57. An Explicit Expression of the Harish-Chandra C-function of SU(n, 1) Associated to the Ad(K) Representation

By Masaaki EGUCHI, Mari MIYAMOTO, and Ryoko WADA

Hiroshima University

(Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1992)

§0. Introduction. Let G be a semisimple Lie group with finite center, K a maximal compact subgroup of G. Let θ be the Cartan involution of G fixing K. Let G = KAN be an Iwasawa decomposition of G and $g = \mathfrak{k} + \mathfrak{a}$ $+ \mathfrak{n}$ the corresponding decomposition of the Lie algebra g of G. An element g of G, can then be uniquely written as $g = \kappa(g)\exp H(g)n(g)$ ($\kappa(g) \in K$, $H(g) \in \mathfrak{a}, n(g) \in N$). Put $\overline{N} = \theta N$ and let M be the centralizer of A in K. Let τ be a finite dimensional unitary representation of K and denote its representation space by V. The following operator given by the integral

$$C_{\tau}(\lambda) = \int_{\bar{N}} \tau(\kappa(\bar{n})) \ e^{-(\lambda+\rho)(H(\bar{n}))} \ d\bar{n} \qquad (\lambda \in \mathfrak{a}_{C}^{*})$$

is called Harish-Chandra's C-function associated to τ (see [3]). It is well known that the operator $C_{\tau}(\sigma; \lambda)$ obtained by restricting $C_{\tau}(\lambda)$ to an irreducible *M*-component $V_{\sigma}(\subseteq V)$, is closely related to the intertwining operator between induced representations (see [3], [4]), and also in some special cases it can be represented by a diagonal matrix having diagonal elements in the form of quotients of products of gamma factors with respect to a certain orthogonal basis (cf. [1], [7]). Though it has been believed for a long time that this phenomena would be true for more general cases, even the computation of the determinant of $C_{\tau}(\sigma; \lambda)$ has not been easy (cf. [1], [2], [6]). We give here a series of affirmative examples to this conjecture in G = SU(n, 1), $K = S(U(n) \times U(1))$ and $\tau = \text{Ad}$ case, where Ad is the complex adjoint representation of K.

§1. Notation and preliminaries. Let $n(n \ge 2)$ be an integer and $G = SU(n, 1) = \{A \in GL(n + 1, C); {}^{t}\overline{A}I_{n,1}A = I_{n,1} \text{ and det } A = 1\}$, where

$$I_{n,1} = \begin{pmatrix} I_n \\ -1 \end{pmatrix} \in GL(n+1, C)$$

and I_n is the unit matrix of order n. Let

 $g = \mathfrak{su}(n, 1) = \{X \in \mathfrak{gl}(n+1, \mathbb{C}) ; {}^{t}\overline{X}I_{n,1} + I_{n,1}X = 0 \text{ and } \operatorname{tr} X = 0\},\$ $\mathfrak{t} = \{ \begin{pmatrix} A \\ \sqrt{-1}t \end{pmatrix} : A \in \mathfrak{u}(n), \quad t \in \mathbb{R} \text{ and } -\operatorname{tr} A = \sqrt{-1}t \}.$ Let $\begin{pmatrix} 0^{1} \\ 0 \end{pmatrix}$

$$\mathfrak{a} = \{tH ; t \in \mathbf{R}\}, \qquad H = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{pmatrix}$$

 $\mathfrak{n} = \mathfrak{g}_{\alpha} + \mathfrak{g}_{2\alpha}$ and $\overline{\mathfrak{n}} = \theta\mathfrak{n}$,

where α is the simple root of (g, a) which satisfies $\alpha(H) = 1$, g_{β} is the root subspace of g for each root β and θ is the Cartan involution of g defined by $\theta X = I_{n,1}XI_{n,1} = - {}^{t}\bar{X} \ (X \in g)$. Then $g = \mathfrak{k} + \mathfrak{a} + \mathfrak{n}$ is an Iwasawa decomposition of g. Let K, A, N, \bar{N} denote the analytic subgroups of G with Lie algebras \mathfrak{k} , \mathfrak{a} , \mathfrak{n} and $\bar{\mathfrak{n}}$, respectively. Then G = KAN is the Iwasawa decomposition of G corresponding to the decomposition $g = \mathfrak{k} + \mathfrak{a} + \mathfrak{n}$ and we have

$$K = \{ \begin{pmatrix} A \\ (\det A)^{-1} \end{pmatrix}; A \in U(n) \},$$

$$A = \{ \begin{pmatrix} \cosh t & \sinh t \\ I_{n-1} \\ \sinh t & \cosh t \end{pmatrix}; t \in \mathbf{R} \},$$

$$\bar{N} = \{ P \begin{pmatrix} 1 \\ z_1 & 1 \\ \vdots & \ddots \\ z_{n-1} & 1 \\ 1 - F & -\bar{z}_1 \cdots - \bar{z}_{n-1} & 1 \end{pmatrix} P^{-1}; F = 1 + \frac{1}{2} \sum_{i=1}^{n-1} |z_i|^2 + iu,$$
ere

where

$$P = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ \sqrt{2}I_{n-1} \\ -1 & 1 \end{pmatrix}.$$

