57. An Explicit Expression of the Harish-Chandra C-function of $\operatorname{SU}(n, 1)$ Associated to the $\operatorname{Ad}(\mathrm{K})$ Representation

By Masaaki Eguchi, Mari Miyamoto, and Ryoko Wada
Hiroshima University
(Communicated by Shokichi Iyanaga, M. J. A. , Oct. 12, 1992)

§0. Introduction. Let G be a semisimple Lie group with finite center, K a maximal compact subgroup of G. Let θ be the Cartan involution of G fixing K. Let $G=K A N$ be an Iwasawa decomposition of G and $g=\mathfrak{f}+\mathfrak{a}$ $+\mathfrak{n}$ the corresponding decomposition of the Lie algebra \mathfrak{g} of G. An element g of G, can then be uniquely written as $g=\kappa(g) \exp H(g) n(g)(\kappa(g) \in K$, $H(g) \in \mathfrak{a}, n(g) \in N)$. Put $\bar{N}=\theta N$ and let M be the centralizer of A in K. Let τ be a finite dimensional unitary representation of K and denote its representation space by V. The following operator given by the integral

$$
C_{\tau}(\lambda)=\int_{\bar{N}} \tau(\kappa(\bar{n})) e^{-(\lambda+\rho)(H(\bar{n})} d \bar{n} \quad\left(\lambda \in \mathfrak{a}_{C}^{*}\right)
$$

is called Harish-Chandra's C-function associated to τ (see [3]). It is well known that the operator $C_{\tau}(\sigma ; \lambda)$ obtained by restricting $C_{\tau}(\lambda)$ to an irreducible M-component $V_{\sigma}(\subset V)$, is closely related to the intertwining operator between induced representations (see [3], [4]), and also in some special cases it can be represented by a diagonal matrix having diagonal elements in the form of quotients of products of gamma factors with respect to a certain orthogonal basis (cf. [1], [7]). Though it has been believed for a long time that this phenomena would be true for more general cases, even the computation of the determinant of $C_{\tau}(\sigma ; \lambda)$ has not been easy (cf. [1], [2], [6]). We give here a series of affirmative examples to this conjecture in $G=S U(n, 1)$, $K=S(U(n) \times U(1))$ and $\tau=$ Ad case, where Ad is the complex adjoint representation of K.
§1. Notation and preliminaries. Let $n(n \geq 2)$ be an integer and

$$
G=S U(n, 1)=\left\{A \in G L(n+1, C) ;{ }^{t} \bar{A} I_{n, 1} A=I_{n, 1} \text { and } \operatorname{det} A=1\right\}
$$ where

$$
I_{n, 1}=\left(\begin{array}{ll}
I_{n} & \\
& -1
\end{array}\right) \in G L(n+1, \boldsymbol{C})
$$

and I_{n} is the unit matrix of order n. Let

$$
\begin{aligned}
& \mathfrak{g}=\mathbb{B u}(n, 1)=\left\{X \in \mathfrak{g l}(n+1, \boldsymbol{C}) ;{ }^{t} \bar{X} I_{n, 1}+I_{n, 1} X=0 \text { and } \operatorname{tr} X=0\right\} \\
& \mathfrak{f}=\left\{\left(\begin{array}{cc}
A & \sqrt{-1} t
\end{array}\right): A \in \mathfrak{u}(n), \quad t \in \boldsymbol{R} \text { and }-\operatorname{tr} A=\sqrt{-1} t\right\}
\end{aligned}
$$

Let

$$
\mathfrak{a}=\{t H ; t \in \boldsymbol{R}\}
$$

$$
H=\left(\begin{array}{lll}
& .0^{1} \\
0 & &
\end{array}\right)
$$

$$
\mathfrak{n}=\mathfrak{g}_{\alpha}+\mathfrak{g}_{2 \alpha} \text { and } \overline{\mathfrak{n}}=\theta \mathfrak{n},
$$

