54. Asymptotic Expansions of the Mean Square of Dirichlet L-functions

By Masanori Katsurada*)
Department of Mathematics, Faculty of Science, Kagoshima University (Communicated by Shokichi Iyanaga m. J. A., Sept. 14, 1992)

1. Introduction. Let χ be a Dirichlet character $\bmod q(q:$ integer \geq 2) and let $L(s, \chi)$ with a complex variable $s=\sigma+i t$ denote the corresponding Dirichlet L-function. Let h be a fixed non negative integer and $L^{(h)}(s, \chi)$ denote the h-th derivative of $L(s, \chi)$. In this note we consider the asymptotical property of the mean value

$$
\begin{equation*}
\varphi(q)^{-1} \sum_{\chi(\bmod q)}\left|L^{(h)}(\sigma+i t, \chi)\right|^{2} \tag{1}
\end{equation*}
$$

where $\varphi(q)$ is Euler's function and the summation is extended over all the characters mod q.

In the special case $\sigma=\frac{1}{2}, t=0$ with $h=0$, by using the Hurwitz zeta-functions, Heath-Brown [1] obtained the asymptotic expression for (1) with respect to the modulus q. In the same direction, Zhang [8], [9] proved, when $h=0,1$, the similar type of asymptotic formulas for (1) on the critical line $\sigma=\frac{1}{2}$ with $t \geq 3$. (The related articles of Zhang [10]-[12] should be mentioned here.)

On the other hand, Motohashi [6] developed a method to study

$$
\varphi(q)^{-1} \sum_{\chi(\bmod q)} L(u, \chi) L(v, \bar{\chi})
$$

as a function of two complex variables u and v, and deduced, when $q=p$ is a prime, the formula

$$
\begin{aligned}
& (p-1)^{-1} \sum_{x(\bmod p)}\left|L\left(\frac{1}{2}+i t, \chi\right)\right|^{2}=\log \frac{p}{2 \pi}+2 \gamma+\mathfrak{R} \frac{\Gamma^{\prime}}{\Gamma}\left(\frac{1}{2}+i t\right) \\
& \quad+2 p^{-\frac{1}{2}}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2} \cos (t \log p)-p^{-1}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2}+O\left(p^{-\frac{3}{2}}\right)
\end{aligned}
$$

with Euler's constant γ and the O-constant depending on t, where $\Gamma(s)$, $\zeta(s)$ denote the gamma- and the Riemann zeta-function respectively. An extension of Motohashi's argument yields more precise asymptotic results for (1) with $h=0$ in the region $0<\sigma<1$ and $t \in \boldsymbol{R}$ (cf. [4, Theorems 1 and 2]).

As an application of the saddle point method, we can improve the error estimates of Theorem 2 in [4] as well as Theorem 4 in [2]. In what follows, we give this improvement in a more general form. The detailed proof will appear in [3].

[^0]2. Notations. Let
$$
\binom{s}{n}=\frac{\Gamma(s+1)}{n!\Gamma(s-n+1)}(n=0,1,2, \ldots)
$$
and we put
\[

$$
\begin{gathered}
F(w ; q)=q^{1-w} \Gamma(w-1) \zeta(w-1), \quad G(u, v)=\frac{\Gamma(1-u)}{\Gamma(v)} \\
S_{N}(u, v ; k)=\sum_{n=0}^{N-1}\binom{-v}{n} \zeta(u-n) \zeta(v+n) k^{u-n}(N \geq 1) \\
P(w ; q)=\prod_{p \mid q}\left(1-p^{-w}\right)
\end{gathered}
$$
\]

where p runs over all prime divisors of q. By $\mu(n)$ we denote the Möbius function.
3. Results. Then we have the following main theorem:

