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1. Introduction. The notion of the Mordell-Weil lattice of an elliptic
curve over a function field (or of an elliptic surface) has been established in
our previous work together with its basic properties (see [4], [5]). In this
note, we sketch a generalization to the case of an algebraic curve of higher
genus over a function field (or of an algebraic surface with higher genus
fibration), and give a nontrivial example. Detailed account is in preparation.

Let K = k(C) be the function field of an algebraic curve C over an
algebraically closed ground field k; the curve C should serve as the base
curve of some fibration and it is assumed to be smooth and projective. Let
I'/K be a smooth projective curve of genus g > 0 with a K-rational point
O € I'(K), and let J/K denote the Jacobian variety of I'/K. Assume the
following condition :

(%) The K/k-trace of Jis trivial.

Then the group of K-rational points J (K) is a finitely generated abelian
group (Mordell-Weil theorem), and the set I (K) of K-rational points of I is
a finite subset of J(K) if g > 1 (Mordell conjecture for function fields =
Theorem of Grauert-Manin-Samuel). We refer to Lang’s book [2] for the
above.

The main idea of this note is to view the Mordell-Weil group J (K) (mod-
ulo torsion) as a Euclidean lattice with respect to a natural pairing defined in
terms of intersection theory on an associated surface, in the same way as the
case of g = 1 (cf. [4], [5]).

2. Basic theorems. Given I'/K as above, we can associate an algeb-
raic surface with a relatively minimal fibration:

(1) f:S—C.

Namely, S is a smooth projective surface, f is a morphism with the generic
fibre I'/ K and there are no exceptional curves of the first kind in any fibre.
The K-rational points of I" are in a natural one-one correspondence with the
sections of f; for P € I'(K), (P) will denote the section regarded as a
curve in S. Let NS(S) be the Néron-Severi group of S. Then we have

Theorem 2.1. Under the assumption (%), there is a natural isomorphism :
(2) J(K) = NS(S)/T
where T is the subgroup generated by (O) and all the irreducible components of
fibres of f.

For simplicity, assume in the following that (% %) NS(S) is
torsion-free. Then it forms an integral lattice with respect to the intersection
pairing, of signature (1, p — 1) (Hodge index theorem), p-= rk NS(S) being
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the Picard number of S.

Proposition 2.2. Under the assumptions (%), (¥ %), T forms a sublattice

of NS(S), which is decomposed as follows :

(3) T=UDD,T,

where U is a rank 2 unimodular lattice spanned by (O), F (F any fibre) and
R={ve Cwk)|f ') is reducible}: for each v € R, T, is a negative-
definite sublattice spanned by the irreducible components of f —l(v) which do not
intersect the zero section (O).

Following the terminology for the case g =1, we call T the trivial
sublattice of NS(S) and L = T the essential sublattice. Observe that L is a
negative-definite lattice of rank 7. We note that 7T, is not a root lattice in
general if g > 1 in contrast to the elliptic case g = 1. In any case, (2) and
(3) imply the formula (cf. [8]):

(4) o=r+2+ 32 (m,— 1), r=rk J(K)

vER
where m, denotes the number of irreducible components off—l(v)‘

Lemma 2.3. There is a unique map which “splits” the isomorphism (2), i.e.

() ¢:J(K)—NS(S)®Q
such that for any P € J (K) we have
(6) o(P)=D,mod TR Q, o(P) L T

wheve Dp is a horizontal divisor on S corresponding to P € J(K) =
Pic’(I") (K) under (2); for instance, we can take D, = (P) for P € I'(K)
C J(K). This map is a group homomorphism such that

(7) Ker(p) = J(K),,, Im(p) < L*

Theorem 2.4. Define a symmetric bilinear form on the Mordell- Weil group
J(K) by
(8) (P, @ =—(e(P) 0(@) €EQ (P, Q € J(K)).

Then it defines the structure of a positive-definite lattice on J(K)/J (K),,
which will be called the Mordell- Weil lattice of J/ K.

The map ¢ has an explicit description (as in [5]) which gives an explicit
formula for the height pairing: if we normalize Djp so that (Dp*F) = 1, then
9) <P, @ = — (0% — (Dp*Dy) + (DpO) + (D,0) — Z}e contr,(P, @)

ve

(10) (P, P> = — (0% — (D} + 2(D;0) — X contr,(P)
vER

with the same notation as in [4], [5]; the local contribution term contz,
(P, Q) is a certain non-negative rational number and contr,(P) =
contr,(P, P).

