53. On the π -adic Theory—Galois Cohomology

By Yuichiro TAGUCHI

Tokyo Metropolitan University (Communicated by Shokichi IYANAGA, M. J. A., Sept. 14, 1992)

In this note, we exhibit, by calculating Galois cohomology, a crucial difference of the π -adic theory in positive characteristic from the usual p-adic theory in characteristic zero. One reason for this difference is that the Carlitz module, which plays in our theory the role of the multiplicative group G_m in the classical theory, is an *additive* group scheme.

Let A be the polynomial ring $F_q[t]$ in one variable t over the finite field F_q of q elements. Let K be a complete discrete valuation field of "mixed characteristic" over A, by which we mean that K is endowed with an injective ring homomorphism $\alpha: A \to K$ such that the inverse image by α of the maximal ideal of the integer ring of K is a non-zero prime ideal of A. We assume that the residue field of K is perfect. Our objective is to calculate the Galois cohomology group $H^i(\text{Gal}(K^{\text{sep}}/K), C(r))$ for i = 0, 1 and $r \in \mathbb{Z}$. (The notations are explained below.) Of special importance is that $H^0(\text{Gal}(K^{\text{sep}}/K), C(r))$ does not vanish even if $r \neq 0$. See the concluding Remark 2 for more discussion.

Let π be the unique monic prime element of A such that $\alpha(\pi)$ is a non-unit in the integer ring of K (so (π) is the "residual characteristic" of K). In the following, we think of A as a subring of K by means of α . Let Cbe the *Carlitz* A-module over A such that the action of $t \in A$ on C is given by $[t](Z) = tZ + Z^q$ with respect to a coordinate Z of C. The π -adic Tate module of C is a rank one free A_{π} -module, where A_{π} is the π -adic completion of A. C being considered to be an object over K, the absolute Galois group $G_K := \text{Gal}(K^{\text{sep}}/K)$ of K acts on $T_{\pi}(C)$ continuously. (K^{sep} is a fixed separable closure of K. In general, we denote by G_L the absolute Galois group of a field L.) The character $\chi : G_K \to A_{\pi}^{\times}$ which describes this action is called the *Carlitz character*.

For any valuation field L, we denote by \widehat{L} the completion of L with respect to the valuation topology. Let $C := \widehat{K^{\text{sep}}}$. The action of G_K on K^{sep} extends uniquely to a continuous action on C. C is algebraically closed. For a subfield L of C, we denote by L^{rad} the inseparable closure of L in C.

For any topological A_{π} -module M with a continuous G_{K} -action, and for any $r \in \mathbb{Z}$, we define the r-th Tate twist M(r) of M by the Carlitz character to be the G_{K} -module with the same underlying A_{π} -module M and with a twisted Galois action σ . $m = \chi(\sigma)^{r} \cdot \sigma(m)$ for all $\sigma \in G_{K}$ and $m \in M$, where $\sigma(m)$ denotes the presupposed action.

For a topological group G and a topological module M with a continuous G-action, we denote by $H^{i}(G, M)$ the *i*-th cohomology group defined by the

Galois Cohomology

i-th right derived functor of the functor "fixed part": $M \mapsto M^G$ (or equivalently, defined by continuous cochains). Our main result is:

Theorem. For all $r \in \mathbf{Z}$, we have

(1)
$$H^{0}(G_{K}, C(r)) = (\widetilde{K^{\mathrm{rad}}} \cdot c^{-r})(r) \simeq \widetilde{K^{\mathrm{rad}}}, \text{ and}$$

(2)
$$H^{1}(G_{K}, C(r)) = 0.$$

Here c is an element of C such that $\sigma(c) = \chi(\sigma)c$ for all $\sigma \in G_{K}$, and constructed explicitly in the following.

Remark 1. The followings are previously known :

(i) (Tate [3], Theorems 1 and 2) If K is of characteristic zero and $C_p(r)$ denotes the completion of an algebraic closure of K, with the usual Tate twist, then one has, for i = 0, 1,

$$H^{i}(G_{\kappa}, C_{p}(r)) \simeq \begin{cases} K & \text{if } r = 0, \\ 0 & \text{if } r \neq 0. \end{cases}$$

(ii) (Ax [1]) If K is a rank one valuation field (of arbitrary characteristic) which is henselian with respect to the valuation, then one has

$$H^0(G_K, C) = \widehat{K^{\mathrm{rad}}}$$

This result includes the case r = 0 in (1) of the Theorem.