Theorem. Let $\boldsymbol{Z}_{S_{1}}$ denote the set of all integers not greater than 1 and put $E=\left\{\sigma+i t ; \quad 2 \sigma-1 \in \boldsymbol{Z} s_{1}\right.$ or $\left.\sigma+i t \in \boldsymbol{Z}\right\}$, then, for any integer $N \geq 1$, in the region

$$
\begin{equation*}
\{\sigma+i t ; \quad-N+1<\sigma<N, t \in \boldsymbol{R}\} \tag{2}
\end{equation*}
$$

with the exception of the points of E, we have

$$
\begin{aligned}
& \varphi(q)^{-1} \sum_{X(\bmod q)}\left|L^{(h)}(\sigma+i t, \chi)\right|^{2} \\
& = \\
& \left.\frac{d^{2 h}}{d w^{2 h}} \zeta(w) P(w ; q)\right|_{w=2 \sigma} \\
& \quad+2 P(1 ; q) \sum_{\mu, \nu=0}^{h}\binom{h}{\mu}\binom{h}{\nu} F^{(2 h-\mu-\nu)}(2 \sigma ; q) \Re\left\{\frac{\partial^{\mu+\nu} G}{\partial u^{\mu} \partial v^{\nu}}(\sigma+i t, \sigma-i t)\right\} \\
& \quad+2 q^{-2 \sigma} \sum_{\mu, \nu=0}^{h}\binom{h}{\mu}\binom{h}{\nu}(-\log q)^{2 h-\mu-\nu} \sum_{k \mid q} \mu\left(\frac{q}{k}\right) T^{(\mu, \nu)}(\sigma+i t ; k),
\end{aligned}
$$

where k runs over all positive divisors of q and $T^{(\mu, \nu)}(\sigma+i t ; k)$ has the asymptotic expression

$$
T^{(\mu, \nu)}(\sigma+i t ; k)=\Re\left\{\frac{\partial^{\mu+\nu} S_{N}}{\partial u^{\mu} \partial v^{\nu}}(\sigma+i t, \sigma-i t ; k)+E_{N}^{(\mu, \nu)}(\sigma+i t ; k)\right\}
$$

Here $E_{N}^{(\mu, \nu)}(\sigma+i t ; k)$ is the error term satisfying the estimate

$$
\begin{equation*}
E_{N}^{(\mu, \nu)}(\sigma+i t ; k)=O\left[k^{\sigma-N}(|t|+1)^{2 N+\frac{1}{2}-\sigma} \log ^{\mu+\nu}\{2 k(|t|+1)\}\right] \tag{3}
\end{equation*}
$$

in the region (2), with the O-constant depending only on σ, N and h. In particular, when $q=p$ is a prime, we have the asymptotic expansion

$$
\begin{aligned}
&(p-1)^{-1} \sum_{x(\bmod p)}\left|L^{(h)}(\sigma+i t, \chi)\right|^{2} \\
&= \zeta^{(2 h)}(2 \sigma)-\left.\frac{\partial^{2 h}}{\partial u^{h} \partial v^{h}}\left\{p^{-u-\nu} \zeta(u) \zeta(v)\right\}\right|_{(u, v)=(\sigma+i t, \sigma-i t)} \\
&+2 \sum_{\mu, \nu=0}^{n}\binom{h}{\mu}\binom{h}{\nu} F^{(2 h-\mu-\nu)}(2 \sigma ; p) \Re\left\{\frac{\partial^{\mu+\nu} G}{\partial u^{\mu} \partial v^{\nu}}(\sigma+i t, \sigma-i t)\right\} \\
&+2 p^{-2 \sigma} \sum_{\mu, \nu=0}^{n}\binom{h}{\mu}\binom{h}{\nu}(-\log p)^{2 h-\mu-\nu} T^{(\mu, \nu)}(\sigma+i t ; p) .
\end{aligned}
$$

From Stirling's formula and the functional equation of $\zeta(s)$, we have
(4)

$$
\binom{-\sigma+i t}{n} \zeta(\sigma+i t-n) \zeta(\sigma-i t+n) k^{\sigma+i t-n}=O\left\{k^{\sigma-n}(|t|+1)^{2 n+\frac{1}{2}-\sigma}\right\}
$$

for $-n+1<\sigma<n(n \geq 1)$, and the estimate (4) is best-possible because

$$
\zeta(\sigma+i t)=\Omega(1)
$$

for $\sigma>1$ as $|t| \rightarrow+\infty$ (cf. Titchmarsh [7, Theorem 8.4]). Hence, when $h=0$, the bound in (3) cannot be replaced by a smaller one.

