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53. On the m-adic Theory—QGalois Cohomology

By Yuichiro TAGUCHI

Tokyo Metropolitan University
(Communicated by Shokichi IYANAGA, M. J. A., Sept. 14, 1992)

In this note, we exhibit, by calculating Galois cohomology, a crucial dif-
ference of the m-adic theory in positive characteristic from the usual p-adic
theory in characteristic zero. One reason for this difference is that the Car-
litz module, which plays in our theory the role of the multiplicative group
G,, in the classical theory, is an additive group scheme.

Let A be the polynomial ring F,[f] in one variable ¢ over the finite field
F, of q elements. Let K be a complete discrete valuation field of “mixed char-
acteristic” over A, by which we mean that K is endowed with an injective
ring homomorphism a : A — K such that the inverse image by a of the max-
imal ideal of the integer ring of K is a non-zero prime ideal of A. We assume
that the residue field of K is perfect. Qur objective is to calculate the Galois
cohomology group H'(Gal(K%¢*/K), C(r)) for t=0, 1 and r € Z. (The
notations are explained below.) Of special importance is that H°(Gal
(Ks*/K), C(r)) does not vanish even if # # 0. See the concluding Remark 2
for more discussion.

Let 7 be the unique monic prime element of A such that a(w) is a
non-unit in the integer ring of K (so (&) is the “residual characteristic” of
K). In the following, we think of A as a subring of K by means of a. Let C
be the Carlitz A-module over A such that the action of £ € A on C is given
by [A1(Z) = tZ + Z? with respect to a coordinate Z of C. The m-adic Tate
module of C is a rank one free Ar-module, where A, is the mw-adic comple-
tion of A. C being considered to be an object over K, the absolute Galois
group Gg:= Gal(K®**/K) of K acts on T(C) continuously. (K*®* is a fixed
separable closure of K. In general, we denote by G the absolute Galois
group of a field L) The character x : Gk — A7 which describes this action
is called the Carlitz character.

For any valuation field L, we denote bl\f. the completion of L with
respect to the valuation topology. Let C := K%* The action of Gk on K¢
extends uniquely to a continuous action on C. C is algebraically closed. For
a subfield L of C, we denote by L™ the inseparable closure of L in C.

For any topological Az-module M with a continuous Gg-action, and for
any v € Z, we define the »-th Tate twist M () of M by the Carlitz character
to be the Gg-module with the same underlying Ar-module M and with a
twisted Galois action o.m = x(0)” - o(m) for all 0 € Gx and m € M,
where g (m) denotes the presupposed action.

For a topological group G and a topological module M with a continuous
G-action, we denote by H*(G, M) the i-th cohomology group defined by the
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i-th right derived functor of the functor “fixed part”:M+— M€¢ (or
equivalently, defined by continuous cochains). Our main result is:
Theorem. For all ¥ € Z, we have

— —
(1) H°(Gg, C(r)) = (K™-¢")(r) = K™, and
(2) H'(Gg, C(r)) = 0.
Here ¢ is an element of C such that 6(c) = x(0)c for all 0 € Gg, and con-
structed explicitly in the following.
Remark 1. The followings are previously known :
(i) (Tate [3], Theorems 1 and 2) If K is of characteristic zero and Cy(7) de-
notes the completion of an algebraic closure of K, with the usual Tate twist,
then one has, for 1 =0, 1,
K ifr=0,

H( GGy = 2720

(ii) (Ax [1])) If K is a rank one valuation field (of arbitrary characteristic)
which is henselian with respect to the valuation, then one has

—
HO(GK, C) = Krad.
This result includes the case # = 0 in (1) of the Theorem.

First of all, note that, when we are working over A;, we may replace the
Carlitz module C by an isomorphic Lubin-Tate Az-module C’ on which the
action of 7 is given by [7](Z") = nZ’ + Z’*, where d = deg(x). So in the
following, we assume C = C’, ¢ = ¢%and A, = F,[[x]].

