53. On the π-adic Theory-Galois Cohomology

By Yuichiro TAGUCHI
Tokyo Metropolitan University
(Communicated by Shokichi Iyanaga, M. J. A., Sept. 14, 1992)

In this note, we exhibit, by calculating Galois cohomology, a crucial difference of the π-adic theory in positive characteristic from the usual p-adic theory in characteristic zero. One reason for this difference is that the Carlitz module, which plays in our theory the role of the multiplicative group $\boldsymbol{G}_{\boldsymbol{m}}$ in the classical theory, is an additive group scheme.

Let A be the polynomial ring $\boldsymbol{F}_{q}[t]$ in one variable t over the finite field \boldsymbol{F}_{q} of q elements. Let K be a complete discrete valuation field of "mixed characteristic" over A, by which we mean that K is endowed with an injective ring homomorphism $\alpha: A \rightarrow K$ such that the inverse image by α of the maximal ideal of the integer ring of K is a non-zero prime ideal of A. We assume that the residue field of K is perfect. Our objective is to calculate the Galois cohomology group $H^{i}\left(\operatorname{Gal}\left(K^{\text {sep }} / K\right), \boldsymbol{C}(r)\right)$ for $i=0,1$ and $r \in \boldsymbol{Z}$. (The notations are explained below.) Of special importance is that $H^{0}(\mathrm{Gal}$ ($K^{\text {sep }} / K$), $\boldsymbol{C}(\boldsymbol{r})$) does not vanish even if $\boldsymbol{r} \neq 0$. See the concluding Remark 2 for more discussion.

Let π be the unique monic prime element of A such that $\alpha(\pi)$ is a non-unit in the integer ring of K (so (π) is the "residual characteristic" of K). In the following, we think of A as a subring of K by means of α. Let C be the Carlitz A-module over A such that the action of $t \in A$ on C is given by $[t](Z)=t Z+Z^{q}$ with respect to a coordinate Z of C. The π-adic Tate module of C is a rank one free A_{π}-module, where A_{π} is the π-adic completion of A. C being considered to be an object over K, the absolute Galois group $G_{K}:=\operatorname{Gal}\left(K^{\text {sep }} / K\right)$ of K acts on $T_{\pi}(C)$ continuously. ($K^{\text {sep }}$ is a fixed separable closure of K. In general, we denote by G_{L} the absolute Galois group of a field L.) The character $\chi: G_{K} \rightarrow A_{\pi}^{\times}$which describes this action is called the Carlitz character.

For any valuation field L, we denote by \hat{L} the completion of L with respect to the valuation topology. Let $\boldsymbol{C}:=\widehat{K^{\text {sep }}}$. The action of G_{K} on $K^{\text {sep }}$ extends uniquely to a continuous action on $\boldsymbol{C} . \boldsymbol{C}$ is algebraically closed. For a subfield L of \boldsymbol{C}, we denote by $L^{\text {rad }}$ the inseparable closure of L in \boldsymbol{C}.

For any topological A_{π}-module M with a continuous G_{K}-action, and for any $r \in \boldsymbol{Z}$, we define the r-th Tate twist $M(r)$ of M by the Carlitz character to be the G_{K}-module with the same underlying A_{π}-module M and with a twisted Galois action $\sigma . m=\chi(\sigma)^{r} \cdot \sigma(m)$ for all $\sigma \in G_{K}$ and $m \in M$, where $\sigma(m)$ denotes the presupposed action.