Moreover, the asymptotic expressions for (1), where $\sigma+i t$ lies in the exceptional set E, can be deduced as the limiting cases of our Theorem. For example, we have the following corollary:

Corollary. Let $\psi(s)=\frac{\Gamma^{\prime}}{\Gamma}(s)$ be the digamma-function and put

$$
A_{0}(q)=\log \frac{q}{2 \pi}+\gamma_{0}, \quad A_{1}(q)=\frac{1}{2} \log ^{2} \frac{q}{2 \pi}+r_{0} \log \frac{q}{2 \pi}+r_{1}+\frac{\pi^{2}}{8}
$$

$$
A_{2}(q)=\frac{1}{6} \log ^{3} \frac{q}{2 \pi}+\frac{\gamma_{0}}{2} \log ^{2} \frac{q}{2 \pi}+\left(\gamma_{1}+\frac{\pi^{2}}{8}\right) \log \frac{q}{2 \pi}+\frac{\pi^{2}}{8} \gamma_{0}+\gamma_{2}
$$

where $\gamma_{0}(=\gamma), \gamma_{1}, \gamma_{2}$ are the coefficients of the Laurent expansion of $\zeta(s)$ at $s=1$ which are defined by

$$
\zeta(s)=\frac{1}{s-1}+\gamma_{0}+\gamma_{1}(s-1)+\gamma_{2}(s-1)^{2}+\cdots
$$

Then we have

$$
\begin{aligned}
& \varphi(q)^{-1} \sum_{\chi(\bmod q)}\left|L^{\prime}\left(\frac{1}{2}+i t, \chi\right)\right|^{2} \\
& =P(1 ; q)\left\{2 \gamma_{2}+2 \gamma_{1} \frac{P^{\prime}}{P}(1 ; q)+\gamma_{0} \frac{P^{\prime \prime}}{P}(1 ; q)+\frac{1}{3} \frac{P^{\prime \prime \prime}}{P}(1 ; p)\right. \\
& -\frac{1}{6} \Re \phi^{\prime \prime}\left(\frac{1}{2}+i t\right)+\frac{1}{3} \Re \psi^{3}\left(\frac{1}{2}+i t\right)+A_{0}(q) \Re \phi^{2}\left(\frac{1}{2}+i t\right) \\
& \\
& \left.\quad+2 A_{1}(q) \Re \psi\left(\frac{1}{2}+i t\right)+2 A_{2}(q)\right\} \\
& \quad+2 q^{-1} \sum_{\mu, \nu=0}^{1}(-\log q)^{2-\mu-\nu} \sum_{k \mid q} \mu\left(\frac{q}{k}\right) T^{(\mu, \nu)}\left(\frac{1}{2}+i t ; k\right) .
\end{aligned}
$$