where α is the simple root of $(\mathfrak{g}, \mathfrak{a})$ which satisfies $\alpha(H)=1, \mathfrak{g}_{\beta}$ is the root subspace of g for each root β and θ is the Cartan involution of g defined by $\theta X=I_{n, 1} X I_{n, 1}=-{ }^{t} \bar{X}(X \in \mathfrak{g})$. Then $\mathfrak{g}=\mathfrak{f}+\mathfrak{a}+\mathfrak{n}$ is an Iwasawa decomposition of g. Let K, A, N, \bar{N} denote the analytic subgroups of G with Lie algebras $\mathfrak{f}, \mathfrak{a}, \mathfrak{n}$ and $\overline{\mathfrak{n}}$, respectively. Then $G=K A N$ is the Iwasawa decomposition of G corresponding to the decomposition $\mathfrak{g}=\mathfrak{f}+\mathfrak{a}+\mathfrak{n}$ and we have

$$
\begin{aligned}
& K=\left\{\left(\begin{array}{lll}
A & & \\
& (\operatorname{det} A)^{-1}
\end{array}\right) ; A \in U(n)\right\}, \\
& A=\left\{\left(\begin{array}{lll}
\cosh t & & \sinh t \\
& I_{n-1} & \\
\sinh t & & \cosh t
\end{array}\right) ; t \in \boldsymbol{R}\right\}, \\
& \bar{N}=\left\{P\left(\begin{array}{ccc}
1 & & \\
z_{1} & 1 & \\
\vdots & & \cdot \\
z_{n-1} & & 1 \\
1-F & -\bar{z}_{1} \cdots-\bar{z}_{n-1} & 1
\end{array}\right) P^{-1} ; F=1+\frac{1}{2} \sum_{i=1}^{n-1}\left|z_{i}\right|^{2}+i u\right. \\
& \left.u \in \boldsymbol{R}, z_{1}, \cdots, z_{n-1} \in \boldsymbol{C}\right\}
\end{aligned}
$$

where

$$
P=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
1 & & 1 \\
& \sqrt{2} I_{n-1} & \\
-1 & & 1
\end{array}\right)
$$

We can see that \bar{N} can be identified with $\boldsymbol{C}^{n-1} \times \boldsymbol{R}$. For any

$$
\bar{n}(z, u)=P\left(\begin{array}{lll}
1 & & \\
z_{1} & 1 \cdot .{ }_{1} & \\
z_{n-1} & \cdot \bar{z}_{1} \cdots-\bar{z}_{n-1} & 1
\end{array}\right) P^{-1} \in \bar{N}
$$

let $\bar{n}(z, u)=\kappa(\bar{n}(z, u)) a(\bar{n}(z, u)) n(\bar{n}(z, u))$ be the Iwasawa decomposition of $\bar{n}(z, u)$. Then we can see that
(1.2) $\kappa(\bar{n}(z, u))=\left(\begin{array}{ccccc}(2-F) /|F| & -\sqrt{2} \bar{z}_{1} / F & \cdots & -\sqrt{2} \bar{z}_{n-1} / F & 0 \\ \sqrt{2} z_{1} /|F| & 1-\left|z_{1}\right|^{2} / F & \cdots & -z_{1} \bar{z}_{n-1} / F & 0 \\ \vdots & \vdots & \cdots & \vdots & \vdots \\ \sqrt{2} z_{n-1} /|F| & -\bar{z}_{1} z_{n-1} / F & \cdots & 1-\left|z_{n-1}\right|^{2} / F & 0 \\ 0 & 0 & \cdots & 0 & F /|F|\end{array}\right)$
(cf. [5]). For a real vector space W we denote by $W_{\boldsymbol{C}}$ its complexification. Now consider the complex vector space $V={ }_{C} \boldsymbol{C}$ which is isomorphic to $\mathfrak{g l}(n$, $\boldsymbol{C})$. Let $\mathfrak{f}_{1}=[\mathfrak{f}, \mathfrak{f}]$ and \mathfrak{z} be the center of \mathfrak{f}. Then we see that

$$
\mathfrak{f}_{1 C}=\left\{\left(\begin{array}{ll}
X & \\
& 0
\end{array}\right): X \in \mathfrak{B l}(n, \boldsymbol{C})\right\}
$$

$$
z_{C}=C\left(\begin{array}{ll}
I_{n} & \\
& -n
\end{array}\right)
$$

and $V=\mathfrak{f}_{1 \boldsymbol{C}} \oplus_{z \boldsymbol{C}}$ is the $\operatorname{Ad}(K)$-irreducible decomposition. Since

$$
M=\left\{\left(\begin{array}{ccc}
d & & \\
& X & \\
& & d
\end{array}\right) ; d^{2} \operatorname{det} X=1, X \in U(n-1)\right\}
$$