We can see that \overline{N} can be identified with $C^{n-1} \times R$. For any

$$\bar{n}(z, u) = P\begin{pmatrix} 1 & & & \\ z_1 & 1 & & \\ z_{n-1} & & 1 \\ 1 - F & -\bar{z}_1 \cdots - \bar{z}_{n-1} & 1 \end{pmatrix} P^{-1} \in \bar{N}$$

let $\bar{n}(z, u) = \kappa(\bar{n}(z, u))a(\bar{n}(z, u))n(\bar{n}(z, u))$ be the Iwasawa decomposition of $\bar{n}(z, u)$. Then we can see that

(1.1)
$$a(\bar{n}(z, u)) = P \operatorname{diag}(|F|, 1, ..., 1, |F|^{-1})P^{-1},$$

(1.2)

$$\kappa(\bar{n}(z, u)) = \begin{pmatrix} (2-F)/|F| & -\sqrt{2}\bar{z}_1/F & \cdots & -\sqrt{2}\bar{z}_{n-1}/F & 0 \\ \sqrt{2}z_1/|F| & 1-|z_1|^2/F & \cdots & -z_1\bar{z}_{n-1}/F & 0 \\ \vdots & \vdots & \vdots & \vdots \\ \sqrt{2}z_{n-1}/|F| & -\bar{z}_1z_{n-1}/F & \cdots & 1-|z_{n-1}|^2/F & 0 \\ 0 & 0 & \cdots & 0 & F/|F|/2 \end{pmatrix}$$

(cf. [5]). For a real vector space W we denote by W_C its complexification. Now consider the complex vector space $V = \mathfrak{t}_C$ which is isomorphic to $\mathfrak{gl}(n, C)$. Let $\mathfrak{t}_1 = [\mathfrak{t}, \mathfrak{t}]$ and \mathfrak{z} be the center of \mathfrak{t} . Then we see that

$$\mathfrak{k}_{1C} = \left\{ \begin{pmatrix} X \\ 0 \end{pmatrix} : X \in \mathfrak{Sl}(n, C) \right\},\$$

$$\delta c = C \begin{pmatrix} I_n \\ -n \end{pmatrix},$$

and $V = \mathfrak{k}_{1C} \oplus \mathfrak{z}_{C}$ is the $\mathrm{Ad}(K)$ -irreducible decomposition. Since

$$M = \left\{ \begin{pmatrix} d & & \\ & X & \\ & & d \end{pmatrix} ; d^2 \det X = 1, X \in U(n-1) \right\},$$

 $V = \bigoplus_{i=0}^{4} V_i \text{ is the } \mathrm{Ad}(M) \text{-irreducible decomposition, where}$ $V_0 = \operatorname{c}_{C}$

$$V_{1} = \{z \begin{pmatrix} 1 - n \\ & I_{n-1} \\ & 0 \end{pmatrix}; z \in C\},$$

$$V_{2} = \{\begin{pmatrix} 0 & z_{12} & \cdots & z_{1n} & 0 \\ & 0 & \end{pmatrix}; z_{12}, \cdots, z_{1n} \in C\},$$

$$V_{3} = \{\begin{pmatrix} 0 & \\ z_{21} \\ \vdots & 0 \\ z_{n1} \\ 0 & \end{pmatrix}; z_{21}, \cdots, z_{n1} \in C\},$$

$$V_{4} = \{\begin{pmatrix} 0 & \\ & X \\ & 0 \end{pmatrix}; X \in \mathfrak{Sl}(n-1, C)\}.$$

We put

$$X_{0} = \begin{pmatrix} I_{n} \\ & \\ & -n \end{pmatrix}, X_{1} = \frac{1}{1-n} \begin{pmatrix} 1-n \\ & I_{n-1} \\ & 0 \end{pmatrix}, X_{2} = \begin{pmatrix} 0 & \cdots & 0 & 1 & 0 \\ & 0 & 0 \\ & & 0 \end{pmatrix},$$
$$X_{3} = \begin{pmatrix} 0 & \\ 1 & \\ 0 & 0 \\ \vdots \\ 0 & \end{pmatrix}, X_{4} = \begin{pmatrix} 0 & 0 & \\ & 1 & 0 \\ 0 & 0 & \vdots \\ & \vdots & \vdots \\ & 0 & 0 \end{pmatrix}, (X_{i} \in V_{i}).$$

Let \mathfrak{m} be the Lie algebra of $M\,,\,\mathfrak{m}_1\,=\,[\mathfrak{m},\,\mathfrak{m}]$ and put

$$\mathfrak{h} = \left\{ \begin{pmatrix} h_1 & & \\ & \ddots & \\ & & h_n \\ & & & 0 \end{pmatrix} \in \mathfrak{gl}(n+1, \mathbb{C}) ; \sum_{j=1}^n h_j = 0 \right\},$$

$$\mathfrak{h}_{\mathfrak{m}} = \left\{ \begin{pmatrix} 0 & & & \\ & h_{2} & & \\ & & \ddots & \\ & & & h_{n} \\ & & & & 0 \end{pmatrix} \in \mathfrak{gl}(n+1, C), \sum_{j=2}^{n} h_{j} = 0 \right\}.$$

