7. A Remark on Higher Circular l-Units

By Yasutaka Ihara
Research Institute for Mathematical Sciences, Kyoto University
(Communicated by Shokichi Iyanaga, m. J. A., Jan. 13, 1992)

1. Let l be a prime number, and $E_{l}=E(\{0,1, \infty\})$ be the group of higher circular l-units defined and studied in [1] [2] (esp. [1] §2.6). As is shown in [1], elements of E_{l} are l-units in the maximal pro-l extension M_{l} of $\boldsymbol{Q}\left(\mu_{l_{\infty}}\right)$ unramified outside l ($\mu_{l \infty}$: the group of l-powerth roots of 1), and $\boldsymbol{Q}\left(E_{l}\right)$ corresponds to the kernel of the canonical representation of the Galois group $\operatorname{Gal}(\overline{\boldsymbol{Q}} / \boldsymbol{Q})$ in the outer automorphism group of the pro-l fundamental group of $\boldsymbol{P}^{1}-\{0,1, \infty\}$. The main purpose of this note is to prove the following

Theorem. For any $\varepsilon \in E_{l}$ and $\sigma \in \operatorname{Gal}(\overline{\boldsymbol{Q}} / \boldsymbol{Q}), \varepsilon^{\sigma-1}$ is a unit.
In other words, if $\varepsilon \in E_{l}$ and k is any finite Galois extension over \boldsymbol{Q} containing ε, then the fractional ideal $(\varepsilon)=\varepsilon \mathcal{O}_{k}$ is $\operatorname{Gal}(k / \boldsymbol{Q})$-invariant $\left(\mathcal{O}_{k}\right.$: the ring of integers of k).

The above theorem holds trivially when l is a regular prime. In fact, in this case, l has a unique extension in M_{l} and hence every l-unit in M_{l} has the claimed property. (To see that l has a unique extension in M_{l}, first observe that it is so in the maximal l-elementary abelian extension of $\boldsymbol{Q}\left(\mu_{l}\right)$ unramified outside l; then apply the Burnside principle "a closed subgroup D of a pro-l group G coincides with G if its image \bar{D} on the Frattini quotient \bar{G} of G coincides with \bar{G} ', to the decomposition group $D \subset \operatorname{Gal}\left(M_{l} / \boldsymbol{Q}\left(\mu_{l}\right)\right)$ of an extension of l.) But when l is irregular, l does decompose in M_{l}; hence not all the l-units of M_{l} can enjoy the property stated in the theorem.

In [1] (§0.2), we raised two questions (a) (b), which, in the present language, read as
(a) $\boldsymbol{Q}\left(E_{l}\right)=M_{l}$?
(b) Is E_{l} the full group of l-units in $\boldsymbol{Q}\left(E_{l}\right)$?

The above theorem implies that when l is irregular, E_{l} cannot be the group of all l-units in M_{l}, and hence at most one of (a) (b) can have an affirmative answer. In any case, it is an interesting open question to characterize the field $\boldsymbol{Q}\left(E_{l}\right)$ and the group E_{l}.
2. Proof of the theorem. The proof is quite elementary. Let v denote any extension to $\overline{\boldsymbol{Q}}$ of the normalized additive l-adic valuation ord_{l} of \boldsymbol{Q} (so, $v(l)=1)$.

Lemma 1. If $a=b^{l} \in \overline{\boldsymbol{Q}}^{\times}$and $v(a-1)<l(l-1)^{-1}$, then $v(b-1)=l^{-1} \times$ $v(a-1)$.

Proof. Decompose $a-1$ into the product of $b-\zeta^{i}$ over all $i(\bmod l), \zeta$
being a primitive l-th root of 1 . Then $v\left(b-\zeta^{i}\right)<(l-1)^{-1}$ for at least one i. But since $v\left(\zeta^{i}-\zeta^{j}\right)=(l-1)^{-1}$ for $j \not \equiv i(\bmod l)$, we have $v\left(b-\zeta^{j}\right)=v\left(b-\zeta^{i}\right)$ for all j. Therefore, $v\left(b-\zeta^{j}\right)=(1 / l) v(a-1)$ for all j. Q.E.D.

