63. Gamma Factors and Plancherel Measures

By Nobushige Kurokawa
Department of Mathematical Sciences, University of Tokyo (Communicated by Kunihiko Kodaira, M. J. A., Nov. 12, 1992)

We explicitly calculate gamma factors of Selberg zeta functions and give a neat formula to the associated Plancherel measures. This report supplements the previous one [7]. The details are described in [8] and will be published elsewhere.
§ 1. Selberg zeta functions. We fix the notation for Selberg zeta functions following mainly Selberg[13], Gangolli [5], Fried [4] ($\kappa=1$), and Wakayama [15]. Let $M=\Gamma \backslash G / K$ be a compact locally symmetric space of rank one. We denote by $Z_{M}(s)$ the Selberg zeta function:

$$
Z_{M}(s)=\prod_{p \in \operatorname{Prim}(M)} \prod_{\lambda \geq 0}\left(1-N(p)^{-s-\lambda}\right)
$$

where $\operatorname{Prim}(M)$ is the set of prime geodesics of M with the norm function $N(p)=\exp ($ length $(p))$ and λ runs over a certain semi-lattice. We recall the following fact: $Z_{M}(s)$ has an analytic continuation to all $s \in \boldsymbol{C}$ as a meromorphic function of order $\operatorname{dim} M$ and has the following functional equation

$$
Z_{M}\left(2 \rho_{0}-s\right)=Z_{M}(s) \exp \left(\operatorname{vol}(M) \int_{0}^{s-\rho_{0}} \mu_{M}(i t) d t\right)
$$

Here, $\rho_{0}>0$ and the Plancherel measure $\mu_{M}(t)$ calculated by Miatello [12] are given as follows (we use renormalized $\rho_{0}, \mu_{M}(t)$ and $\operatorname{vol}(M)$ to simplify the constants) :
(0) $\quad G=\operatorname{SO}(1,2 n-1)(\Leftrightarrow \operatorname{dim} M:$ odd $)$
$\rho_{0}=n-1, \mu_{M}(i t):$ polynomial
$G=\operatorname{SO}(1,2 n), \rho_{0}=n-1 / 2, \operatorname{dim} M=2 n$, $\mu_{M}(i t)=(-1)^{n} P_{M}(t) \pi \tan (\pi t)$,
$P_{M}(t)=\frac{2}{(2 n-1)!} t \prod_{k=1}^{n-1}\left(t^{2}-\left(k-\frac{1}{2}\right)^{2}\right)$

$$
\begin{equation*}
G=\operatorname{SU}(1,2 n-1), \rho_{0}=n-1 / 2, \operatorname{dim} M=4 n-2, \tag{2}
\end{equation*}
$$

$$
\mu_{M}(i t)=-P_{M}(t) \pi \tan (\pi t)
$$

$$
P_{M}(t)=\frac{2}{(2 n-1)!(2 n-2)!} t \prod_{k=1}^{n-1}\left(t^{2}-\left(k-\frac{1}{2}\right)^{2}\right)^{2}
$$

(3) $\quad G=\operatorname{SU}(1,2 n), \rho_{0}=n, \operatorname{dim} M=4 n$,
$\mu_{M}(i t)=-P_{M}(t) \pi \cot (\pi t)$,
$P_{M}(t)=\frac{2}{(2 n)!(2 n-1)!} t^{3} \prod_{k=1}^{n-1}\left(t^{2}-k^{2}\right)^{2}$
(4)

$$
G=\operatorname{Sp}(1, n), \rho_{0}=n+1 / 2, \operatorname{dim} M=4 n
$$

$\mu_{M}(i t)=P_{M}(t) \pi \tan (\pi t)$,
$P_{M}(t)=\frac{2}{(2 n+1)!(2 n-1)!} t\left(t^{2}-\left(n-\frac{1}{2}\right)^{2}\right) \prod_{k=1}^{n-1}\left(t^{2}-\left(k-\frac{1}{2}\right)^{2}\right)^{2}$

$$
\begin{align*}
& G=\mathrm{F}_{4}, \rho_{0}=11 / 2, \operatorname{dim} M=16 \tag{5}\\
& \mu_{M}(i t)=P_{M}(t) \pi \tan (\pi t) \\
& P_{M}(t)=\frac{2}{11!4 \cdot 5 \cdot 6 \cdot 7} t\left(t^{2}-\frac{1}{4}\right)^{2}\left(t^{2}-\frac{9}{4}\right)^{2}\left(t^{2}-\frac{25}{4}\right) \\
& \quad\left(t^{2}-\frac{49}{4}\right)\left(t^{2}-\frac{81}{4}\right)
\end{align*}
$$