Then \mathfrak{h} and $\mathfrak{h}_{\mathfrak{m}}$ are Cartan subalgebras of $\mathfrak{k}_{1C} (\simeq \mathfrak{sl}(n, \mathbb{C}))$ and \mathfrak{m}_{1C} , respectively. Let $\{\alpha_1, \cdots, \alpha_{n-1}\}$ be the fundamental root system of $(\mathfrak{k}_{1C}, \mathfrak{h})$ defined by

$$\alpha_i(H) = h_i - h_{i+1}, H = \begin{pmatrix} h_1 & & \\ & \ddots & \\ & & h_n \\ & & & 0 \end{pmatrix}, i = 1, 2, \cdots, n-1.$$

Then $\{\alpha_2, \dots, \alpha_{n-1}\}$ is the fundamental root system of $(\mathfrak{m}_{1C}, \mathfrak{h}_{\mathfrak{m}})$. For each $i \ (i = 0, 1, 2, 3, 4) \ X_i$ is the *M*-highest weight vector of V_i with respect to the lexicographic order defined by $\{\alpha_2, \dots, \alpha_{n-1}\}$. In our case Harish-Chandra's *C*-function is given as follows:

(1.3)
$$C(\lambda) = \int_{\bar{N}} e^{-(\lambda+\rho)H(\bar{n})} \operatorname{Ad} \kappa(\bar{n}) d\bar{n} \qquad (\lambda \in \mathfrak{a}_{C}^{*}),$$

where ρ denotes the rho function and $d\bar{n}$ denotes a Haar measure on N. Since $\lambda \in \mathfrak{a}_C^*$ can be written in the form $\lambda = \mu_\lambda \alpha$ ($\mu_\lambda \in C$) we identify λ with the complex number μ_λ . Thus ρ is identified with n and (1.1) implies

$$e^{-(\lambda+\rho)H(n)} = |F(z,u)|^{-\lambda-n}$$

Therefore we get from (1.3)

(1.4)
$$C(\lambda) = c \int_{C^{n-1} \times \mathbf{R}} |F(z, u)|^{-\lambda - n} \operatorname{Ad} \kappa(\overline{n}(z, u)) dz d\overline{z} du,$$

where c is a certain constant coming from the normalization of measures.

§2. The main theorem. Paying attention to the fact that $C(\lambda)$ acts as a scalar operator on each *M*-irreducible subspace V_i , we denote by $c_i(\lambda)$ the scalar induced by the action of $C(\lambda)$ on V_i . Our result in this paper is the following

Theorem 2.1. We have the following expressions ;

(2.1)
$$c_0(\lambda) = c \frac{(2\pi)^n \cdot 2^{-\lambda} \Gamma(\lambda)}{\Gamma\left(\frac{\lambda+n}{2}\right)^2}$$

(2.2)
$$c_1(\lambda) = c \frac{(2\pi)^n \cdot 2^{-\lambda-2} \Gamma(\lambda) (\lambda-n)^2}{\Gamma\left(\frac{\lambda+n+2}{2}\right)^2},$$

(2.3)
$$c_2(\lambda) = c_3(\lambda) = c \frac{(2\pi)^n \cdot 2^{-\lambda-1} \Gamma(\lambda) (\lambda - n + 1)}{\Gamma(\frac{\lambda + n + 3}{2}) \Gamma(\frac{\lambda + n - 1}{2})},$$

(2.4)
$$c_4(\lambda) = c \frac{(2\pi)^n \cdot 2^{-\lambda} \Gamma(\lambda) (\lambda + n - 2)}{\Gamma(\frac{\lambda + n + 2}{2}) \Gamma(\frac{\lambda + n - 2}{2}) (\lambda + n)}$$

No. 8]

References

- L. Cohn: Analytic Theory of the Harish-Chandra C-function. Lect. Notes in Math., vol. 429, Springer-Verlag (1974).
- [2] M. Eguchi and S. Tanaka: The explicit representation of the determinant of Harish-Chandra's C-function in SL(3, R) and SL(4, R) cases. Hiroshima Math. J., 22, 57-93 (1992).
- [3] Harish-Chandra: Harmonic analysis on real reductive groups. II. Wave packets in the Schwartz space. Invent, Math., 36, 1-55 (1976).
- [4] —: Harmonic analysis on real reductive groups. III. The Maass-Selberg relations and the Plancherel formula. Ann. of Math., 104, 117-201 (1976).
- [5] J. Sekiguchi: On Harish-Chandra's C-function. Seminar Reports of Unitary Representation, no. 1 (1981) (in Japanese).
- [6] S. Tanaka: On the representation of the determinant of Harish-Chandra's C-function of SL(n, R). Pacific J. Math., 153, 343-368 (1992).
- [7] N. R. Wallach: Harmonic Analysis on Homogeneous Spaces. Marcel Dekker, New York (1973).