$V=\stackrel{4}{\oplus}{ }_{i=0} V_{i}$ is the $\operatorname{Ad}(M)$-irreducible decomposition, where
$V_{0}=z C$

$$
V_{1}=\left\{z\left(\begin{array}{ccc}
1-n & & \\
& I_{n-1} & \\
& & 0
\end{array}\right) ; z \in \boldsymbol{C}\right\}
$$

$$
V_{2}=\left\{\left(\begin{array}{ccccc}
0 & z_{12} & \cdots & z_{1 n} & 0 \\
& & O & &
\end{array}\right) ; z_{12}, \cdots, z_{1 n} \in \boldsymbol{C}\right\}
$$

$$
V_{3}=\left\{\left(\begin{array}{cc}
0 & \\
z_{21} & \\
\vdots & O \\
z_{n 1} & \\
0 &
\end{array}\right) ; z_{21}, \cdots, z_{n 1} \in \boldsymbol{C}\right\}
$$

$$
V_{4}=\left\{\left(\begin{array}{ccc}
0 & & \\
& X & \\
& & 0
\end{array}\right) ; X \in \mathfrak{B l}(n-1, C)\right\}
$$

We put
$X_{0}=\left(\begin{array}{ll}I_{n} & \\ & \\ & -n\end{array}\right), X_{1}=\frac{1}{1-n}\left(\begin{array}{ccc}1-n & & \\ & I_{n-1} & \\ & & 0\end{array}\right), X_{2}=\left(\begin{array}{lllll}0 & \cdots & 0 & 1 & 0 \\ & & O & & \\ & & & & \end{array}\right)$,
$X_{3}=\left(\begin{array}{cc}0 & \\ 1 & \\ 0 & 0 \\ \vdots & \\ 0 & \end{array}\right), \quad X_{4}=\left(\begin{array}{ccc} & 0 & 0 \\ & 1 & 0 \\ 0 & 0 & . \\ & \vdots & \vdots \\ 0 & 0\end{array}\right),\left(X_{i} \in V_{i}\right)$.
Let \mathfrak{m} be the Lie algebra of $M, \mathfrak{m}_{1}=[\mathfrak{m}, \mathfrak{m}]$ and put

$$
\mathfrak{h}=\left\{\left(\begin{array}{llll}
h_{1} & & & \\
& \ddots & & \\
& & h_{n} & \\
& & & 0
\end{array}\right) \in \mathfrak{g l}(n+1, \boldsymbol{C}) ; \sum_{j=1}^{n} h_{j}=0\right\},
$$

$$
\mathfrak{h}_{\mathfrak{m}}=\left\{\left(\begin{array}{ccccc}
0 & & & & \\
& h_{2} & & & \\
& & \ddots & & \\
& & & h_{n} & \\
& & & & 0
\end{array}\right) \in \mathfrak{g l}(n+1, \boldsymbol{C}), \sum_{j=2}^{n} h_{j}=0\right\} .
$$

Then \mathfrak{h} and $\mathfrak{h}_{\mathfrak{m}}$ are Cartan subalgebras of $\mathfrak{E}_{1 \boldsymbol{C}}(\simeq \boldsymbol{z l}(\boldsymbol{n}, \boldsymbol{C}))$ and $\mathfrak{m}_{1 \boldsymbol{C}}$, respectively. Let $\left\{\alpha_{1}, \cdots, \alpha_{n-1}\right\}$ be the fundamental root system of ($\mathfrak{f}_{1 \boldsymbol{C}}, \mathfrak{h}$) defined by

$$
\alpha_{i}(H)=h_{i}-h_{i+1}, H=\left(\begin{array}{cccc}
h_{1} & & & \\
& \ddots & & \\
& & h_{n} & \\
& & & 0
\end{array}\right), i=1,2, \cdots, n-1
$$