We omit the case (0) since the gamma factor is "trivial" corresponding to the non-existence of discrete series. In cases (1)-(5) the gamma factor is non-trivial and described by the multiple gamma function of order $\operatorname{dim} M$; we notice that $\operatorname{deg} P_{M}=\operatorname{dim} M-1$.
§ 2. Multiple gamma functions and multiple sine functions. We define the multiple gamma function $\Gamma_{r}(z)$ by

$$
\Gamma_{r}(z)=\exp \left(\left.\frac{\partial}{\partial s} \zeta_{r}(s, z)\right|_{s=0}\right)
$$

where

$$
\zeta_{r}(s, z)=\sum_{n_{1}, \ldots, n_{r} \geq 0}\left(n_{1}+\cdots+n_{r}+z\right)^{-s}=\sum_{n=0}^{\infty}{ }_{r} H_{n}(n+z)^{-s}
$$

is the multiple Hurwitz zeta function. Next we define the multiple sine function $S_{r}(z)$ by $S_{r}(z)=\Gamma_{r}(z)^{-1} \Gamma_{r}(r-z)^{(-1)^{r}}$. Among many properties of $S_{r}(z)$ similar to the usual sine function, the following one is fundamental in this paper.

Theorem 1. The multiple sine function $S_{r}(z)$ satisfies the following differential equations:
(1) $\frac{S_{r}^{\prime}}{S_{r}}(z)=(-1)^{r-1}\left(\begin{array}{ll}z-1 \\ r & -1\end{array}\right) \pi \cot (\pi z)$.
(2) an algebraic differential equation of degree two:

$$
S_{r}^{\prime \prime}(z)=\left(1-P(z)^{-1}\right) S_{r}^{\prime}(z)^{2} S_{r}(z)^{-1}+P^{\prime}(z) P(z)^{-1} S_{r}^{\prime}(z)-\pi^{2} P(z) S_{r}(z)
$$

where $P(z)=(-1)^{r-1}\binom{z-1}{r-1}$.
When $r=1$, we see that $S_{1}(z)=2 \sin (\pi z)$ since $\Gamma_{1}(z)=(2 \pi)^{-1 / 2}$ $\Gamma(z)$, so (1)(2) are well-known differential equations for the usual sine function. It should be remarked that the multiple gamma function $\Gamma_{r}(z)$ does not satisfy any algebraic differential equation according to Hölder $(r=1)$ and Barnes [1] ($r \geqq 2$).
§ 3. Gamma factors. Theorem 2. Let $M=\Gamma \backslash G / K$ be an even dimen. sional compact locally symmetric space of rank one. Define the gamma factor $\Gamma_{M}(s)$ of M by

$$
\Gamma_{M}(s)=\operatorname{det}\left(\sqrt{\Delta_{M^{\prime}}+\rho_{0}^{2}}+s-\rho_{0}\right)^{\operatorname{vol}(M)(-1)^{\mathrm{dm} M / 2}}
$$

using the zeta regularized determinant, where $M^{\prime}=G^{\prime} / K$ is the compact dual symmetric space. Then:

(2) The completed zeta funtion $\hat{Z}_{M}(s)=\Gamma_{M}(s) Z_{M}(s)$ satisfies the symmetric functional equation: $\hat{Z}_{M}(s)=\hat{Z}_{M}\left(2 \rho_{0}-s\right)$. Moreover $\hat{Z}_{M}(s)$ is essentially equal to $\operatorname{det}\left(\left(\Delta_{M}-\rho_{0}^{2}\right)+\left(s-\rho_{0}\right)^{2}\right)$.

We notice that when M is a compact Riemann surface of genus $g(G=\mathrm{SO}(1,2))$ our normalization of the double gamma function $\Gamma_{2}(z)$ gives the following neat result:

$$
\Gamma_{M}(s)=\operatorname{det}\left(\sqrt{\Delta_{s^{2}}+\frac{1}{4}}+s-\frac{1}{2}\right)^{2-2 g}=\left(\Gamma_{2}(s) \Gamma_{2}(s+1)\right)^{2 g-2}
$$

and

$$
\hat{Z}_{M}(s)=\operatorname{det}\left(\Delta_{M}-s(1-s)\right) \exp \left((2 g-2)\left(s-\frac{1}{2}\right)^{2}\right)
$$

§ 4. Plancherel measures. We have the following new expression of the Plancherel measures, which suggests the Betti type interpretation for the coefficients.