To define the narrow Mordell-Weil lattice of J/K, let J(K)° be the
subgroup of J(K) which is the image of the essential sublattice L = Tt
C NS(S) under (2). For any P € ](K)o, we have contr,(P, Q) =
contr,(P) = 0.

Theorem 2.5. With respect to the height pairing, J (K)° is a positive-
definite integral lattice, isomorphic to the opposite lattice L™ of L. It will be called
the narrow Mordell-Weil lattice of J/ K.

As in the elliptic case, the Mordell-Weil lattice embeds into the dual
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lattice of the narrow one, and we have the following (cf. [5]):

Theorem 2.6. Suppose that the Névon-Severi lattice of S is unimodular, i.e.
det NS(S) = *x 1. Then the Mordell-Weil lattice of J/ K is isomorphic to the
dual lattice of the narrow Mordell-Weil lattice J (K)°.

3. Example. As the reader must be aware, the above theory of
Mordell-Weil lattices (MWL) for higher genus fibration is quite parallel to
that for the elliptic case treated before, and the proof is not so much diffe-
rent from that case. Somewhat different is the maturity of the theory of ellip-
tic surfaces due to Kodaira [1], including well-studied facts on singular
fibres (see also Néron [3], Tate [9]), which is yet to be seen for higher genus
case.

So let us give a non-trivial example which settles one of the predictions
made in our previous paper [6]: Introduction, p.676, paragraph (1). For any
positive integer g, consider the hyperelliptic curve I' = I'; of genus g over K
= k(t), defined by the following equation:
(11)
1/2 = ngﬂ + szzg_l + o+ Dog® + D2en1 + tz, A= (p.. '!p23+1) = kzg-
Let O € I'(K) be the (unique) point at infinity. For simplicity, assume that
k has characteristic 0. (N.B. This equation is known to define a semi-
universal deformation of A,-singularity for n = 2g: yz = %" + tz, with
parameter A.)

Let uy,...,u,,, U,,,, be the roots of the algebraic equation :

(12) 2+ 2™ T o+ P+ Prge = 0.
There are 2(2g + 1) K-rational points of I:
(13) Piix=wu,y=1t and P,:x=u,y=—1¢t (G=1,...,2¢g+1),
which satisfy the following relations in J(K):
2g+1

> P,=0, P,=—P,
i=1

Theorem 3.1. With the above notation, assume that (12) has no multiple
roots, i.e. u; are mutually distinct. Then the Mordell-Weil group J(K) is a
torsion-free abelian group of rank v = 2g. More precisely, the narrow MWL
J(K)° is isomorphic to the root lattice A,, and the full MWL ] (K) is isomor-
phic to its dual lattice A;kg:

(14) JK) = A
U U  index 2g + 1.
JE = A,
Moreover {P,, P;} correspond to the minimal vectors of AZ (with minimal norm
2g/2g + 1); in particular, {Py,...,P,} forms a set of free generators of J (K).

The algebraic surface S associated with (11) has a unique reducible

fibre at ¢ = ©0, and we have

tkT,=2g+4, detT,6 =2g + 1.
The case g = 1 reduces to the known result (Case (4,) in [6]); in that case,
we have T, = E,. For g > 1, T.. is not a root lattice, and its dual graph is
as follows: first take the Dynkin graph of type D,,,, and then adjoin a new
vertex with norm g + 1 to each extreme vertex of the two short branches in
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D,,,,. The sections (P;)(or (P;)) pass through the irreducible component
corresponding to one (or the other) of the two new vertices.

Example. For any g, consider the curve of genus g over Q () defined
by

YV=x2@-1D@E* =2 @ g + .
Then the Mordell-Weil group J(Q(#)) of the Jacobian variety J is a free
abelian group of rank 2g generated by
(x,y) = (x1,t), (£2,8),...,(£g, t) €T Q{®)).
By a standard argument, specializing £ to rational numbers yields an infinite
family of g-dimensional Jacobian varieties over @ of rank at least 2g.

Finally we note that the above family {I;} forms an excellent family of
genus g curves with Galois group W(A4,,) = 8S,,,, in the sense of [7], § 1. It
will be evident that the Galois representation

0, : Gal(Q/ Q) — Aut(J (Q(#)))
has the image W(4,,) for most choice of A € Q*.
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