First of all, note that, when we are working over A_{π} , we may replace the Carlitz module C by an isomorphic Lubin-Tate A_{π} -module C' on which the action of π is given by $[\pi](Z') = \pi Z' + Z'^{q^d}$, where $d = \deg(\pi)$. So in the following, we assume C = C', $q = q^d$, and $A_{\pi} = F_q[[\pi]]$.

We construct now the element $c \in C$. Choose and fix a system $(\pi_n)_{n\geq 0}$ of elements of K^{sep} which corresponds to a generator of $T_{\pi}(C)$. So π_n is a generator of the π^n -division points of C, and we have $[\pi](\pi_n) = \pi_{n-1}$ for all $n \geq 1$. We define our element $c \in C$ as follows:

$$c:=\sum_{n\geq 1}\pi^n\pi_n.$$

The series on the right clearly converges and is non-zero. (1) of the Theorem is implied by Ax's theorem (Remark 1, (ii)) and the following

Lemma 1. For $x \in C^{\times}$ and $r \in \mathbb{Z}$, write $x = x_1c^r$ with $x_1 \in C^{\times}$. Then we have, for all $\tau \in G_K$,

$$\tau(x) = \tau(x_1)\chi(\tau)^r c^r.$$

In particular, if L is a G_K -stable subfield of C which contains c, then multiplication by c^{-r} induces an isomorphism $L \to L(r)$ of G_K -modules.

Proof. The claim is easily reduced to the case x = c and r = 1; we are to show $\tau(c) = \chi(\tau)c$ for all $\tau \in G_K$. Write $f(\pi) = \sum_{i \ge 0} a_i \pi^i$, with $a_i \in \mathbf{F}_q$, for the formal power series $\chi(\tau) \in A_{\pi}^{\times}$. Then

$$(c) = \sum_{n \ge 1} \pi^n \tau(\pi_n) = \sum_{n \ge 1} \pi^n [f(\pi)](\pi_n) = \sum_{i \ge 0} a_i \sum_{n \ge 1} \pi^n [\pi^i](\pi_n)$$

= $\sum_{i \ge 0} a_i \pi^i \sum_{n-i \ge 1} \pi^{n-i} \pi_{n-i} = f(\pi)c = \chi(\tau)c.$

We used in the third equality that the group law of C is F_q -linear. Q.E.D.

To prove (2) of the Theorem, we consider certain subextensions of C/K as in [3]. Let K_{∞} be the subfield of K^{sep} corresponding to $\text{Ker}(\chi)$; thus the element c is in $\widehat{K_{\infty}}$, and $\text{Gal}(K_{\infty}/K)$ is identified with the subgroup $\text{Im}(\chi)$ of

No. 7]

τ

 A_{π}^{\times} . Choose

(a) a non-trivial element σ of $\operatorname{Gal}(K_{\infty}/K)$ such that $\chi(\sigma) \in 1 + \pi A_{\pi}$, and

(b) a closed subgroup B of $Gal(K_{\infty}/K)$

such that $\operatorname{Gal}(K_{\infty}/K) = \langle \sigma \rangle \times B$, where $\langle \sigma \rangle$ is the closure in $\operatorname{Gal}(K_{\infty}/K)$ of the cyclic subgroup generated by σ (so $\langle \sigma \rangle \simeq \mathbb{Z}_p$, with p the characteristic of K). Denote by L_{∞} and M_{∞} respectively the subextensions of K_{∞} which correspond to B and $\langle \sigma \rangle$. So we have $\operatorname{Gal}(K_{\infty}/M_{\infty}) \simeq \operatorname{Gal}(L_{\infty}/K) \simeq \langle \sigma \rangle$ and $\operatorname{Gal}(K_{\infty}/L_{\infty}) \simeq \operatorname{Gal}(M_{\infty}/K) \simeq B$. The above splitting yields, for each $n \geq 0$, a splitting $\chi^{-1}(1 + \pi^{p^n}A_{\pi}) = \langle \sigma_n \rangle \times B_n$, where σ_n is a power of σ and B_n is a subgroup of B. Accordingly, we have three fields K_n , L_n and M_n , with $K_n = L_n M_n$, which are the subfields of K_{∞} correspoding respectively to $\chi^{-1}(1 + \pi^{p^n}A_{\pi}), \langle \sigma_n \rangle$ and B_n . Note that $K_n = K(\pi_{p^n})$.