Theorem 3. $P_{M}\left(t+\rho_{0}\right)=\left\{\begin{array}{l}{ }_{2 n} H_{t}+{ }_{2 n} H_{t-1} \quad \cdots G=\mathrm{SO}(1,2 n), \\ \sum_{k=0}^{n}\binom{n}{k}^{2}{ }_{2 n} H_{t-k} \cdots \cdots=\operatorname{SU}(1, n), \\ 2 n-1 \\ \sum_{k=0} \frac{1}{2 n}\binom{2 n}{k}\binom{2 n}{k+1}{ }_{4 n} H_{t-k} \quad \cdots G=\mathrm{Sp}(1, n), \\ { }_{16} H_{t}+10_{16} H_{t-1}+28_{16} H_{t-2}+28_{16} H_{t-3}+10{ }_{16} H_{t-4} \\ +{ }_{16} H_{t-5} \cdots G=\mathrm{F}_{4} .\end{array}\right.$
§5. Proofs. We use the following combinatorial result:
Theorem 4. For integers n and m we have:

$$
\begin{equation*}
{ }_{2 n} H_{m}+{ }_{2 n} H_{m-1}=\frac{(2 m+2 n-1)(m+1) \cdots(m+2 n-2)}{(2 n-1)!} \tag{1}
\end{equation*}
$$

$$
=\operatorname{mult}\left(m(m+2 n-1), \Delta_{S^{2 n}}\right)
$$

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n}{k}^{2}{ }_{2 n} H_{m-k}=\frac{(2 m+n)(m+1)^{2} \cdots(m+n-1)^{2}}{n!(n-1)!} \tag{2}
\end{equation*}
$$

$$
=\operatorname{mult}\left(m(m+n), \Delta_{P_{c}^{n}}\right)
$$

(3) $\sum_{k=0}^{2 n-1} \frac{1}{2 n}\binom{2 n}{k}\binom{2 n}{k+1}{ }_{4 n} H_{m-k}$

$$
\begin{aligned}
& =\frac{(2 m+2 n+1)(m+1)((m+2) \cdots(m+2 n-1))^{2}(m+2 n)}{(2 n+1)!(2 n-1)!} \\
& =\operatorname{mult}\left(m(m+2 n+1), \Delta_{\boldsymbol{P}_{H}^{n}}\right)
\end{aligned}
$$

(4) ${ }_{16} H_{m}+10_{16} H_{m-1}+28{ }_{16} H_{m-2}+28_{16} H_{m-3}+10_{16} H_{m-4}+{ }_{16} H_{m-5}$

$$
=\frac{(2 m+1)(m+1)(m+2)(m+3)(m+4)^{2}(m+5)^{2}(m+6)^{2}(m+7)^{2}(m+8)(m+9)(m+10)}{11!4 \cdot 5 \cdot 6 \cdot 7}
$$

$$
=\operatorname{mult}\left(m(m+11), \Delta_{P \delta}\right)
$$

The former identities follow from Saalschütz (1890) type identities generalizing Vandermond convolution to three products. The latter identities are due to Cartan [3]((1)(2)) and Cahn-Wolf [2] (general), which are considered as real analytic version of the Hirzebruch proportionality principle since the middle terms are $P_{M}\left(m+\rho_{0}\right)$. Hence we obtain Theorem 3 .
Let

$$
\zeta\left(s, z-\rho_{0}, \sqrt{\Delta_{M^{\prime}}+\rho_{0}^{2}}\right)=\sum_{m=0}^{\infty} \operatorname{mult}\left(m\left(m+2 \rho_{0}\right), \Delta_{M^{\prime}}\right)(m+z)^{-s}
$$

then Theorem 4 gives (in the same four cases)

$$
\zeta\left(s, z-\rho_{0}, \sqrt{\Delta_{M^{\prime}}+\rho_{0}^{2}}\right)=\left\{\begin{array}{l}
\zeta_{2 n}(s, z)+\zeta_{2 n}(s, z+1), \\
\sum_{k=0}^{n}\binom{n}{k}^{2} \zeta_{2 n}(s, z+k), \\
\sum_{k=0}^{2 n-1} \frac{1}{2 n}\binom{2 n}{k}\binom{2 n}{k+1} \zeta_{4 n}(s, z+k), \\
\zeta_{16}(s, z)+10 \zeta_{16}(s, z+1)+28 \zeta_{16}(s, z+2) \\
+28 \zeta_{16}(s, z+3)+10 \zeta_{16}(s, z+4) \\
\\
\quad+\zeta_{16}(s, z+5) .
\end{array}\right.
$$