We construct now the element ¢ € C. Choose and fix a system (7,)x>o0
of elements of K°® which corresponds to a generator of T;(C). So 7, is a
generator of the 7#"-division points of C, and we have [x] (7s) = ms-1 for all
n = 1. We define our element ¢ € C as follows:

c:= 2 m'm,.
n=1
The series on the right clearly converges and is non-zero. (1) of the Theorem

is implied by Ax’s theorem (Remark 1, (ii)) and the following

Lemma 1. Forx € C* and r € Z, write x = x:¢” with x, € C*. Then
we have, for all T € Gk,

7(x) = (X)) x ().

In particular, if L is a Gg-stable subfield of C which contains ¢, then multi-
plication by ¢~" induces an isomorphism L— L(r) of Gx-modules.

Proof. The claim is easily reduced to the case £ = c and » = 1; we are
to show 7(c) = x(z)c for all ¢ € Gg. Write f (1) = 2> o ai’, with a;
€ F,, for the formal power series x(7) € AZ. Then

() = 2 w't(n,) = X #"lf (M) (ny) = 2 ai 2 7"[n'](w,)

n=1 n=1 i=0 n=1
=X an’ X m"i'me—i=f (r)c = x(7)c.
i=0 n—-i=1

We used in the third equality that the group law of C is Fy-linear. Q.E.D.

To prove (2) of the Theorem, we consider certain subextensions of C/K
as in [3]. Let K»/Qe the subfield of K%°® corresponding to Ker(x); thus the
element ¢ is in K., and Gal(K./K) is identified with the subgroup Im(x) of
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Ax. Choose

(a) a non-trivial element ¢ of Gal(K~/K) such that x (o) € 1 + 7wA,,
and

(b) a closed subgroup B of Gal (K./K)
such that Gal(K./K) = (o> X B, where {o) is the closure in Gal(K./K) of
the cyclic subgroup generated by ¢ (so o) = Z,, with p the characteristic
of K). Denote by L. and M. respectively the subextensions of K. which cor-
respond to B and <o) . So we have Gal(K./M.) = Gal(L./K) = <07 and
Gal(K«/L.) = Gal(M./K) = B. The above splitting yields, for each n = 0,
a splitting x'(1 + ©?"A;) = {on> X B,, where 0, is a power of ¢ and B, is
a subgroup of B. Accordingly, we have three fields K,, L, and M,, with
K, = L,M,, which are the subfields of K. correspoding respectively to
x*(1 + n?"A.), {o»> and B,. Note that K, = K(ﬂan\ o o

Lemma 2. Let X be one of the following fields: Ko, Lo, K¢, and L3,
Then we have H'({0>, X) = 0. — .

In fact, as Lemma 3 shows, we have K5 = K., and L? = L..

Proof. We prove this for X = @ and fﬁ?" The other cases are
proved in the same way. Since a continuous 1l-cocycle: <> — X is deter-
mined by its value at o, H*({o>, X) is a subspace of Coker(¢ —1:X—
X). So it is enough to show the map ¢ — 1: X— X is surjective.

For any valuation field F, we denote by OF its valuation ring. Let O be
either Ogma or Opma. We first show that (6 — 1) (6) contains the maximal
ideal of 0.

Suppose O = Ogwe, and set Oy : = Okgpa. For any n = 1, the map 0On-1
—1:0,— 0, is Oy_1-linear. On the other hand, if # is sufficiently large,
there exists an element of 0, which is mapped by 0,-1 — 1 to an element of
On-, with absolute value not very small. In fact, if x (04-1) = 1 + urm* with
u € A5 and p* ' < k < p”, put m:=min{p"* + k, p"}. Then 7, is in O,
and (04-1 — 1) () = [u)] (Tm-1) is in O, (Here again we used the additiv-
ity of the Carlitz module). Thus (0x-1 — 1) (0,) contains Tm-xOx-1. Since
Oy-1 is a power of o, (¢ — 1)(0,) also contains 7,-0,-1. Passing to the
union, and noticing that w2 — k increases geometrically with #, we see that
(0 — 1) (O) contains the maximal ideal of 0.

The statement for € = Oz« follows by noting that Ogma is a free
Orma-module which admits a free basis consisting of units of Ouy_. This can
be seen, for example, by applying repeatedly the decomposition

(Mn:Mn-11-1
@Li‘d~Mn = @ 0LE.““"Mn—l : tulm
i=0

where s is a unit of Oy, such that Ouy, = O [pn].