For a topological group G and a topological module M with a continuous G-action, we denote by $H^{i}(G, M)$ the i-th cohomology group defined by the
i-th right derived functor of the functor "fixed part": $M \mapsto M^{G}$ (or equivalently, defined by continuous cochains). Our main result is:

Theorem. For all $\boldsymbol{r} \in \boldsymbol{Z}$, we have

$$
\begin{align*}
& \left.H^{0}\left(G_{K}, \boldsymbol{C}(r)\right)=\widehat{\left(K^{\mathrm{rad}}\right.} \cdot c^{-r}\right)(r) \simeq \widehat{K^{\mathrm{rad}}}, \quad \text { and } \tag{1}\\
& H^{1}\left(G_{K}, \boldsymbol{C}(r)\right)=0 \tag{2}
\end{align*}
$$

Here c is an element of \boldsymbol{C} such that $\sigma(c)=\chi(\sigma) c$ for all $\sigma \in G_{K}$, and constructed explicitly in the following.

Remark 1. The followings are previously known:
(i) (Tate [3], Theorems 1 and 2) If K is of characteristic zero and $\boldsymbol{C}_{\boldsymbol{p}}(\boldsymbol{r})$ denotes the completion of an algebraic closure of K, with the usual Tate twist, then one has, for $i=0,1$,

$$
H^{i}\left(G_{K}, C_{p}(r)\right) \simeq \begin{cases}K & \text { if } r=0 \\ 0 & \text { if } r \neq 0\end{cases}
$$

(ii) (Ax [1]) If K is a rank one valuation field (of arbitrary characteristic) which is henselian with respect to the valuation, then one has

$$
H^{0}\left(G_{K}, \boldsymbol{C}\right)=\widehat{K^{\mathrm{rad}}}
$$

This result includes the case $r=0$ in (1) of the Theorem.
First of all, note that, when we are working over A_{π}, we may replace the Carlitz module C by an isomorphic Lubin-Tate A_{π}-module C^{\prime} on which the action of π is given by $[\pi]\left(Z^{\prime}\right)=\pi Z^{\prime}+Z^{\prime q^{d}}$, where $d=\operatorname{deg}(\pi)$. So in the following, we assume $C=C^{\prime}, q=q^{d}$, and $A_{\pi}=\boldsymbol{F}_{q}[[\pi]]$.

We construct now the element $c \in \boldsymbol{C}$. Choose and fix a system $\left(\pi_{n}\right)_{n \geq 0}$ of elements of $K^{\text {sep }}$ which corresponds to a generator of $T_{\pi}(C)$. So π_{n} is a generator of the π^{n}-division points of C, and we have $[\pi]\left(\pi_{n}\right)=\pi_{n-1}$ for all $n \geq 1$. We define our element $c \in \boldsymbol{C}$ as follows:

$$
c:=\sum_{n \geq 1} \pi^{n} \pi_{n}
$$

The series on the right clearly converges and is non-zero. (1) of the Theorem is implied by Ax's theorem (Remark 1, (ii)) and the following

Lemma 1. For $x \in \boldsymbol{C}^{\times}$and $r \in \boldsymbol{Z}$, write $x=x_{1} c^{r}$ with $x_{1} \in \boldsymbol{C}^{\times}$. Then we have, for all $\tau \in G_{K}$,

$$
\tau(x)=\tau\left(x_{1}\right) \chi(\tau)^{r} c^{r} .
$$

In particular, if L is a $G_{K^{\prime}}$-stable subfield of \boldsymbol{C} which contains c, then multiplication by ${c^{-r}}^{-r}$ induces an isomorphism $L \rightarrow L(r)$ of $G_{K^{-}}$modules.

Proof. The claim is easily reduced to the case $x=c$ and $r=1$; we are to show $\tau(c)=\chi(\tau) c$ for all $\tau \in G_{K}$. Write $f(\pi)=\sum_{i \geq 0} a_{i} \pi^{i}$, with a_{i} $\in \boldsymbol{F}_{q}$, for the formal power series $\chi(\tau) \in A_{\pi}^{\times}$. Then

$$
\begin{aligned}
\tau(c) & =\sum_{n \geq 1} \pi^{n} \tau\left(\pi_{n}\right)=\sum_{n \geq 1} \pi^{n}[f(\pi)]\left(\pi_{n}\right)=\sum_{i \geq 0} a_{i} \sum_{n \geq 1} \pi^{n}\left[\pi^{i}\right]\left(\pi_{n}\right) \\
& =\sum_{i \geq 0} a_{i} \pi^{i} \sum_{n-i \geq 1} \pi^{n-i} \pi_{n-i}=f(\pi) c=\chi(\tau) c .
\end{aligned}
$$