Thus we get (1) of Theorem 2. Now, Theorem 3 gives
$\exp \left(\int_{0}^{s-\rho_{0}} \mu_{M}(i t) d t\right)^{(-1)^{(d m m / 2}}=\left\{\begin{array}{l}S_{2 n}(s) S_{2 n}(s+1), \\ \prod_{k=0}^{n} S_{2 n}(s+k)^{\left.()_{k}^{2}\right)^{2}}, \\ 2 n-1 \\ \prod_{k=0} S_{4 n}(s+k)^{\frac{1}{2 n}\left(\frac{2 n}{k}\right)^{2 n}\left({ }_{k+1}^{2}\right)}, \\ S_{16}(s) S_{16}(s+1)^{10} S_{16}(s+2)^{28} S_{16}(s+3)^{28} . \\ S_{16}(s+4)^{10} S_{16}(s+5)\end{array}\right.$
by logarithmic differentiation using Theorem 1 and remarking that both sides are 1 at $s=\rho_{0}$. So, we get (2) of Theorem 2 .
§ 6. Generalized sine functions. The double sine function was firstly studied by Hölder [6] in 1886. Then, after the almost centennial blank, Shintani [14] in 1977 used it to construct class fields over real quadratic fields. Unfortunately Hölder and Shintani used the notation $F(z)$ and did not name it; the name first appeared in [7]-[9]. We may formulate a version of Kronecker's Jugendtraum as follows: for an integral domain A with the quotient field $K, K^{a b}=K\left(S_{A}(K)\right)$ where $S_{A}(x)=\Pi_{a \in A}(a-x)$ is the sine function of A. We refer to [10] (Appendix 1 "A variation of the Kronecker limit formula" 1991 May) concerning established examples of $S_{A}(x)$ for $A=$ \boldsymbol{Z} (Kronecker), an imaginary quadratic integer ring (Takagi), and an integer ring of positive characteristic (Carlitz-Drinfeld). General calculations using multiple sine functions $S_{r}\left(z ;\left(\omega_{1}, \ldots, \omega_{r}\right)\right)$ with parameters satisfying $S_{r}(z$; $(1, \ldots, 1))=S_{r}(z)$ were written in [8] containing the partially known real quadratic case due to Shintani [14]. There q-analogues of multiple sine functions were used also.

Multiple sine functions are considered as concrete examples of multiple zeta functions formulated in [9]. We refer to Manin [11] for the excellent exposition from the view point of absolute motives.

References

[1] E. W. Barnes: On the theory of the multiple gamma function. Trans. Cambridge Philos. Soc., 19, 374-425 (1904).
[2] R. S. Cahn and J. A. Wolf: Zeta functions and their asymptotic expansions for compact symmetric spaces of rank one. Comment. Math. Helvetici, 51, 1-21 (1976).
[3] E. Cartan: Sur la détermination d'un systéme orthogonal complet dans un espace de Riemann symétrique clos. Rendiconti del Circolo Matematico di Palermo, 53, 217-252 (1928).
[4] D. Fried: The zeta functions of Ruelle and Selberg I . Ann. Scient. Ec. Norm. Sup., 19, 491-517 (1986).
[5] R. Gangolli: Zeta functions of Selberg's type for compact space forms of symmetric spaces of rank one. Illinois J. Math., 21, 1-41 (1977).
[6] O. Hölder: Ueber eine transcendente Function. Göttingen Nachrichten 1886, Nr. 16 , pp. 514-522.
[7] N. Kurokawa: Multiple sine functions and Selberg zeta functions. Proc. Japan Acad., 67A, 61-64 (1991).
[8] -: Lectures on multiple sine functions. Univ. of Tokyo, 1991, April-July, notes by Shin-ya Koyama.
[9] -: Multiple zeta functions: an example. Proc. of "Zeta Functions in Geometry" (Tokyo Institute of Technology, 1990 August).
[10] -: Siegel wave forms and Kronecker limit formula without absolute value. RIMS Kyoto Kokyu-roku, 792, 64-133 (1992).
[11] Yu. I. Manin: Lectures on zeta functions and motives. Harvard-MSRI-Yale-Columbia (1991-1992); Max-Planck Lecture Note (1992).
[12] R. J. Miatello: On the Plancherel measure for linear Lie groups of rank one. Manuscripta Math., 29, 247-276 (1979).
[13] A. Selberg: Harmonic analysis and discontinuous groups on weakly symmetric Riemannian spaces with applications to Dirichlet series. J. Indian Math. Soc., 20, 47-87 (1956).
[14] T. Shintani: On a Kronecker limit formula for real quadratic fields. J. Fac. Sci. Univ. Tokyo, 24, 167-199 (1977).
[15] M. Wakayama: Zeta functions of Selberg's type associated with homogeneous vector bundles. Hiroshima Math. J., 15, 235-295 (1985).

