F" is continuous for each k}.

Proof See [8, Theorem 3.1.2].
Proof of Theorem 1. By the condition (A.3), Cap(N) 0. So there is an

increasing sequence of closed subsets {F(2)} of X such that

j(2)N C (X\-),
k=l

and
Cap (X \ F --+0, as k--* oo.

By the condition (A.1), there is an increasing sequence of compact subsets
of X such that

Cap(X\--k )--+0, as k--+oo.
t-’ (1)

By Lemma 5, there is an increasing sequence of closed subsets of X
such that

Now we set

(1)c C({Fk }k),
Cap(X\ F )--+0, as

(2) ] (3)

Fk= F() -- f3
_

Then {F}=I is an increasing sequence of compact sets such that
Cap (X \ F) ---+ 0, as k---+oo.
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We have this by Subadditivity of the Choquet capacity
Cap (X \ Fk) < Cap (X \ Fk ) ff-Cap(X\-- ff-Cap(X\F )--*0,

as k
For each compact subset K X, we set

K K F,
and

For a fixed k N, G F is an open set and K is a closed set with re-
spect to the relative topology in F. By Urysohn’s lemma, there is a con-
tinuous function g defined on F such that

0 Kg 1, on F,
g(x) = 1, xK,

g(x) 0, x

Since is a Q-algebra and separates the points of XN by Lemma 4, IF
is also a Q-algebra and separates the points of F. Therefore by the
Stone-Weierstrass theorem, ]f is dense in C (F) with respect to the uni-

such thatform norm. We can choose h
1

We set

Then f is contained in aft, and has the following properties:

O<--f--< 1, on X,
f(x) 1,

f(x) O, xe F\G’.
We consider the sequence { }k,. If z is contained in K 0 (U __1F), then
there is a number ko N such that the K contain z for all ko > L. There-
fore, for all k > ko and all l, f(x) 1. On the other hand, if x is contained
in K fl (U : Fk), then we can choose N N such that

x U Gt,, for > N,

x F, for k > N.
Therefore, for all k, l>N,f(x) 0. Thus, ifx U;Fk, then

f (x)---* I, as k, l--,

Since Cap(X\ U : F) 0, we have

fIK, q.e. in X.
The last assertion of Theorem 1 follows from the fact that the measures on a
Lusinian space are characterized by compact sets [6, III, Theorem 38].

Remark. By the same method of Theorem 1, we can also show the fol-
lowing statement (cf. [12] Lemma 1.3).

Let Ei, i-" 1, 2 be disjoint closed sets in X. Then there is a sequence of
functions {Un}n= (: iZcp such that 0 <-- Un <-- un+l 1,
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un 0 q.e. on E and un - 1 q.e. on E,
where cpt is a family of the function if; with compact support.

In fact, we can construct a sequence of functions {fk}k--1 C W having
the following properties, 0 <-- fk <-- 1 on X, f(x) 1 for x F f3 E,
f(x) 0 for x F fq E, where {F}= is the sequence of the compact
sets as taken in the proof of Theorem 1. Now we set un --max{1--f /

eX\F ;1 j--< n}, where ex\F is an equilibrium potential of X\ Fn. Then
this yields desired statement.

4. Application of Theorem 1. Shigekawa and Taniguchi [12] used the
Gel’land compactification to show the uniqueness statement for a measure
charging no set of zero capacity. But they showed, without using any type of
compactification, the following Beurling-Deny formula under the condition

(A.1, 2’ 3, 4). Based on Theorem 1, we can show it in the same as in [12]
under the condition (A.1-4).

A finite positive Borel Measure / on X charging no set of zero capacity
is said to be of finite energy integral if there is a constant C > 0 such that

dl2 v/8( f, f) f bff:o.C for

Theorem 2. Let (,) be a Drchlet form wMch satisfies (A.1-4). Then
can be expressed for f, g as follows.
(4.1)

(f, g) 8(c)(f, g) + f (f(x) f(y)) (g(x) g(y))J (dx dy).. (xxX)\D
+ fxf(X)g(x)k(dx).

Here 8c is a symmetric form with local property, ] is a a-finite symmetric mea-
sure on (X X) \ D, with D the diagonal set of X X, satisfying ] (X A)

0 if Cap(A) O, and k is a finite positive Borel measure of finite energy in-

tegral. These 8c, ] and k are determined uniquely by 8.
These are some other facts which can be shown with Theorem 1. Under

the condition (A.1-4) there exists an associated Hunt process, and a hitting

distribution is a version of a equilibrium potential. It can be seen by the
Hunt approximation theorem that a nearly Borel, finely open and
m-negligible set is exceptional and a set is exceptional if and only of it is in-

cluded in a properly exceptional set. We can also show that if u is

quasi-continuous, then u is finely continuous q.e." conversely, if u is finely
continuous q.e. and u . then u is quasi-continuous. Moreover, by
Remark 1, we also see the following two conditions are equivalent to each
other" (1) (8, ) possesses the local property" (2) the associated Hunt pro-
cess have continuous sample paths with probability i (cf. [12, Theorem 6.1]).
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