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Existence of a Rational Elliptic Surface
with a Given Mordell.Weil Lattice

By Tetsuji SHIODA

Department of Mathematics, Rikkyo University

(Communicated by Kunihiko KODAIRA, M. J. A., Nov. 12, 1992)

In this note, we announce some results concerning the existence of a
rational elliptic surface having a given structure of the Mordell-Weil lattice,
which has been classified in [5]. With some arithmetic applications in mind,
we consider the question over the rational number field Q. Details will be
given in forthcoming papers. For general facts on Mordell-Weil lattices

(MWL), we refer to [71 or [81.
1. Notation. Let K k(t) be the rational function field over an algeb-

raically closed ground field k, and let E/K be an elliptic curve such that the
associated elliptic surface (the Kodaira-Nron model)

f S---, p
is a rational elliptic surface. Then the structure of the Mordell-Weil lattice
E(K) (by which we mean, by abuse of language, the structure of the
Mordell-Weil group E(K) equipped with the height pairing) is completely
determined by the "trivial lattice" T formed by irreducible components of
reducible singular fibres f -(v) (let R be the set of such v’s)" T is the direct
sum of simple root lattices Tv of type A, D, E and has a natural embedding
into the root lattice
(1) T T Es.
Namely, if we denote by L E (K) the narrow Mordell-Weil lattice, then L
is isomorphic to the orthogonal complement of T in Es, while M E (K) is
isomorphic to the direct sum of L* (the dual lattice of L) and a finite torsion
group (see [8], Th. 10.3 or [5], Th. 3.1; we follow the latter notation here).

Further the possible structure of the triple {T, L, M} has been clas-
sified into 74 types No.l,...,No.74 ([5], Main Theorem).

Remark. (i) The terminology "trivial lattice" was used in [7], [8] to
mean the lattice generated by T as above, the zero section and any fibre in
the N6ron-Severi lattice of S. The present usage is more convenient for the
purpose of this note, and we hope it will cause no confusion.

(ii) We take this opportunity to correct the misprints in the table of [5]:
For No.32, L A @ (6), M A* (1/6 should be replaced by

L= ( 4 --2), M=(2 1)--2 4 1 2
For No.70, M (Z/2Z) 2

should

read M Z/4Z.
2. Existence theorem. The main result in this note is an existence

theorem stating that all the 74 types actually occur (at least in case the
ground field k has characteristic 0). More precisely, we can prove a much
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more refined result: the existence of a Q-split example. Namely we have:
Theorem 1. For each type {T, L, M} except for the case No.68 in [5] (with

T-A, L {0} M (Z/3Z)), there exists an elliptic curve E over
Q (t) satisfying the following properties:

(2) E(Q(t)) E(k(t)) - M, E(Q(t))= E(k(t)) -L,
and the Kodaira-Nron model is a rational elliptic surface with the trivial lattice

T such that all the irreducible components of reducible fibres are Q-rational. In
the exceptional case, the assertion holds with Q replaced by the field of cube root

of unity, which is the smallest possible choice in view of Well’s eN-pairing (here
with N 3).

The proof is based on the theory of Mordell-Weil lattices, especially on

the degeneration of Mordell-Weil lattices (cf. [5], Remark 2.7, [9]) combined
with the idea of excellent families of elliptic curves (see below).

Remark. In the complex case (k--C), Persson [6] and Miranda [4]
determined the configuration type of singular fibres of rational elliptic sur-
faces; in their approach, irreducible singular fibres (type I or H) are taken
into consideration as well as the distinction of a singular fibre with T A
(type I or III) or with Tv - A (type I or IV). (We use Kodaira’s notation
for singular fibres [3].) Thus the classification list is finer than that of [5] as

far as singular fibres are concerned, but the structure of the Mordell-Weil
lattice is not considered there. Also it seems to be a nontrivial work to write

down some explicit example in each case (say by a Weierstrass equation
over C (t)) following the indication in [6] (mostly given in terms of geometry
of plane curves), and certainly this method is not suitable in most cases for
constructing examples over Q(t), not to mention Q-split ones in the above
sense.

3. Excellent families. Of the 74 types, there are exactly 31 types
{T, L, M} for which L is a root lattice of positive rank. Such a type is call-
ed admissible. For an admissible type, Theorem 1 follows from Theorem 2
asserting the existence of an excellent family (cf. [11]). Namely we have:

Theorem 2. For each admissible type with L a root lattice of rank r > O,
there exists an excellent family of elliptic curves {E} with Galois group W(L),
the Weyl group of L. In other words, the generic member E is an elliptic curve

defined over ko (t) where ko Q (,) (, (P,... ,Pr)) is a purely transcendental
extension of dimension r over Q. There exist r independent variables {u,... ,ur}
(called splitting variables) in the algebraic closure k of ko with the following prop-
erties: first

E(k(t)) E(Q(ut,. .,u,) (t)) L
(3) E(k(t)) = E(Q(ut,...,u)(t)) M
and second the Weyl group W(L) acts on the polynomial ring Q[ul,... ,ur] in
such a way that the invariant subring is:

(4) Q[Ul,...,Ur]
which means that {p} forms a set of fundamental invariants of the Weyl group
W(L)

This theorem has been proven for the cases L E8, E7, Es (and some
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cases with L--D4, A2) in our previous work [10]" in these cases, we can
take as E the elliptic curve whose defining equation is given by that of the
semi-universal deformation of rational double point of type L. The case L
D has been treated by Usui [12], and about ten more cases L D6, As,...
have been given in a recent joint work [11]. The existence of an excellent
family for the remaining cases will be established in a forthcoming paper.

