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0. Introduction. Let G be a semisimple Lie group with finite center,

K a maximal compact subgroup of G. Let 0 be the Cartan involution of G
fixing K. Let G KAN be an Iwasawa decomposition of G and g f -t- a

-+- n the corresponding decomposition of the Lie algebra g of G. An element
g of G, can then be uniquely written as g tc(g)expH (g)n(g) (to(g) K,
H (g) c, n(g) N). Put N ON and let M be the centralizer of A in K.
Let be a finite dimensional unitary representation of K and denote its rep-
resentation space by V. The following operator given by the integral

is called Harish-Chandra’s C-function associated to (see [3]). It is well
known that the operator C(a 2) obtained by restricting C(2) to an irre-

ducible M-component V( V), is closely related to the intertwining oper-
ator between induced representations (see [3], [4]), and also in some special
cases it can be represented by a diagonal matrix having diagonal elements in

the form of quotients of products of gamma factors with respect to a certain
orthogonal basis (el. [1], [7]). Though it has been believed for a long time that
this phenomena would be true for more general cases, even the computation
of the determinant of C(a 2) has not been easy (of. [1], [2], [6]). We give

here a series of affirmative examples to this conjecture in G- SU(n, 1),
K= S(U(n) x U(1)) and z-= Ad case, where Ad is the complex adjoint

representation of K.
1. Notation and preliminaries. Let n(n >_ 2) be an integer and

G= SU (n, 1) {A GL(n + 1, C) ;tI,,aA I,,, anddetA= 1},
where

(I,, ) GL(n +1 C)I.,- 1
and In is the unit matrix of order n. Let

g gu(n, 1) {X g(n + 1, C) q/.. +/.,X 0 and trX 0},

I= {(A v/. lt) .a u (n) t Rand tra= v/. it}.

Let 01
= {tH;tR}, H= ."
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n ga -F g.a and ff- On,
where G is the simple root of (fl, a) which satisfies a(H) 1, fib is the
root subspace of g for each root fl and 0 is the Caftan involution of 9 defined
by OX- I,,IXI,,I tX (X ). Then fl -+- a -I- n is an Iwasawa de-
composition of g. Let K, A, N, N denote the analytic subgroups of G with
Lie algebras f, a, n and if, respectively. Then G-- KAN is the Iwasawa de-
composition of G corresponding to the decomposition g -t- a -+- n and we
have

K { A U(n))
(detA) -

cosht sinht /A= { I_ ;tR},
\ sinht cosht

1
z 1.

N {P P-
z_ 1
\I-F -z- z-._ 1

where

P= vI,,-
--1 1

;F= 1

u R, z,"’,z,,_ C},

We can see that N can be identified with Cn-1 x R. For any

1

(z u) =P z 1.. p_/

F z5 z-._ 1

let (z, u) ((z, u))a((z, u))n((z, u)) be the Iwasawa decomposi-
tion of 7(z, u). Then we can see that

(1.1)

(1.2)
((z, u))

a((z, u)) P diag(I F 1,1,...,1,1 F I-)P-,
(2 F)/I F -v/Gz/F /gz._/F 0
 / zdl F 1 I /F 0

:::
vz.-,/I F zqz,,_i/F 1 -I.- IVF o

o o o F/lFI
(cf. [5]). For a real vector space W we denote by Wc its complexification.
Now consider the complex vector space V tv which is isomorphic to
C). Let t [1, t] and be the center of t. Then we see that

lc= {( X )’X(, C)}
0
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and V 1c @ 3c is the Ad(K)-irreducible decomposition. Since

M= { X ;ddetX= 1, X U(n- 1)},
d

4

V ( V is the Ad (M) -irreducible decomposition, where
iffi0

Vo=c

VI {zll n

g2__ {( 0 Z12

I._ ;z C},
/0

Zn 0 )0
ZI2," ",Zlr i C},

0

V={ 0

\0

/oV4-- { X
0

Z21," ",Znl C),

;X e(n- 1, C)}.

We put

1 I._Xo ,X= 1_ n
--n 0

0

0 0 0

1 1 0

X= 0 O X,= O 0

0 0 0

(X e V).

Let m be the Lie algebra of M, m [m, m] and put

0

gt(n + 1, C) 22 h

0

0
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0

h
n

m { "’. 9(n + 1, C), hi 0}.

hn
j---2

0
Then and m are Cartan subalgebras of flc( g[(n, C)) and talc, respec-
tively. Let {oh," ,cen-} be the fundamental root system of (fc, t) defined
by

hi

cei(H) hi- hi+, H i 1,2,’",n- 1.
h,

0

Then {c.,’’’ ,cn_l} is the fundamental root system of (mc, [). For each
i (i 0,1,2,3,4) Xi is the M-highest weight vector of Vi with respect to the
lexicographic order defined by {c.,.’’ ,cn-}. In our case Harish-Chandra’s
C-function is given as follows"

(1.3) C (/) e-(+(Ad tc ()d (/ a:),

where p denotes the rho function and d denotes a Haar measure on N.
Since , a can be written in the form / pace (/.ta C) we identify /

with the complex number pa. Thus p is identified with n and (1.1) implies

e-’+o)H< IF (z,u)I -’-’.
Therefore we get from (1.3)

(1.4) C (2) Cfc F (z u) -’-" Ad x((z u))dzdSdu
_IxR

where c is a certain constant coming from the normalization of measures.
[}2. The main theorem. Paying attention to the fact that C (/1) acts as

a scalar operator on each M-irreducible subspace Vi, we denote by ci(2) the
scalar induced by the action of C(/) on Vi. Our result in this paper is the
following

Theorem 2.1.

(2.1) Co(/2) c

(2.2) c1(2) c

(2.3)

(2.4)

We have the following expressions

(2re)" 2-a/" (2)

1-’( +2 n)z

(2re)"" 2--Zl (,) ( n) z

r(./] -k-n2 -+- 2) z

(2r)". 2-a-/" (,.) (a n + 1)c(,) c() c
r(. +n2 -+" 3)r(/ -+-n2 1)’

(27C) n" 2-/" (/2) ( + n 2)c(/) c

2 F 2 (/ + n)
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