50. The Generalized Divisor Problem in Arithmetic Progressions

By Hideki NAKAYA
Department of Mathematics, Kanazawa University
(Communicated by Shokichi Iyanaga, M. J. A., Sept. 14, 1992)

Let $d_{z}(n)$ be a multiplicative function defined by

$$
\zeta^{z}(s)=\sum_{n=1}^{\infty} \frac{d_{z}(n)}{n^{s}}(\sigma>1)
$$

where $s=\sigma+i t, z$ is a complex number, and $\zeta(s)$ is the Riemann zeta function. Here $\zeta^{z}(s)=\exp (z \log \zeta(s))$ and let $\log \zeta(s)$ take real values for real $s>1$.

The following asymptotic formula was considered by G. J. Rieger [5], which is a generalization of Theorem 1 of A. Selberg [6]:

$$
\begin{align*}
D_{z}(x, q, l) \equiv \sum_{\substack{n \leq x \\
n \equiv l(\bmod q)}} d_{z}(n) & =\left(\frac{\varphi(q)}{q}\right)^{z} \frac{x}{\Gamma(z) \varphi(q)}(\log x)^{z-1} \tag{1}\\
+ & O\left(\left(\frac{\varphi(q)}{q}\right)^{z} \frac{x}{\varphi(q)}(\log x)^{\mathscr{R}_{z-2}} \log \log 4 q\right)
\end{align*}
$$

uniformly for $|z| \leq A, q \leq(\log x)^{\tau},(q, l)=1$, where A and τ are any fixed positive numbers.

Next, let $\pi_{k}(x)$ be the number of integers $\leq x$ which are products of k distinct primes. For $k=1, \pi_{k}(x)$ reduces to $\pi(x)$, the number of primes not exceeding x. Selberg considered $D_{z}(x)$ not only for its own sake but also with an intension to derive

$$
\begin{equation*}
\pi_{k}(x)=\frac{x Q(\log \log x)}{\log x}+O\left(\frac{x(\log \log x)^{k}}{k!(\log x)^{2}}\right) \tag{2}
\end{equation*}
$$

uniformly for $1 \leq k \leq A \log \log x$, where $Q(x)$ is polynomial of degree $k-1$.

Now we define $\pi_{k}(x, q, l)$ as a generalization of $\pi_{k}(x)$ by

$$
\pi_{k}(x, q, l) \equiv \sum_{\substack{n \leq x \\ n=\bar{n}(\bmod q) \\ n \equiv p_{k}+p_{k}\left(p_{i} \neq p_{1}\right)}} 1
$$

In this paper we shall consider the connections between the asymptotic formulas of $D_{z}(x, q, l), \pi_{k}(x, q, l)$ and the location of zeros of the Dirichlet L-function. In particular we shall establish some necessary and sufficient conditions for the truth of the Riemann hypothesis, so that this paper gives a generalization of [1] to arithmetic progressions.

The main term of (1) and (2) is, however, inconvenient for our aim so that we introduce the following integrals as the main terms of $D_{z}(x, q, l)$ and $\pi_{k}(x, q, l)$ respectively :

$$
\begin{aligned}
\Phi_{z}(x, q)= & \frac{1}{2 \pi i} \int_{L}\left(L\left(s, \chi_{0}\right)\right)^{z} \frac{x^{s}}{s} d s \\
F_{k, \delta}(x, q)= & \frac{1}{(2 \pi i)^{2}} \int_{|z|=1} \int_{L_{\delta}}\left(L\left(s, \chi_{0}\right)\right)^{z} \\
& \times\left\{\prod_{p}\left(1+\frac{z \chi_{0}(p)}{p^{s}}\right)\left(1-\frac{\chi_{0}(p)}{p^{s}}\right)^{z}\right\} \frac{1}{z^{k+1}} \frac{x^{s}}{s} d s d z
\end{aligned}
$$

where L is, for any $r(0<r<1 / 2)$, the path which begins at $1 / 2$, moves to $1-r$ along the real axis, encircle the point 1 with radius r in the counterclockwise direction, and returns to $1 / 2$ along the real axis, and L_{δ} is, for every δ and any $r(\delta>0, r>0, \delta+r<1 / 2)$, the path which begins at $1 / 2+\delta$, moves to $1-r$ along the real axis, encircle the point 1 with radius r in the counterclockwise direction, and returns to $1 / 2+\delta$ along the real axis. Here we denote by χ_{0} the principal character mod q.

The error terms are defined by

$$
\begin{aligned}
\Delta_{z}(x, q, l) & =D_{z}(x, q, l)-\frac{1}{\varphi(q)} \Phi_{z}(x, q) \\
R_{k, \delta}(x, q, l) & =\pi_{k}(x, q, l)-\frac{1}{\varphi(q)} F_{k, \delta}(x, q)
\end{aligned}
$$

Let

$$
\Theta(\chi)=\sup \{\sigma: L(\sigma+i t, \chi)=0\}, \quad \Theta_{q}=\max _{\chi(\bmod q)} \Theta(\chi)
$$

Theorem 1. There exists some constant c such that

$$
\Delta_{z}(x, q, l) \ll x e^{-c \sqrt{\log x}}
$$

uniformly for $|z| \leq A, q \leq(\log x)^{\tau},(q, l)=1$ where A and τ are any fixed positive numbers.