We used in the third equality that the group law of C is \boldsymbol{F}_{q}-linear. Q.E.D.
To prove (2) of the Theorem, we consider certain subextensions of \boldsymbol{C} / K as in [3]. Let K_{∞} be the subfield of $K^{\text {sep }}$ corresponding to $\operatorname{Ker}(\chi)$; thus the element c is in $\widehat{K_{\infty}}$, and $\operatorname{Gal}\left(K_{\infty} / K\right)$ is identified with the subgroup $\operatorname{Im}(\chi)$ of
A_{π}^{\times}. Choose
(a) a non-trivial element σ of $\operatorname{Gal}\left(K_{\infty} / K\right)$ such that $\chi(\sigma) \in 1+\pi A_{\pi}$, and
(b) a closed subgroup B of $\operatorname{Gal}\left(K_{\infty} / K\right)$
such that $\operatorname{Gal}\left(K_{\infty} / K\right)=\langle\sigma\rangle \times B$, where $\langle\sigma\rangle$ is the closure in $\operatorname{Gal}\left(K_{\infty} / K\right)$ of the cyclic subgroup generated by σ (so $\langle\sigma\rangle \simeq \boldsymbol{Z}_{p}$, with p the characteristic of K). Denote by L_{∞} and M_{∞} respectively the subextensions of K_{∞} which correspond to B and $\langle\sigma\rangle$. So we have $\operatorname{Gal}\left(K_{\infty} / M_{\infty}\right) \simeq \operatorname{Gal}\left(L_{\infty} / K\right) \simeq\langle\sigma\rangle$ and $\operatorname{Gal}\left(K_{\infty} / L_{\infty}\right) \simeq \operatorname{Gal}\left(M_{\infty} / K\right) \simeq B$. The above splitting yields, for each $n \geq 0$, a splitting $\chi^{-1}\left(1+\pi^{p^{n}} A_{\pi}\right)=\left\langle\sigma_{n}\right\rangle \times B_{n}$, where σ_{n} is a power of σ and B_{n} is a subgroup of B. Accordingly, we have three fields K_{n}, L_{n} and M_{n}, with $K_{n}=L_{n} M_{n}$, which are the subfields of K_{∞} correspoding respectively to $\chi^{-1}\left(1+\pi^{p^{n}} A_{\pi}\right),\left\langle\sigma_{n}\right\rangle$ and B_{n}. Note that $K_{n}=K\left(\pi_{p n}\right)$.

Lemma 2. Let X be one of the following fields: $\widehat{K_{\infty}}, \widehat{L_{\infty}}, \widehat{K_{\infty}^{\text {rad }}}$, and $\widehat{L_{\infty}^{\text {rad }}}$. Then we have $H^{1}(\langle\sigma\rangle, X)=0$.

In fact, as Lemma 3 shows, we have $\widehat{K_{\infty}^{\text {rad }}}=\widehat{K_{\infty}}$ and $\widehat{L_{\infty}^{\text {rad }}}=\widehat{L_{\infty}}$.
Proof. We prove this for $X=\widehat{K_{\infty}^{\text {rad }}}$ and $\widehat{L_{\infty}^{\text {rad }} \text {. The other cases are }}$ proved in the same way. Since a continuous 1-cocycle: $\langle\sigma\rangle \rightarrow X$ is determined by its value at $\sigma, H^{1}(\langle\sigma\rangle, X)$ is a subspace of $\operatorname{Coker}(\sigma-1: X \rightarrow$ $X)$. So it is enough to show the map $\sigma-1: X \rightarrow X$ is surjective.

