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(Communicated by Shokichi IYANAGA, M. J. A., Sept. 14, 1992)

In this note, we exhibit, by calculating Galois cohomology, a crucial dif-

ference of the 7r-adic theory in positive characteristic from the usual p-adic
theory in characteristic zero. One reason for this difference is that the Car-
litz module, which plays in our theory the role of the multiplicative group

Gm in the classical theory, is an additive group scheme.
Let A be the polynomial ring Fq[t] in one variable t over the finite field

Fq of q elements. Let K be a complete discrete valuation field of "mixed char-
acteristic" over A, by which we mean that K is endowed with an injective
ring homomorphism cr :A-- K such that the inverse image by cr of the max-

imal ideal of the integer ring of K is a non-zero prime ideal of A. We assume
that the residue field of K is perfect. Our objective is to calculate the Galois
cohomology group Hi(GaI(KSep/K), C(r)) for i 0, 1 and r Z. (The
notations are explained below.) Of special importance is that H(Gal
(Ksep/K), C(r)) does not vanish even if r 4: 0. See the concluding Remark 2
for more discussion.

Let 7r be the unique monic prime element of A such that cr(zr) is a

non-unit in the integer ring of K (so (7r) is the "residual characteristic" of
K). In the following, we think of A as a subring of K by means of or. Let C
be the Carlitz A-module over A such that the action of t A on C is given

by [t] (Z) tZ - Z with respect to a coordinate Z of C. The 7r-adic Tare
module of C is a rank one free A-module, where A is the r-adic comple-
tion of A. C being considered to be an object over K, the absolute Galois

group Gr :-" Gal(KSep/K) of K acts on T(C) continuously. (Ksep is a fixed

separable closure of K. In general, we denote by GL the absolute Galois

group of a field L.) The character z’GK---* A which describes this action

is called the Carlitz character.
For any valuation field L, we denote the completion of L with

respect to the valuation topology. Let C := Ksep. The action of Gr on Ksep

extends uniquely to a continuous action on C. (7 is algebraically closed. For
a subfield L of C, we denote by Lraa the inseparable closure of L in C.

For any topological A-module M with a continuous G-action, and for
any r /, we define the r-th Tare twist M (r) of M by the Carlitz character

to be the Gr-module with the same underlying A-module M and with a

twisted Galois action a. rn g (a) r a(m) for all a G and m M,
where a(m) denotes the presupposed action.

For a topological group G and a topological module M with a continuous
G-action, we denote by Hi(G, M) the i-th cohomology group defined by the
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i-th right derived functor of the functor "fixed part"" M Ma (or
equivalently, defined by continuous cochains). Our main result is"

Theorem. For all r Z, we have

(1) H(GK, C (r)) (Kra’c-r) (r) K rad, and

(2) H(G, C (r)) O.
Here c is an element of C such that a(c) Z (a)c for all a G, and con-

structed explicitly in the following.
Remark 1. The followings are previously known"

(i) (Tare [3], Theorems 1 and 2) If K is of characteristic zero and C(r) de-
notes the completion of an algebraic closure of K, with the usual Tate twist,
then one has, for i 0, 1,

K if r= O,H(G’C(r))
0 if r =/= O.

(ii) (Ax [1]) If K is a rank one valuation field (of arbitrary characteristic)
which is henselian with respect to the valuation, then one has

H(GK, C) K"
This result includes the case r 0 in (1) of the Theorem.

First of all, note that, when we are working over A, we may replace the
Carlitz module C by an isomorphic Lubin-Tate A-module C’ on which the
action of 7r is given by [Tr] (Z’) 7rZ" + 7."q where d deg(Tr). So in the
following, we assume C C’, q qa,and A F[[zc]].

We construct now the element c C. Choose and fix a system (7r.)>0
of elements of Kse which corresponds to a generator of T(C). So 7r. is a
generator of the 7r"-division points of C, and we have [Tr] (Tr.) 7r_ for all
n >-- 1. We define our element c e C as follows"

C 7nn.
nl

The series on the right clearly converges and is non-zero. (1) of the Theorem
is implied by Ax’s theorem (Remark 1, (ii)) and the following

Lemma 1. For x C and r Z, write x XlCr with xx C . Then
we have, for all v G,

r(X) T(Xl)Z(T)rcr.
In particular, if L is a G-stable subfield of C which contains c, then multi-

plication by c- induces an isomorphism L--* L(r) of G-modules.
Proof The claim is easily reduced to the casex-- cand r= 1; we are

to show v(c)= X(v)c for all v G. Write f(Tr)= 0aiTri, with a
Fq, for the formal power series Z (v) A. Then

v(c) zcv(Tr)= zc[f (zr)](zr)= ai
nl n:>l i20

Z aiTr Z zrn-izrn_i =f(zr)c= Z(v)c.
i:>o n-il

We used in the third equality that the group law of C is Fq-linear. Q.E.D.
To prove (2) of the Theorem, we consider certain subextensions of C/K

as in [3l. Let Koo be the subfield of Kse corresponding to Ker(x) thus the
element c is in Koo, and Gal(Koo/K) is identified with the subgroup Ira(Z) of
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A. Choose
(a) a non-trivial element a of Gal(K/K) such that X(a) 1 + rrA,

and
(b) a closed subgroup B of Gal (K,/K)

such that Gal(K/K) (a) x B, where (a) is the closure in Gal(K/K) of
the cyclic subgroup generated by a (so (a) Z, with p the characteristic
of K). Denote by L and M respectively the subextensions of K which cor-
respond to B and (a). So we have Gal(K/M)" Gal(L/K)’" (a} and
Gal(K/L) Gal(M/K) B. The above splitting yields, for each n >-- 0,
a splitting X-(1 + 7rA) (a) x B, where a is a power of a and B is

a subgroup of B. Accordingly, we have three fields Kn, L, and M,. with

Kn LnMn, which are the subfields of Koo correspoding respectively to
X-(1 + r’A) (an) and Bn. Note that Kn K (r,).