Further we have

$$
\Delta_{z}(x, q, l) \ll x^{\theta_{q}+\varepsilon}
$$

uniformly for $|z| \leq A, q \leq x,(q, l)=1$.
Conversely if $\Delta_{z}(x, q, l) \ll x^{g+\varepsilon}$ for any $l((q, l)=1)$ and for some $z \in C-Q^{+}$, where Q^{+}denotes the set of all non negative rational numbers, then any $L(s, \chi)(\bmod q)$ has no zeros for $\sigma>\Xi$.

The main term $\Phi_{z}(x, q)$ has an asymptotic expansion

$$
\Phi_{z}(x, q)=x(\log x)^{z-1} \sum_{m=0}^{N-1} \frac{B_{m}(z, q)}{(\log x)^{m} \Gamma(z-m)}+O\left(x(\log x)^{\Re_{z-N-1}}\right)
$$

uniformly for $|z| \leq A$. Here N is any fixed positive integer and $B_{m}(z, q)$ $(0 \leq m \leq N-1)$ are regular functions of z, especially $B_{0}(z, q)=(\varphi(q) / q)^{z}$.

Theorem 2. There is some constant c such that

$$
R_{k, \delta}(x, q, l) \ll x e^{-c \sqrt{\log x}}
$$

uniformly for $k \geq 1, q \leq(\log x)^{\tau},(q, l)=1$.
Further we have

$$
R_{k, \delta}(x, q, l) \ll x^{\theta_{q}+\varepsilon}
$$

uniformly for $k \geq 1, q \leq x,(q, l)=1$.
Conversely if $R_{k, \delta}(x, q, l) \ll x^{g+\varepsilon}$ for any $l((q, l)=1)$ and for some $k \geq$ 1 , then any $L(s, \chi)(\bmod q)$ has no zeros for $\sigma>\Xi$.

The main term $F_{k, \delta}(x, q)$ has an asymptotic expansion

$$
F_{k, \delta}(x, q)=\frac{x}{\log x} \sum_{m=0}^{N-1} \frac{Q_{m, q}(\log \log x)}{(\log x)^{m}}+O\left(\frac{x(\log \log x)^{k-1}}{(\log x)^{N+1}}\right)
$$

for every k and q. Here N is any fixed positive integer and $Q_{m, q}(x)$ are polyno. mials of degree not exceeding $k-1$, especially the coefficient of x^{k-1} of $Q_{0,9}(x)$ is 1 .

Remark. 1. If we define $\boldsymbol{r}_{k, q, l}$ by

$$
r_{k, q, l}=\inf _{\delta}^{\inf \left\{r: R_{k, \delta}(x, q, l) \ll x^{r}\right\}}
$$

Theorem 2 shows that $r_{k, q, l}=\Theta_{q}$. The statement $\Theta_{q}=1 / 2$ for every q is equivalent to the truth of the Riemann hypothesis for Dirichlet L-function.
2. For $k=1$, we can express the main term in terms of the logarithmic integral. Namely,

$$
F_{1, \delta}(x, q)=\int_{2}^{x} \frac{d u}{\log u}+O\left(x^{1 / 2+\delta}\right)
$$

so that

$$
\pi_{1}(x, q, l)=\frac{1}{\varphi(q)} \int_{2}^{x} \frac{d u}{\log u}+O\left(x e^{-c \sqrt{\log x}}\right) .
$$

3. Similar results hold for $\omega_{k}(x, q, l)$ and $\Omega_{k}(x, q, l)$. Here

$$
\omega_{k}(x, q, l) \equiv \sum_{\substack{n=x \\ n=(m) d q) \\ \omega(m)=k}} 1, \quad \Omega_{k}(x, q, l) \equiv \sum_{\substack{n=x, x \\ n=(m o d) \\ \Omega(n)=k}} 1
$$

where $\omega(n)$ means the number of distinct prime factors of n, and $\Omega(n)$ means the number of total prime factors allowing multiplicity.

The proof of Theorems 1 and 2 goes on similar lines as those of [1], using well-known zero free region for $L(s, \chi)$. The detail will apear in [2].

References

[1] H. Nakaya: The generalized divisor problem and the Riemann Hypothesis. Nagoya Math. J. , 122, 149-159 (1991).
[2] -: On the generalized divisor problem in Arithmetic progressions (to appear in Sci. Rep. Kanazawa Univ., 37-1 (1992)).
[3] Prachar: Primzahlverteilung. Springer-Verlag, Berlin, Göttingen, Heidelberg (1957).
[4] G. J. Rieger: Über die Anzahl der als Summe von zwei Quadraten darstellbaren und in einer primen Restklasse gelegenen Zahlen unterhalb einer positiven Schranke. II. J. Reine Angew. Math., 217, 200-216 (1965).
[5] -: Zum teilerproblem von Atle Selberg. Math. Nachr., 30, 181-192 (1965).
[6] A. Selberg: Note on a paper by L. G. Sathe. J. Indian Math., 18, 83-87 (1954).
[7] E. C. Titchmarsh (revised by D. R. Heath-Brown): The Theory of the Riemann Zeta-Function. Oxford University Press, Oxford (1986).