For any valuation field F, we denote by \mathscr{O}_{F} its valuation ring. Let \mathscr{O} be either $\mathscr{O}_{K_{a}^{\text {rad }}}$ or $\mathfrak{O}_{L_{\infty}^{\text {rad }}}$. We first show that $(\sigma-1)(\mathscr{O})$ contains the maximal ideal of \mathscr{O}.

Suppose $\mathfrak{O}=\mathscr{O}_{K}$ rad, and set $\mathscr{O}_{n}:=\mathscr{O}_{K n}$. For any $n \geq 1$, the map σ_{n-1} $-1: \mathscr{O}_{n} \rightarrow \mathscr{O}_{n}$ is \mathscr{O}_{n-1}-linear. On the other hand, if n is sufficiently large, there exists an element of \mathscr{O}_{n} which is mapped by $\sigma_{n-1}-1$ to an element of \mathscr{O}_{n-1} with absolute value not very small. In fact, if $\chi\left(\sigma_{n-1}\right)=1+u \pi^{\mathbf{k}}$ with $u \in A_{\pi}^{\times}$and $p^{n-1} \leq k<p^{n}$, put $m:=\min \left\{p^{n-1}+k, p^{n}\right\}$. Then π_{m} is in \mathscr{O}_{n}, and $\left(\sigma_{n-1}-1\right)\left(\pi_{m}\right)=[u]\left(\pi_{m-k}\right)$ is in \mathscr{O}_{n-1} (Here again we used the additivity of the Carlitz module). Thus $\left(\sigma_{n-1}-1\right)\left(\mathscr{O}_{n}\right)$ contains $\pi_{m-k} \mathscr{O}_{n-1}$. Since σ_{n-1} is a power of $\sigma,(\sigma-1)\left(\mathscr{O}_{n}\right)$ also contains $\pi_{m-k} \mathscr{O}_{n-1}$. Passing to the union, and noticing that $m-k$ increases geometrically with n, we see that $(\sigma-1)(\mathscr{O})$ contains the maximal ideal of \mathscr{O}.

The statement for $\mathscr{O}=\mathscr{O}_{L^{\text {rad }}}$ follows by noting that $\mathscr{O}_{K_{\mathbb{a}}^{\text {rad }}}$ is a free $\mathscr{O}_{\text {Lrad }^{\text {rad }}}$ module which admits a free basis consisting of units of $\mathscr{O}_{M_{\infty}}$. This can be seen, for example, by applying repeatedly the decomposition

$$
\mathscr{O}_{L^{\text {rad }} \cdot M_{n}}=\bigoplus_{i=0}^{\left[M_{n}: M_{n-1}\right]-1} \mathscr{O}_{L^{\text {rad }} \cdot M_{n-1}} \cdot \mu_{n}^{\mathrm{i}},
$$

where μ_{n} is a unit of $\mathscr{O}_{M_{n}}$ such that $\mathscr{O}_{M_{n}}=\mathscr{O}_{M n-1}\left[\mu_{n}\right]$.
Now again let \mathfrak{O} be either $\mathscr{O}_{K^{\text {rad }}}$ or $\mathscr{O}_{L^{\text {rad }}}$. As above, we can choose a $K^{\text {rad }}$-basis $\left(\varpi_{\nu}\right)_{\nu \geq 0}$ of $K_{\infty}^{\text {rad }}$ (resp. $L_{\infty}^{\text {rad }}$) consisting of elements, e.g., of $\pi \mathscr{O}^{\times}$. Then any element x of X can be written as a convergent series

$$
x:=\sum_{\nu \geq 0} x_{\nu} \cdot \varpi_{\nu}
$$

where $x_{\nu} \in K^{\text {rad }}$ and $\left|x_{\nu}\right| \rightarrow \infty$ as $\nu \rightarrow \infty$. Since $\pi \mathcal{O}^{\times}$is contained in
$(\sigma-1)(\mathscr{O})$, there exists for each ν an element ϖ_{ν}^{\prime} of \mathscr{O} such that ($\sigma-$ 1) $\left(\varpi_{\nu}^{\prime}\right)=\varpi_{\nu}$. The element

$$
x^{\prime}=\sum_{\nu \geq 0} x_{\nu} \cdot \omega_{\nu}^{\prime} \in X
$$

is then mapped by $\sigma-1$ to x.
Q.E.D.