The following lemma is crucial for proving the theorem. It is a modification of an estimation previously communicated to the author by G. W. Anderson (letter of October 19, 1987).

Lemma 2. With the notation of $[1]$, let $S \in S=S(\{0,1, \infty\})$, and assume $l \neq 2,3$. Then
(*)

$$
v(a)<l(l-1)^{-1}
$$

for any $a \in S \backslash\{0, \infty\}$.
Proof. By induction on S :
IA : "Valid for $T(S)$ for all $T \in \mathrm{PGL}_{2}$ with $T(S) \ni 0,1, \infty$ " $\Rightarrow \mathrm{IC}$: "so for $T^{\prime}\left(S^{1 / l}\right)$ for all $T^{\prime} \in \mathrm{PGL}_{2}$ with $T^{\prime}\left(S^{1 / l}\right) \ni 0,1, \infty$ ".
First, if $S=S_{0}=\{0,1, \infty\}$, then $T(S)=\{0,1, \infty\}$ and $a=1$; hence $v(a)=0$, and (*) is satisfied.

Now let S satisfy the above induction assumption IA, and let $T^{\prime}\left(S^{1 / l}\right)$ be any PGL_{2}-transform of $S^{1 / l}$ containing $0,1, \infty$. Take any $c \in T^{\prime}\left(S^{1 / l}\right)$, $c \neq 0, \infty$. Then T^{\prime}, c are of the form:

$$
T^{\prime}(t)=\frac{b_{2}-b_{3}}{b_{2}-b_{1}} \cdot \frac{t-b_{1}}{t-b_{3}}, \quad c=\frac{b_{2}-b_{3}}{b_{2}-b_{1}} \cdot \frac{b_{4}-b_{1}}{b_{4}-b_{3}},
$$

where $a_{i}=b_{i}^{l} \in S(i=1, \cdots, 4)$. (When one of the b_{i} is ∞, the two factors, such as $t-b_{i}, b_{i}-b_{j}$, involving this b_{i} should be cancelled out.) First, assume that a_{i} are distinct and finite. Then by using IA for $T_{j}(S)$, where $T_{j}(t)=1-a_{j}^{-1} t$, we obtain

$$
v\left(1-a_{j}^{-1} a_{i}\right)<l(l-1)^{-1} \quad(i \neq j) ;
$$

hence

$$
\begin{equation*}
v\left(1-b_{j}^{-1} b_{i}\right)=l^{-1} \cdot v\left(1-a_{j}^{-1} a_{i}\right) \tag{**}
\end{equation*}
$$

by Lemma 1. Therefore, $v\left(b_{j}-b_{i}\right)=l^{-1} v\left(a_{j}-a_{i}\right)$ for $i \neq j$. Therefore, we obtain the desired inequality IC :

$$
v(c)=\frac{1}{l} v\left(\frac{a_{2}-a_{3}}{a_{2}-a_{1}} \cdot \frac{a_{4}-a_{1}}{a_{4}-a_{3}}\right)<(l-1)^{-1}<l(l-1)^{-1},
$$

by using IA for

$$
T(t)=\frac{a_{2}-a_{3}}{a_{2}-a_{1}} \cdot \frac{t-a_{1}}{t-a_{3}}
$$

When $a_{1}=a_{4}, a_{2}=a_{3}$, and are finite, the estimation of $v(c)$ will become the "worst". In this case,

$$
c=\frac{b_{2}}{b_{2}-b_{1}} \frac{b_{4}}{b_{4}-b_{3}}(1-\zeta)\left(1-\zeta^{\prime}\right)
$$

$\left(\zeta, \zeta^{\prime} \in \mu_{l} \backslash\{1\}\right.$). First, note that the above equality ($* *$) remains valid for $i, j=1,2$ of this case. This gives

$$
v\left(b_{2}\left(b_{2}-b_{1}\right)^{-1}\right)=l^{-1} v\left(a_{2}\left(a_{2}-a_{1}\right)^{-1}\right) .
$$

But $a_{2}\left(a_{2}-a_{1}\right)^{-1}=T(0) \in T(S)$, for $T(t)=\left(t-a_{2}\right)\left(a_{1}-a_{2}\right)^{-1}$; hence $v\left(a_{2}\left(a_{2}-a_{1}\right)^{-1}\right)$ $<l(l-1)^{-1}$ by IA. Therefore, $v\left(b_{2}\left(b_{2}-b_{1}\right)^{-1}\right)<(l-1)^{-1}$. Similarly,
$v\left(b_{4}\left(b_{4}-b_{3}\right)^{-1}\right)<(l-1)^{-1}$. Therefore, $v(c)<4(l-1)^{-1}<l(l-1)^{-1}$, as $l \geq 5$.
The other cases are simpler and will be omitted.
Q.E.D.