Lemma 2. Let X be one of the following fields: $\widehat{K_{\infty}}$, $\widehat{L_{\infty}}$, $\widehat{K_{\infty}^{rad}}$, and $\widehat{L_{\infty}^{rad}}$. Then we have $H^1(\langle \sigma \rangle, X) = 0$.

In fact, as Lemma 3 shows, we have $\widehat{K_{\infty}^{rad}} = \widehat{K_{\infty}}$ and $\widehat{L_{\infty}^{rad}} = \widehat{L_{\infty}}$.

Proof. We prove this for $X = \widehat{K}_{\omega}^{\text{rad}}$ and $\widehat{L}_{\omega}^{\text{rad}}$. The other cases are proved in the same way. Since a continuous 1-cocycle: $\langle \sigma \rangle \to X$ is determined by its value at σ , $H^1(\langle \sigma \rangle, X)$ is a subspace of $\text{Coker}(\sigma - 1: X \to X)$. So it is enough to show the map $\sigma - 1: X \to X$ is surjective.

For any valuation field F, we denote by \mathcal{O}_F its valuation ring. Let \mathcal{O} be either $\mathcal{O}_{K_{u}^{rad}}$ or $\mathcal{O}_{L_{u}^{rad}}$. We first show that $(\sigma - 1)(\mathcal{O})$ contains the maximal ideal of \mathcal{O} .

Suppose $\mathcal{O} = \mathcal{O}_{K_{\mathbf{n}}^{\mathrm{rad}}}$, and set $\mathcal{O}_n := \mathcal{O}_{K_{\mathbf{n}}^{\mathrm{rad}}}$. For any $n \geq 1$, the map $\sigma_{n-1} - 1 : \mathcal{O}_n \to \mathcal{O}_n$ is \mathcal{O}_{n-1} -linear. On the other hand, if n is sufficiently large, there exists an element of \mathcal{O}_n which is mapped by $\sigma_{n-1} - 1$ to an element of \mathcal{O}_{n-1} with absolute value not very small. In fact, if $\chi(\sigma_{n-1}) = 1 + u\pi^k$ with $u \in A_{\pi}^{\times}$ and $p^{n-1} \leq k < p^n$, put $m := \min\{p^{n-1} + k, p^n\}$. Then π_m is in \mathcal{O}_n , and $(\sigma_{n-1} - 1)(\pi_m) = [u](\pi_{m-k})$ is in \mathcal{O}_{n-1} (Here again we used the additivity of the Carlitz module). Thus $(\sigma_{n-1} - 1)(\mathcal{O}_n)$ contains $\pi_{m-k}\mathcal{O}_{n-1}$. Since σ_{n-1} is a power of σ , $(\sigma - 1)(\mathcal{O}_n)$ also contains $\pi_{m-k}\mathcal{O}_{n-1}$. Passing to the union, and noticing that m - k increases geometrically with n, we see that $(\sigma - 1)(\mathcal{O})$ contains the maximal ideal of \mathcal{O} .

The statement for $\mathcal{O} = \mathcal{O}_{L_{\mathbf{x}}^{\mathrm{rad}}}$ follows by noting that $\mathcal{O}_{K_{\mathbf{x}}^{\mathrm{rad}}}$ is a free $\mathcal{O}_{L_{\mathbf{x}}^{\mathrm{rad}}}$ -module which admits a free basis consisting of units of $\mathcal{O}_{M_{\mathbf{x}}}$. This can be seen, for example, by applying repeatedly the decomposition

$$\mathcal{O}_{L_{\omega}^{\mathrm{rad}} \cdot M_{n}} = \bigoplus_{i=0}^{[M_{n}:M_{n-1}]-1} \mathcal{O}_{L_{\omega}^{\mathrm{rad}} \cdot M_{n-1}} \cdot \mu_{n}^{\mathrm{i}},$$

where μ_n is a unit of \mathcal{O}_{M_n} such that $\mathcal{O}_{M_n} = \mathcal{O}_{M_{n-1}}[\mu_n]$.