Then $\left\{\alpha_{2}, \cdots, \alpha_{n-1}\right\}$ is the fundamental root system of ($\mathfrak{m}_{1 \boldsymbol{C}}, \mathfrak{h}_{\mathfrak{m}}$). For each i ($i=0,1,2,3,4) X_{i}$ is the M-highest weight vector of V_{i} with respect to the lexicographic order defined by $\left\{\alpha_{2}, \cdots, \alpha_{n-1}\right\}$. In our case Harish-Chandra's C-function is given as follows:

$$
\begin{equation*}
C(\lambda)=\int_{\bar{N}} e^{-(\lambda+\rho) H(\bar{n})} \operatorname{Ad} \kappa(\bar{n}) d \bar{n} \quad\left(\lambda \in \mathfrak{a}_{C}^{*}\right) \tag{1.3}
\end{equation*}
$$

where ρ denotes the rho function and $d \bar{n}$ denotes a Haar measure on \bar{N}. Since $\lambda \in \mathfrak{a}_{\boldsymbol{C}}^{*}$ can be written in the form $\lambda=\mu_{\lambda} \alpha$ ($\mu_{\lambda} \in \boldsymbol{C}$) we identify λ with the complex number μ_{λ}. Thus ρ is identified with n and (1.1) implies

$$
e^{-(\lambda+\rho) H(\bar{n})}=|F(z, u)|^{-\lambda-n} .
$$

Therefore we get from (1.3)

$$
\begin{equation*}
C(\lambda)=c \int_{C^{n-1} \times \boldsymbol{R}}|F(z, u)|^{-\lambda-n} \operatorname{Ad} \kappa(\bar{n}(z, u)) d z d \bar{z} d u \tag{1.4}
\end{equation*}
$$

where c is a certain constant coming from the normalization of measures.
§2. The main theorem. Paying attention to the fact that $C(\lambda)$ acts as a scalar operator on each M-irreducible subspace V_{i}, we denote by $c_{i}(\lambda)$ the scalar induced by the action of $C(\lambda)$ on V_{i}. Our result in this paper is the following

Theorem 2.1. We have the following expressions;

$$
\begin{align*}
& c_{0}(\lambda)=c \frac{(2 \pi)^{n} \cdot 2^{-\lambda} \Gamma(\lambda)}{\Gamma\left(\frac{\lambda+n}{2}\right)^{2}}, \tag{2.1}\\
& c_{1}(\lambda)=c \frac{(2 \pi)^{n} \cdot 2^{-\lambda-2} \Gamma(\lambda)(\lambda-n)^{2}}{\Gamma\left(\frac{\lambda+n+2}{2}\right)^{2}}, \tag{2.2}\\
& c_{2}(\lambda)=c_{3}(\lambda)=c \frac{(2 \pi)^{n} \cdot 2^{-\lambda-1} \Gamma(\lambda)(\lambda-n+1)}{\Gamma\left(\frac{\lambda+n+3}{2}\right) \Gamma\left(\frac{\lambda+n-1}{2}\right)}, \tag{2.3}\\
& c_{4}(\lambda)=c \frac{(2 \pi)^{n} \cdot 2^{-\lambda} \Gamma(\lambda)(\lambda+n-2)}{\Gamma\left(\frac{\lambda+n+2}{2}\right) \Gamma\left(\frac{\lambda+n-2}{2}\right)(\lambda+n)} . \tag{2.4}
\end{align*}
$$

References

[1] L. Cohn: Analytic Theory of the Harish-Chandra C-function. Lect. Notes in Math., vol. 429, Springer-Verlag (1974).
[2] M. Eguchi and S. Tanaka: The explicit representation of the determinant of Harish-Chandra's C-function in $S L(3, \boldsymbol{R})$ and $S L(4, \boldsymbol{R})$ cases. Hiroshima Math. J. , 22, 57-93 (1992).
[3] Harish-Chandra: Harmonic analysis on real reductive groups. II. Wave packets in the Schwartz space. Invent. Math., 36, 1-55 (1976).
[4] -: Harmonic analysis on real reductive groups. III. The Maass-Selberg relations and the Plancherel formula. Ann. of Math., 104, 117-201 (1976).
[5] J. Sekiguchi: On Harish-Chandra's C-function. Seminar Reports of Unitary Representation, no. 1 (1981) (in Japanese).
[6] S. Tanaka: On the representation of the determinant of Harish-Chandra's C-function of $S L(n, \boldsymbol{R})$. Pacific J. Math., 153, 343-368 (1992).
[7] N. R. Wallach: Harmonic Analysis on Homogeneous Spaces. Marcel Dekker, New York (1973).