Now again let € be either Ogme or Opme. As above, we can choose a
K™ _basis (@W,) ,>o of K& (resp. L%) consisting of elements, e.g., of w0*.
Then any element x of X can be written as a convergent series

= 2 Xy @y,
v=0
where x, € K™ and |x,,|—>°° as v— oo . Since m0O* is contained in
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(0 — 1)(0), there exists for each v an element @, of @ such that (¢ —
1) (w,) = @,. The element

x = Z xv'm; eX
v=0
is then mapped by ¢ — 1 to x. Q.E.D.

The next step is:

Lemma 3 (cf. [3], Proposition 10). Let K be any complete discrete valua-
tion field with perfect residue field, Ko an infinite APF-extension of K ([4]), and
L a Galois extension of Ke. Then we have

; =~ _ [0 ifi >0,
o~ = o~ o~
In particular, we have K. = KF(= K."9), and hence K. is perfect.

Note that our Ke, Lo and M. are all APF-extensions of K.

As in [3], the above lemma is a formal (though somewhat tricky) con-
sequence of :

Lemma 4 (cf. [3], Proposition 9). Let Ko/K be as above, and let L/Kw. be
a finite separable extension. Denote by Or the valuation ring of L, and by Mo the
valuation ideal of Kw. Then we have Tryk_ (Or) D M.

Proof. We reproduce the proof of Tate [3], pointing out how to use our
assumption. Replacing K by a finite subextension of L/K, we may suppose
that there is a finite extension Lo of K, linearly disjoint from K, such that L
= LoK. (see [2], p. 97, Lemma 6). We may also suppose that Ly/K is a
Galois extension, because we may replace L/K.. by its Galois closure.

For u = — 1, let K, be the fixed subfield of K. by the #-th ramification
group Gal(K~/K)" in the upper numbering, and put L, := LoK,. Let v de-
note the normalized valuation of K. Then the valuation of the different D, k.
of L/K, is

® 1 1
v (Drw) f-1 ((Gal(K,,/K)v :1) (Gal(Lw/K)*: 1)> .
If h€ R is so large that y = h implies Gal(L/K)Y < Gal(L/L,) (i.e.,
Gal(K,/K)Y = Gal(L,/K)" for all # = — 1), then we have
h dy
v@um) < [ e
Since K./K is APF of infinite degree, for any fixed y, Gal(K./K)? is open in
Gal(K./K) and (Gal(K,/K)": 1) tends to infinity with #. Hence the above in-
tegral tends to zero with u.
Recall (from e.g. [2], p. 60, Proposition 7) that, in general, for a finite in-
tegral extension B/A of Dedekind domains and an ideal b (resp. a) of B (resp.
A), we have

TI'B/A (b) Ca & bC 0@5/1.4.
Applying this for b = 0y, and a = Trr,/x.(0L,), we see that
Drwku © TrLu/ku(OLi) O
Since v (Drwk,) — 0 as u— o, so does v (Trr/x,(0L,)0,). This means that
TI'L/K“(@L) O M. QED
Now we can complete the proof of (2) of the Theorem. By Lemma 1, we
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may assume ¥ = 0. Look at the spectral sequence

0— HY(Gal(L-/K), H°(G._, C))— H*(Gg, C) — H*(G._, C). -
By Lemma 3, H'(G.,, C) = 0. By Ax (Remark 1, (ii)), H°(Gt,, C) = L.
By Lemma 2, H'(Gal(L./K), ff?) = 0. Hence we obtain (2).

Remark 2. Lemma 1 shows that C is (and in fact, even f{: is) “so big”
that a topological A;[ Gk] -module loses much information after being ten-
sored with C. This is because we have our element ¢ in C, and at this point,
our C might be morwalogous to Bar or Beis in the usual p-adic theory,
rather than to C, = @Q;°® (this observation was communicated to the author
by Nobuo Tsuzuki, to whom the author is grateful). But our C does not have

enough structures to recover m-adic Galois representations. Is there a
cleverer ring than C?
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