Lemma 3. Assume $l \neq 2,3$. If $S \in \mathcal{S}, a, a^{\prime} \in S \backslash\{\infty\}$ and $a \neq a^{\prime}$, then $\left(a-a^{\prime}\right)^{\sigma-1}$ is a unit.

Proof. Induction on S;
"valid for $S^{\prime \prime} \Rightarrow$ "valid for $T(S), S^{1 / l " .}$
(i) For $T(S)$. This is trivial, as the difference of two distinct elements of $T(S)$ can be expressed as the ratio of two elements each of which is a product of at most 3 elements of the form $s-s^{\prime}\left(s, s^{\prime} \in S \backslash(\infty)\right.$).
(ii) For $S^{1 / l}$: Take $a, a^{\prime} \in S$, and b, b^{\prime}, with $b^{l}=a, b^{\prime l}=a^{\prime}, b \neq b^{\prime}$. Consider the element $\left(b-b^{\prime}\right)^{\sigma-1}$. If $a=a^{\prime}$, then $a \neq 0$, and hence $a^{\sigma-1}=$ $(a-0)^{\sigma-1}$ is a unit by the induction assumption. Hence $b^{\sigma-1}$ is also a unit (being an l-th root of $a^{\sigma-1}$). Moreover, $(1-\zeta)^{\sigma-1}$ is a unit for any $\zeta \in \mu_{l} \backslash\{1\}$. Therefore, $\left(b-b^{\prime}\right)^{\sigma-1}$ is a unit in this case.

Now suppose that $a \neq a^{\prime}, a^{\prime} \neq 0$. Put $\beta=b b^{\prime-1}$ and $\alpha=\beta^{l}=a a^{\prime-1}$. Then $(\alpha-1)^{\sigma-1}=\left(a-\alpha^{\prime}\right)^{\sigma-1} / \alpha^{\sigma-1}$ is a unit by the induction assumption. In particular, $v\left(\alpha^{\sigma}-1\right)=v(\alpha-1)$. By Lemma 2 applied to $1-\alpha \in T(S)\left(T(t)=1-a^{\prime-1} t\right)$, we obtain $v(\alpha-1)<l(l-1)^{-1}$. Thus, Lemma 1 gives

$$
v(\beta-1)=v\left(\beta^{\sigma}-1\right)=\frac{1}{l} v(\alpha-1) .
$$

Therefore, $v\left((\beta-1)^{\sigma-1}\right)=0$ for any extension v of ord_{l}. Since $\beta-1 \in E_{\imath}$ is an l-unit ([1] Prop. 2.5•1.), this implies that $(\beta-1)^{\sigma-1}$ is a unit. Since $b^{\prime \sigma-1}$ is also a unit (being an l-th root of $a^{\prime \sigma-1}$ which is a unit by the induction assumption), $\left(b-b^{\prime}\right)^{\sigma-1}$ is unit.
Q.E.D.

Now, to prove the theorem we may assume l irregular, in particular $l>3$. By Lemma 3 applied to the case $a^{\prime}=0$, we see that $\alpha^{\sigma-1}$ is a unit for all $a \in S \backslash\{0, \infty\}$. Since E_{l} is generated by $S \backslash\{0, \infty\}(S \in \mathcal{S})$, the theorem follows.

Acknowledgment. The author wishes to thank Greg W. Anderson for his generosity to have allowed me to use a modification of his earlier estimation as a crucial lemma (§2, Lemma 2).

References

[1] Anderson, G. and Ihara, Y.: Pro-l branched coverings of P^{1} and higher circular l-units. Ann. of Math., 128, 271-293 (1988).
[2] -: Part 2. International J. of Math., 1, 119-148 (1990).