Now again let \mathcal{O} be either $\mathcal{O}_{K_{\infty}^{\mathrm{rad}}}$ or $\mathcal{O}_{L_{\omega}^{\mathrm{rad}}}$. As above, we can choose a K^{rad} -basis $(\varpi_{\nu})_{\nu \geq 0}$ of $K_{\infty}^{\mathrm{rad}}$ (resp. $L_{\infty}^{\mathrm{rad}}$) consisting of elements, e.g., of $\pi \mathcal{O}^{\times}$. Then any element x of X can be written as a convergent series

$$x:=\sum_{\nu\geq 0}x_{\nu}\cdot \varpi_{\nu},$$

where $x_{\nu} \in K^{\mathrm{rad}}$ and $|x_{\nu}| \to \infty$ as $\nu \to \infty$. Since $\pi \mathcal{O}^{\times}$ is contained in

Galois Cohomology

 $(\sigma - 1)(\mathcal{O})$, there exists for each ν an element $\overline{\omega}'_{\nu}$ of \mathcal{O} such that $(\sigma - 1)(\overline{\omega}'_{\nu}) = \overline{\omega}_{\nu}$. The element

$$x' = \sum_{\nu \ge 0} x_{\nu} \cdot \overline{\varpi}'_{\nu} \in X$$

is then mapped by $\sigma - 1$ to x.

The next step is:

Lemma 3 (cf. [3], Proposition 10). Let K be any complete discrete valuation field with perfect residue field, K_{∞} an infinite APF-extension of K ([4]), and L a Galois extension of K_{∞} . Then we have

$$H^{i}(G_{K_{\infty}}, \widehat{L}) = \begin{cases} 0 & \text{if } i > 0, \\ \widehat{K_{\infty}} & \text{if } i = 0. \end{cases}$$

In particular, we have $\widehat{K_{\infty}} = \widehat{K_{\infty}^{\mathrm{rad}}} (= \widehat{K_{\infty}^{\mathrm{rad}}})$, and hence $\widehat{K_{\infty}}$ is perfect.

Note that our K_{∞} , L_{∞} and M_{∞} are all APF-extensions of K.

As in [3], the above lemma is a formal (though somewhat tricky) consequence of:

Lemma 4 (cf. [3], Proposition 9). Let K_{∞}/K be as above, and let L/K_{∞} be a finite separable extension. Denote by \mathcal{O}_L the valuation ring of L, and by \mathfrak{m}_{∞} the valuation ideal of K_{∞} . Then we have $\operatorname{Tr}_{L/K_{\infty}}(\mathcal{O}_L) \supset \mathfrak{m}_{\infty}$.

Proof. We reproduce the proof of Tate [3], pointing out how to use our assumption. Replacing K by a finite subextension of L/K, we may suppose that there is a finite extension L_0 of K, linearly disjoint from K_{∞} , such that $L = L_0 K_{\infty}$ (see [2], p. 97, Lemma 6). We may also suppose that L_0/K is a Galois extension, because we may replace L/K_{∞} by its Galois closure.

For $u \ge -1$, let K_u be the fixed subfield of K_∞ by the *u*-th ramification group $\operatorname{Gal}(K_\infty/K)^u$ in the upper numbering, and put $L_u := L_0K_u$. Let *v* denote the normalized valuation of *K*. Then the valuation of the different \mathfrak{D}_{Lu/K_u} of L_u/K_u is

$$v(\mathfrak{D}_{L_{u}/K_{u}}) = \int_{-1}^{\infty} \left(\frac{1}{(\operatorname{Gal}(K_{u}/K)^{u}:1)} - \frac{1}{(\operatorname{Gal}(L_{u}/K)^{u}:1)} \right) dy.$$

