58. A Remark on the Class-number of the Maximal Real Subfield of a Cyclotomic Field. III

By Hiroyuki OSADA
Department of Mathematics, National Defence Academy
(Communicated by Shokichi Iyanaga, M. J. A., Oct. 12, 1992)

For any number field K of finite degree, we denote by $h(K)$ the class number of K. For a prime p, ζ_{p} denotes a primitive p-th root of unity. In this note, we show the following:

Theorem. Let q be an odd prime such that $p=6 q+1$ is also a prime. We assume the following condition.
(c) $q+1$ is not a power of $2,2 q+1$ is not a power of 3 , and $4 q+1$ is not a power of 5 . Then

$$
h^{+}(p)<p \text { and } \quad h(k(p))>1 \Rightarrow h^{+}(p)=h(k(p)),
$$

where $h^{+}(p)$ denotes $h\left(Q\left(\zeta_{p}+\zeta_{p}{ }^{-1}\right)\right)$ and $k(p)$ is the unique cubic subfield of $Q\left(\zeta_{p}\right)$ over Q of a prime conductor p.

We need the following:
Proposition. Let p and q be distinct primes. Let F be a finite algebraic number field. Suppose E / F is a Galois q-extension and f is the order of $p \bmod q$. Then, for any α with $0 \leqq \alpha<f$,

$$
p^{\alpha}\left\|h(E) \Rightarrow p^{\alpha}\right\| h(F)
$$

(see [3]).
Proof. First of all, we need the following:
Lemma. Let p and q be distinct primes. Let G be a finite group of order $p^{\alpha} q^{\beta}$. Let f be the order of $p \bmod q$. Let H be a q-Sylow subgroup of G and $\alpha<f$. Then H is a normal subgroup of G (see [3]).

Let $P(E)$ be the maximal abelian unramified p-extention of F contained E and $G=G(P(E) / F)$. By the above lemma, the q-Sylow subgroup H of G is a normal subgroup of G. Let M be the subfield of $P(E)$ which corresponds to H. Then M / F is a Galois extention and $G(M / F) \cong G(P(E) / E)$. Therefore M / F is an abelian unramified extention of degree p^{α}. Therefore we have $p^{\alpha} \mid h(F)$. If $p^{\alpha+1} \mid h(F)$, then $p^{\alpha+1} \mid h(E)$. We conclude the above Proposition.

Corollary. Let p, q, E, F and f be as in Proposition. Then

$$
p \nmid h(F), p\left|h(E) \Rightarrow p^{f}\right| h(E),
$$

and

$$
p^{\alpha}\left\|h(F) \Rightarrow p^{\alpha}\right\| h(E) \text { or } p^{f} \mid h(E)
$$

Proof of the theorem. Since $h^{+}(6 \cdot 5+1)=h^{+}(31)=1$, we may assume $q>5$. Put $K=\mathrm{Q}\left(\zeta_{p}+\zeta_{p}{ }^{-1}\right)$ and $k=k(p)$. By the assumption on p and $q, K / k$ is a q-extention. If $q \nmid h(k)$, then $q \nmid h(K)$ (see [1]). Since $h(k)<\frac{2}{3} p$ (see [2]) and $h(K)<p$, it is easy to show that if $q \mid h(k)$, then
$q \| h(k)$ and $q \| h(K)$. Now let r be an odd prime. If $r \equiv 1(\bmod q), r \mid h(k)$ and $r \mid k(K)$, then $r=1+2 n q$, where $n=1$ or 2 . Since $r^{2}>p$, we have that $r\|h(k), r\| h(K)$. If $r \equiv 1(\bmod q)$ and $r \nmid h(k), r \mid h(K)$, then $h(K)$ $\geqq r \cdot h(k) \geqq 4 r>p$, where $h(k)>1 \Rightarrow h(k) \geqq 4$ (see[5]). Hence we have that $r \nmid h(k) \Rightarrow r \nmid h(K)$. Now $f>1$ is the order of $r \bmod q$. We will show that $r^{f}>p$.

In case $r \geqq 7, r^{f}-1=(r-1)\left(r^{f-1}+\cdots+1\right)$ can not be $2 n q$, where $n=1$ or 2 .

Let $r=5$ and $5^{f}=1+2 q$. Since $5^{f}-1=2 q, 4\left(5^{f+1}+\cdots+1\right)$ $=2 q$. This is a contradiction.

Let $r=3$ and $3^{f}=4 q+1$. Then f is even. Now let $f=2 m$ for some integer m. Hence $\left(3^{m}-1\right)\left(3^{m}+1\right)=4 q$. This is a contradiction.

Next let $r=2$. Then $2^{f}=1+3 q$ or $2^{f}=1+5 q$. If $2^{f}=1+3 q$, then we have that $f=2 m$ for some integer m. Since $\left(2^{m}-1\right)\left(2^{m}+1\right)=3 q$, we should have $m=2, q=5$. Therefore we have that $2^{f} \neq 1+3 q$. If $2^{f}=1$ $+5 q$, then $f=4 m$ for some integer m. Since $2^{f}-1=\left(4^{m}-1\right)\left(4^{m}+1\right)$ $=5 q$ and $3 \mid 4^{m}-1$, we have that $2^{f} \neq 1+5 q$.

Hence we have $r^{f}>p$. By Corollary, we have that $r \npreceq h(k) \Rightarrow r \nmid h(K)$ and if $r^{m} \| h(k)$, for some integer m, then $r^{m} \| h(k)$. This completes the proof.

Examples. Suppose $p=607$ or 1879 . Suppose $h^{+}(p)<p$. Then $h^{+}(p)$ $=h(k(p))=4$ (see [5]).

Remark 1. Let q and $p=6 q+1$ be primes. Then we have only 5 example $\{3,7,13,127,1093$,$\} for q<10^{8}$, which do not satisfy the condition (c) in the theorem.

Remark 2. Let p be a prime. We have no example for $h^{+}(p)>1$ such that $h^{+}(p)$ is completely determined.

References

[1] J. Masely: Class numbers of real cyclic field with small conductors. Compositio Math., 37, 297-319 (1978).
[2] C. Moser and J. J. Rayan: Majoration du nombre de classes d'un corps cubique cyclique de conducteur premier. J. Math. Soc. Japan, 33, 701-706 (1981).
[3] H. Osada: A remark on the class-number of the maximal real subfield of a cyclotomic field. II. Proc. Japan Acad., 68 A, 41-42 (1992).
[4] L. C. Washington: Introduction to Cyclotomic Field. Springer (1982).
[5] M. N. Gras: Méthodes et algorithmes pour le calcul numérique du nombre de classes et umités des extentions cubiques cycliques de \boldsymbol{Q}. J. reine angew. Math., 277, 89-116 (1975).