If $q=p$ is a prime, then

$$
\begin{aligned}
& \begin{aligned}
(p-1)^{-1} \sum_{\chi(\bmod p)}\left|L^{\prime}\left(\frac{1}{2}+i t, \chi\right)\right|^{2}
\end{aligned} \\
& \begin{aligned}
&=2 \gamma_{2}-\frac{1}{6} \Re \phi^{\prime \prime}\left(\frac{1}{2}+i t\right)+\frac{1}{3} \Re \phi^{3}\left(\frac{1}{2}+i t\right)+A_{0}(p) \Re \phi^{2}\left(\frac{1}{2}+i t\right) \\
& \quad+2 A_{1}(p) \Re \phi\left(\frac{1}{2}+i t\right)+2 A_{2}(p)
\end{aligned} \\
& \begin{aligned}
&-\left.\frac{\partial^{2}}{\partial u \partial v}\left\{p^{-u-v} \zeta(u) \zeta(v)\right\}\right|_{(u, v)=\left(\frac{1}{2}+i t, \frac{1}{2}-i t\right)} \\
&+2 p^{-1} \sum_{\mu, \nu=0}^{1}(-\log p)^{2-\mu-\nu} T^{(u, \nu)}\left(\frac{1}{2}+i t ; p\right) .
\end{aligned}
\end{aligned}
$$

We note here

$$
\frac{P^{\prime}}{P}(1 ; q)=\sum_{p \mid q} \frac{\log p}{p-1}, \frac{P^{\prime \prime}}{P}(1 ; q)=\left(\sum_{p \mid q} \frac{\log p}{p-1}\right)^{2}-\sum_{p \mid q} \frac{p \log ^{2} p}{(p-1)^{2}}
$$

$$
\begin{aligned}
& \frac{P^{\prime \prime \prime}}{P}(1 ; q)=\left(\sum_{p \mid q} \frac{\log p}{p-1}\right)^{3}+\sum_{p \mid q} \frac{p(p+1) \log ^{3} p}{(p-1)^{3}} \\
& \quad-3\left(\sum_{p \mid q} \frac{\log p}{p-1}\right)\left(\sum_{p \mid q} \frac{p \log ^{2} p}{(p-1)^{2}}\right) .
\end{aligned}
$$

In a similar manner we can deduce the asymptotic formulas for

$$
\sum_{\substack{x(\operatorname{modq} q) \\ x \neq \chi_{0}}}\left|L^{(h)}(1, \chi)\right|^{2},
$$

where χ_{0} is the principal character $\bmod q$ (cf. [3] [5]).
Acknowledgments. The author is much indebted to Professor Yoichi Motohashi for suggesting the possibility to improve Theorem 2 in [4]. He is also indebted to Professor Masumi Nakajima for valuable discussions.

References

[1] Heath-Brown, D. R.: An asymptotic series for the mean value of Dirichlet L-functions. Comment. Math. Helv. , 56, 148-161 (1981).
[2] Katsurada, M.: Asymptotic expansions of the mean values of Dirichlet L-functions. II (submitted).
[3] -: Asymptotic expansions of the mean values of Dirichlet L-functions. III (in preparation).
[4] Katsurada, M. and Matsumoto, K.: Asymptotic expansions of the mean values of Dirichlet L-functions. Math. Z., 208, 23-39 (1991).
[5] -: The mean values of Dirichlet L-functions at integer points and class numbers of cyclotomic fields (preprint).
[6] Motohashi, Y.: A note on the mean value of the zeta and L-functions. I. Proc. Japan Acad, 61A, 222-224 (1985).
[7] Titchmarsh, E. C.: The Theory of the Riemann Zeta-function. Oxford University Press, Oxford (1951).
[8] Zhang Wenpeng: On the Mean Square Value of the Dirichlet L-function. Adv. in Math. (China), 19, 321-333 (1990) (Chinese. English summary).
[9] -: On the Dirichlet L-functions. Acta Mathematica Sinica N. S., 7, 103-118 (1991).
[10] -: On the mean value formula of Dirichlet L-functions (II). Science in China (Ser. A), 34, 660-675 (1991).
[11] -: On the mean value of L-functions. J. Math. Res. Exposition, 10, 355-360 (1990).
[12] -: On an elementary result of L-functions. Adv. in Math. (China), 19, 478-487 (1990) (Chinese. English summary).

[^0]: *) Partially supported by Grant-in-Aid for Scientific Research (No. 03740051), Ministry of Education, Science and Culture.