If $h \in \mathbb{R}$ is so large that $y \ge h$ implies $\operatorname{Gal}(L/K)^{\nu} \subset \operatorname{Gal}(L/L_0)$ (i.e., $\operatorname{Gal}(K_u/K)^{\nu} \simeq \operatorname{Gal}(L_u/K)^{\nu}$ for all $u \ge -1$), then we have

$$v(\mathfrak{D}_{Lu/Ku}) \leq \int_{-1}^{h} \frac{dy}{(\operatorname{Gal}(K_u/K)^{\, y}:1)}.$$

Since K_{∞}/K is APF of infinite degree, for any fixed y, $Gal(K_{\infty}/K)^{u}$ is open in $Gal(K_{\infty}/K)$ and $(Gal(K_{u}/K)^{u}: 1)$ tends to infinity with u. Hence the above integral tends to zero with u.

Recall (from e.g. [2], p. 60, Proposition 7) that, in general, for a finite integral extension B/A of Dedekind domains and an ideal b (resp. a) of B (resp. A), we have

$$\operatorname{Tr}_{B/A}(\mathfrak{b}) \subset \mathfrak{a} \quad \Leftrightarrow \quad \mathfrak{b} \subset \mathfrak{a} \mathfrak{D}_{B/A}^{-1}.$$

Applying this for $\mathfrak{b} = \mathcal{O}_{Lu}$ and $\mathfrak{a} = \operatorname{Tr}_{Lu/Ku}(\mathcal{O}_{Lu})$, we see that

$$\mathfrak{D}_{Lu/Ku} \subset \mathrm{Tr}_{Lu/Ku}(\mathcal{O}_{Lu})\mathcal{O}_{Lu}.$$

Since $v(\mathfrak{D}_{Lu/K_u}) \to 0$ as $u \to \infty$, so does $v(\operatorname{Tr}_{Lu/K_u}(\mathcal{O}_{Lu})\mathcal{O}_{Lu})$. This means that $\operatorname{Tr}_{L/K_u}(\mathcal{O}_L) \supset \mathfrak{m}_{\infty}$. Q.E.D.

Now we can complete the proof of (2) of the Theorem. By Lemma 1, we

No. 7]

Q.E.D.

may assume r = 0. Look at the spectral sequence

 $0 \to H^{1}(\operatorname{Gal}(L_{\infty}/K), H^{0}(G_{L_{\omega}}, C)) \to H^{1}(G_{K}, C) \to H^{1}(G_{L_{\omega}}, C).$ By Lemma 3, $H^{1}(G_{L_{\omega}}, C) = 0$. By Ax (Remark 1, (ii)), $H^{0}(G_{L_{\omega}}, C) = \widehat{L_{\infty}^{\operatorname{rad}}}.$ By Lemma 2, $H^{1}(\operatorname{Gal}(L_{\infty}/K), \widehat{L_{\infty}^{\operatorname{rad}}}) = 0$. Hence we obtain (2).

Remark 2. Lemma 1 shows that C is (and in fact, even $\widehat{K_{\infty}}$ is) "so big" that a topological $A_{\pi}[G_{K}]$ -module loses much information after being tensored with C. This is because we have our element c in C, and at this point, our C might be more analogous to B_{dR} or B_{cris} in the usual p-adic theory, rather than to $C_{p} = \widehat{Q_{p}^{sep}}$ (this observation was communicated to the author by Nobuo Tsuzuki, to whom the author is grateful). But our C does not have enough structures to recover π -adic Galois representations. Is there a cleverer ring than C?

References

- J. Ax: Zeros of polynomials over local fields the Galois action. J. of Algebra, 15, 417-428 (1970).
- [2] J-P. Serre: Corps Locaux (3^e éd.). Hermann, Paris (1980).
- [3] J. Tate: p-divisible groups. Proceedings of a conference on local fields, Driebergen, 1966. Springer-Verlag, Berlin, Heidelberg, New York, pp. 158-183 (1967).
- [4] J-P. Wintenberger: Le corps des normes de certaines extensions infinies de corps locaux; applications. Ann. Sci. Éc. Norm. Sup., 4^e série 16, 59-89 (1983).