The next step is:
Lemma 3 (cf. [3], Proposition 10). Let K be any complete discrete valuation field with perfect residue field, K_{∞} an infinite APF-extension of K ([4]), and L a Galois extension of K_{∞}. Then we have

$$
H^{i}\left(G_{K_{\infty}}, \widehat{L}\right)= \begin{cases}0 & \text { if } i>0 \\ \widehat{K_{\infty}} & \text { if } i=0\end{cases}
$$

In particular, we have $\widehat{K_{\infty}}=\widehat{{K_{\infty}}_{\text {rad }}}\left(=\widehat{K_{\infty}}{ }^{\text {rad }}\right)$, and hence $\widehat{K_{\infty}}$ is perfect.
Note that our K_{∞}, L_{∞} and M_{∞} are all APF-extensions of K.
As in [3], the above lemma is a formal (though somewhat tricky) consequence of:

Lemma 4 (cf. [3], Proposition 9). Let K_{∞} / K be as above, and let L / K_{∞} be a finite separable extension. Denote by \mathfrak{O}_{L} the valuation ring of L, and by \mathfrak{m}_{∞} the valuation ideal of K_{∞}. Then we have $\operatorname{Tr}_{L / K_{\infty}}\left(\mathscr{O}_{L}\right) \supset \mathfrak{m}_{\infty}$.

Proof. We reproduce the proof of Tate [3], pointing out how to use our assumption. Replacing K by a finite subextension of L / K, we may suppose that there is a finite extension L_{0} of K, linearly disjoint from K_{∞}, such that L $=L_{0} K_{\infty}$ (see [2], p. 97, Lemma 6). We may also suppose that L_{0} / K is a Galois extension, because we may replace L / K_{∞} by its Galois closure.

For $u \geq-1$, let K_{u} be the fixed subfield of K_{∞} by the u-th ramification group $\operatorname{Gal}\left(K_{\infty} / K\right)^{u}$ in the upper numbering, and put $L_{u}:=L_{0} K_{u}$. Let v denote the normalized valuation of K. Then the valuation of the different $\mathfrak{D}_{L_{u} / K_{u}}$ of L_{u} / K_{u} is

$$
v\left(\mathfrak{D}_{L_{u} / K_{u}}\right)=\int_{-1}^{\infty}\left(\frac{1}{\left(\mathrm{Gal}\left(K_{u} / K\right)^{y}: 1\right)}-\frac{1}{\left(\mathrm{Gal}\left(L_{u} / K\right)^{y}: 1\right)}\right) d y
$$

If $h \in \boldsymbol{R}$ is so large that $y \geq h$ implies $\operatorname{Gal}(L / K)^{y} \subset \operatorname{Gal}\left(L / L_{0}\right)$ (i.e., $\operatorname{Gal}\left(K_{u} / K\right)^{y} \simeq \operatorname{Gal}\left(L_{u} / K\right)^{y}$ for all $u \geq-1$), then we have

$$
v\left(\mathfrak{D}_{L_{u} / K_{u}}\right) \leq \int_{-1}^{h} \frac{d y}{\left(\operatorname{Gal}\left(K_{u} / K\right)^{y}: 1\right)}
$$

Since K_{∞} / K is APF of infinite degree, for any fixed $y, \operatorname{Gal}\left(K_{\infty} / K\right)^{y}$ is open in $\operatorname{Gal}\left(K_{\infty} / K\right)$ and $\left(\operatorname{Gal}\left(K_{u} / K\right)^{y}: 1\right)$ tends to infinity with u. Hence the above integral tends to zero with \boldsymbol{u}.