Krad LLemma 2. Let X be one of the following fields: Koo, Loo, and
Then we have Hx((a), X) O.

In fact, as Lemma :3 shows, we have Kao Koo and Loo.
Proof. We prove this for X and L--L The other cases are

proved in the same way. Since a continuous 1-cocycle: (a)--’ X is deter-
mined by its value at a, H((a), X) is a subspace of Coker(a-- I’X--,

X). So it is enough to show the map a 1 X---’ X is surjective.
For any valuation field F, we denote by r its valuation ring. Let be

either Ozo or Ozo. We first show that (a- 1)() contains the maximal
ideal of .

Suppose "-Or,, and set ,’= OKado For any n >-- 1, the map
l"On On is On--linear. On the other hand, if n is sufficiently large.

there exists an element of which is mapped by a,_ 1 to an element of
_

with absolute value not very small. In fact, if X (an-) 1 + urrk with
u A and p"- < k < p", put m’= min {p"- + k, p"}. Then rm is in On,
and (a._- 1)(rm) [u] (rm-) is in 0.- (Here again we used the additiv-
ity of the Carlitz module). Thus (an-t- 1)(On) contains 7r.m-O,,-t. Since
a._t is a power of a, (a- 1)(0) also contains r_,O._. Passing to the
union, and noticing that m- k increases geometrically with n, we see that
(a- 1)(0) contains the maximal ideal of O.

The statement for OZa follows by noting that Or.a is a free

Ov.a-module which admits a free basis consisting of units of OM.. This can
be seen, for example, by applying repeatedly the decomposition

[Mn:Mn-1] -1

OLr.ad.M, OLr.ad.Mn-l [Ji,
i=0

where p. is a unit of OM,, such that OM,,
Now again let ? be either OgZd or OL. As above, we can choose a

Kraal-basis (v).>o of Ktad (resp. Ld) consisting of elements, e.g., of
Then any element x of X can be written as a convergent series

x .,
where x KTM and x I-* c as u---* c Since rO is contained in
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(a--1)(), there exists for each an element m of such that (a--
1) (v) . The element

x’= Ex’ X
o

is then mapped by a- 1 to x. Q.E.D.
The next step is"
Lemma 3 (cf. [3], Proposition 10). Let K be any complete discrete valua-

tion field with perfect residue field, K an infinite APF-extension of K ([4]), and

L a Galois extension of K. Then we have

H(G ) [0 0,
ii-O.

K2 a),Iu particular, we have K (= aud heuce K is perfect.
Note that our K, L and M are all APF-extensions of K.
As in [3], the above 1emma is a formal (though somewhat tricky) con-

sequence of"
Lemma 4 (cf. [3], Proposition 9). Let K/K be as above, aud let L/K be

a fiuite separable exteusiou. Deuote by the valuatiou riug of L, and by m the
valuatiou ideal of K. Theu we have Tr/.() m.

Proo We reproduce the proof of Tare [3], pointing out how to use our

assumption. Replacing K by a finite subextension of L/K, we may suppose
that there is a finite extension Lo of K, linearly disjoint from K, such that L
LoK (see [2], p. 97, Lemma 6). We may also suppose that LK is a

Galois extension, because we may replace L/K by its Galois closure.
For u 2 1, let K, be the fixed subfield of K by the u-th ramification

group Gal(K/K) u in the upper numbering, and put L, LoKu. Let de-
note the normalized valuation of K. Then the valuation of the different
of LK is

v(./.)
(Gal(K./K).. I) (GaI(L./K). I)

If h R is so large that 2 h implies Gal(L/K)c GaI(L/Lo) (i.e.,
Gal(K./K) Gal(L./K) for all 2 1), then we have

(6a(g./K)" 1)"
Since K/K is APF of infinite degree, for any fixed , Gal(K/K) is oen in
Gal(K/K) and (GaI(K./K)" 1) tends to infinity with . Hence the above in-
tegral tends to zero with .

Recall (from e.g. [21, p. 60, Proposition 7) that, in general, for a finite in-
tegral extension B/A of Dedekind domains and an ideal (resp. n) of B (resp.
A), we have

Tr/() ca a).
Applying this for and a Tr/(.), we see that

Since v(./.) 0 as , so does v(Tr./.(.).). This means that

Tr/() D m. .E.D.
Now we can complete the proof of (2) of the Theorem. By Lemma 1, we
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may assume r 0. Look at the spectral sequence
0--, H(Gal(Lo/K), H(Gz., C)) --* H(G, C) -- H(Gz., C).

By Lemma 3, HI(Gz.., C) O. By Ax (Remark 1, (ii)), H(Gz., C) Lrooaa.
By Lemma 2, HI(GaI(Loo/K), L--ra 0. Hence we obtain (2).

Remark 2. Lemma I shows that C is (and in fact, even is) "so big"
that a topological A[ GK]-module loses much information after being ten-
sored with C. This is because we have our element c in C, and at this point,
our C might be more analogous to BaR or Bcris in the usual p-adic theory,
rather than to Cp @ (this observation was communicated to the author
by Nobuo Tsuzuki, to whom the author is grateful). But our C does not have
enough structures to recover 7r-adic Galois representations. Is there a
cleverer ring than C?

[41
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