Theorem 1 for an admissible type is an immediate consequence of
Theorem 2. For we have only to specialize the splitting variables {ul,... ,ur}
to some rational numbers {al,...,ar} so that the MWL does not degenerate,
which is a certain open condition (cf. [11], Th. 2 and examples).

The proof of Theorem 1 for a non-admissible type is based on the oppo-
site idea, i.e. degeneration of MWL. Starting from a suitable excellent family,
we choose a specialization of the splitting variables to arrange the desired
set of reducible fibres, i.e. to realize a given type of the trivial lattice T. The
main idea here is to consider vanishing roots which are analogous to
vanishing cycles in the Milnor lattice in singularity theory (cf. [9]).

4. Application to singularity theory. If we ignore the information on
the structure of MWL in Theorem 1 or 2, we can translate the results on
reducible singular fibres into the corresponding results on singularities as
follows

Theorem 3. Let T be any sublattice of E8 which is a direct sum of root
lattices of type A, D, E T T. Assume T :/= A8, d, 04 A4. Then
there exists an affine surface X in the affine space C3

defined over Q which has
a rational double point, say xi, of type Ti for each i and no other singularities.
Moreover each singular point x is a Q-rational point of X, and the minimal re-
solution is obtained by blowing up only Q-rational points so that the exceptional
curves of the resolution are all defined over Q. A single exception is the case
where T A4, in which case we need to blow up Q (/-- 3)-rational points.

Except for the rationality statements, this result must be wellknown to
singularity theorists. We do not know whether the existence in the above re-
fined sense (i.e. the existence of a Q-split example for every possible type)
has been known.

Example. For T- A4 @ A A (No.56 in [5]), consider the affine sur-
face in (x, y, t)-space defined by the equation

t 3 t(5) y + 72xy 10 y x + 60tx --15tx+
Then it has 3 singular points" A4-singularity at (x, y, t) (0, 0, 0),
A-singularity at (x, y, t) (28, 2, 25), and A-singularity at (x, y, t)

(34, 36, 33).
To reformulate Theorem 2, note that (4) defines a Galois covering be-

tween affine spaces
A A;r --, A / W(L)

whose ramification locus is defined by 6(/) 0, where the invariant 6 is the
square of the basic anti-invariant of the Weyl group W(L) ([1], Ch.5, 5.4,
Prop.5).

Theorem 4. For each admissible type { T, L, M}, there exists a family of



254 T. SHIODA [Vol. 68(A),

affine surfaces {X} parametrized by , (Pl,... ,Pr) A* such that (i) the

generic member has only T-singularities (i.e. rational double points of type T as

before) and (ii) for 2" A, X, has worse singularities than T if and only if
belongs to the ramification locus of

These families can be used in studying the stratification of the para-
meter space for deformation of rational double points up to E8, since they
provide a sort of partial smoothing which "preserves" T-singularities. (Re-
call that the family for the case T-- {0} is the semi-universal deformation
of Es-singularity X0.)

5. Minimal height. We mention an arithmetic consequence.
Theorem 5. The minimal height of a non-torsion point P E (K) is

equal to 1/30 when E/K runs over elliptic curves with a rational elliptic surface
as the Kodaira-Nron model"

1
Min (P, P)

30"
Indeed, it follows from the classification in [5] that the said minimum is

at least 1/30, attaining this value if and only if the case No.56 with T-- A4

A2 @ A1, L (30) M (1/30> exists. Theorem 1 assures the exist-
ence, so the result. An explicit example is given by the previous equation (5),
now viewed as an elliptic curve over Q(t), and its rational point P
(t + 24t, t -I- 28f) which has norm (P, P) 1/30.
A general result in this direction has been obtained by Hindy and Silver-

man [2]. For instance, they give a lower bound for such a minimal height

when E is an arbitrary elliptic curve over K k(t), k being of characteris-
tic 0, such that E (K) is finitely generated. (By the way, in the example in

[2], p.437, one should have norm (P, P) 1/14 rather than 1/12 as given
there’it corresponds to No.47 in [5].)

It will be very interesting to determine the precise lower bound in the
above-mentioned situation. A partial result such as the minimal height for
elliptic K3 surfaces will be also interesting" this value is at least 1/120,
which is attained only if there exists an elliptic K3 surface with reducible
fibres of types 18 Is, 14 13 12 and having the Picard number 20.
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