Recall (from e.g. [2], p. 60, Proposition 7) that, in general, for a finite integral extension B / A of Dedekind domains and an ideal \mathfrak{b} (resp. a) of B (resp. A), we have

$$
\operatorname{Tr}_{B / A}(\mathfrak{b}) \subset \mathfrak{a} \Leftrightarrow \mathfrak{b} \subset \mathfrak{a} \mathfrak{D}_{B / A}^{-1}
$$

Applying this for $\mathfrak{b}=\mathscr{O}_{L u}$ and $\mathfrak{a}=\operatorname{Tr}_{L_{u} / K u}\left(\mathscr{O}_{L_{u}}\right)$, we see that

$$
\mathfrak{D}_{L_{u} / K_{u}} \subset \operatorname{Tr}_{\mathrm{L}_{L} / K u}\left(\mathscr{O}_{L u}\right) \mathscr{O}_{L_{u}} .
$$

Since $v\left(\mathfrak{D}_{L_{u} / K_{u}}\right) \rightarrow 0$ as $u \rightarrow \infty$, so does $v\left(\operatorname{Tr}_{L_{u / K} u}\left(\mathscr{O}_{L u}\right) \mathscr{O}_{L u}\right)$. This means that $\operatorname{Tr}_{L / K_{\infty}}\left(\mathscr{O}_{L}\right) \supset \mathfrak{m}_{\infty}$.
Q.E.D.

Now we can complete the proof of (2) of the Theorem. By Lemma 1, we
may assume $r=0$. Look at the spectral sequence
$0 \rightarrow H^{1}\left(\operatorname{Gal}\left(L_{\infty} / K\right), H^{0}\left(G_{L_{\infty}}, \boldsymbol{C}\right)\right) \rightarrow H^{1}\left(G_{K}, \boldsymbol{C}\right) \rightarrow H^{1}\left(G_{L_{\infty}}, \boldsymbol{C}\right)$.
By Lemma 3, $H^{1}\left(G_{L_{\infty}}, \boldsymbol{C}\right)=0$. By Ax (Remark 1 , (ii)), $H^{0}\left(G_{L_{\infty}}, \boldsymbol{C}\right)=\widehat{L_{\infty}^{\text {rad }}}$. By Lemma 2, $H^{1}\left(\operatorname{Gal}\left(L_{\infty} / K\right), \widehat{L}_{\infty}^{\mathrm{rad}}\right)=0$. Hence we obtain (2).

Remark 2. Lemma 1 shows that \boldsymbol{C} is (and in fact, even $\widehat{K_{\infty}}$ is) "so big" that a topological $A_{\pi}\left[G_{K}\right]$-module loses much information after being tensored with \boldsymbol{C}. This is because we have our element c in \boldsymbol{C}, and at this point, our \boldsymbol{C} might be more analogous to B_{dR} or $B_{\text {cris }}$ in the usual p-adic theory, rather than to $\boldsymbol{C}_{p}=\widehat{\boldsymbol{Q}_{D}^{\text {Sep }}}$ (this observation was communicated to the author by Nobuo Tsuzuki, to whom the author is grateful). But our \boldsymbol{C} does not have enough structures to recover π-adic Galois representations. Is there a cleverer ring than \boldsymbol{C} ?

References

[1] J. Ax: Zeros of polynomials over local fields - the Galois action. J. of Algebra, 15, 417-428 (1970).
[2] J-P. Serre: Corps Locaux (3^{e} éd.). Hermann, Paris (1980).
[3] J. Tate: p-divisible groups. Proceedings of a conference on local fields, Driebergen, 1966. Springer-Verlag, Berlin, Heidelberg, New York, pp. 158-183 (1967).
[4] J-P. Wintenberger: Le corps des normes de certaines extensions infinies de corps locaux ; applications. Ann. Sci. Éc. Norm. Sup., 4^{e} série 16, 59-89 (1983).

