49. On a Problem of Dinaburg and Sinai

By Akio Fujir
Department of Mathematics, Rikkyo University
(Communicated by Shokichi IYANAGA, M. J. A., Sept. 14, 1992)

§1. Introduction. Let N be a sufficiently large integer. Let
$F_{N}=\{a / b ; 1 \leq a \leq b \leq N,(a, b)=1, a$ and b are integers $\}$.
For any fraction a / b in F_{N}, we can associate the minimum positive integer $x_{0} \leq b$ such that

$$
\left|a x_{0}-b y_{0}\right|=1
$$

for some integer $y_{0} \geq 1$. Let $\alpha_{1}, \beta_{1}, \alpha_{2}$ and β_{2} be real numbers satisfying

$$
0<\alpha_{1}<\beta_{1}<\alpha_{2}<\beta_{2}<1
$$

Then we put

$$
S_{N}=\left\{a / b \in F_{N} ; \alpha_{1} N<a<\beta_{1} N<\alpha_{2} N<b<\beta_{2} N\right\} .
$$

Dinaburg and Sinai [1] have studied the distribution of

$$
x_{0} / b
$$

as a / b belongs to S_{N} and $N \rightarrow \infty$. We shall improve both their results and Remark by Voronin and Tvnek in p. 171 of [1].

For any a / b in F_{N}, we may associate the minimum positive integer $x_{1} \leq b$ such that

$$
a x_{1}-b y_{1}=1
$$

for some integer $y_{1} \geq 1$. We may also treat the distribution of

$$
x_{1} / b
$$

as a / b belongs to F_{N} or S_{N} and $N \rightarrow \infty$.
We may describe x_{0} / b in two ways. For $(a, b)=1$, let \bar{a} be the unique positive integer $\leq b$ such that $a \bar{a} \equiv 1(\bmod b)$. By the definition of x_{0}, we see first that

$$
x_{0}=\operatorname{Min}(\bar{a}, b-\bar{a})
$$

Wenext express x_{0} / b in terms of the continued fraction expansion of a / b. We denote

$$
\frac{1}{a_{1}+\frac{1}{a_{2}+\ddots \ddots_{+\frac{1}{a_{n}}}}}
$$

by $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ and also by p_{n} / q_{n} for $n \geq 1$, where a_{1}, a_{2}, \ldots and a_{n} are positive integers. We define $p_{0}=0$ and $q_{0}=1$. Now suppose that

$$
a / b=\left[a_{1}, a_{2}, \ldots, a_{s}\right]
$$

with the minimum integer $s \geq 1$. Thus we suppose that $a_{s} \geq 2$ unless a / b $=1$. When s is odd, then $p_{s} q_{s-1}-q_{s} p_{s-1}=(-1)^{s+1}$ with $p_{s}=a, q_{s}=b$ and $q_{s-1}=\bar{a}$. Thus

$$
x_{0} / b=\bar{a} / b=q_{s-1} / q_{s}=\left[a_{s}, a_{s-1}, \ldots, a_{2}, a_{1}\right]
$$

When s is even, then $p_{s}=a, q_{s}=b$ and $q_{s-1}=b-\bar{a}$. Thus in this case we
also have

$$
x_{0} / b=(b-\bar{a}) / b=q_{s-1} / q_{s}=\left[a_{s}, a_{s-1}, \ldots, a_{2}, a_{1}\right]
$$

We may notice that for $b \geq 3, \bar{a}<b-\bar{a}$ if and only if s is odd.
Similarly, we see first that $x_{1}=\bar{a}$. If the length s of the continued fraction expansion of a / b is odd, then $q_{s-1}=\bar{a}$ and $x_{1} / b=q_{s-1} / q_{s}=\left[a_{s}, a_{s-1}\right.$, $\left.\ldots, a_{2}, a_{1}\right]$. If s is even, then $q_{s-1}=b-\bar{a}$ and

$$
\begin{aligned}
x_{1} / b=\bar{a} / b=1-\left(q_{s-1} / q_{s}\right)=1 & -\left[a_{s}, a_{s-1}, \ldots, a_{2}, a_{1}\right] \\
& =\left[1, a_{s}-1, a_{s-1}, a_{s-2}, \ldots, a_{2}, a_{1}\right]
\end{aligned}
$$

Namely, we have $x_{1} / b=\left[a_{t}^{\prime}, a_{t-1}^{\prime}, \ldots, a_{2}^{\prime}, a_{1}^{\prime}\right]$ if $a / b=\left[a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{t}^{\prime}\right]$ with the odd integer $t \geq 1$.

Dinaburg and Sinai [1] have reduced their problem to the question of whether a certain special flow over the natural extension of the Gauss transformation in the theory of continued fraction is mixing (cf. p. 165 of [1]). Our approach is elementary and we shall use the estimate of Kloosterman sums as is also noticed in Remarks in p. 171 of [1].
§2. Some lemmas. We start with noticing the following lemma which says that a / b in F_{N} is uniformly distributed.

Lemma 1. For a given B in $0 \leq B<1$,

$$
\sum_{a / b \in F_{N, B} \leq a / b<B+x} \cdot 1=x \frac{N^{2}}{2 \zeta(2)}+O(N \log N)
$$

uniformly for x in $0 \leq x \leq 1-B$, where $1 / \zeta(2)=6 / \pi^{2}$.
Proof. The left hand side is

$$
\begin{aligned}
& =\sum_{d \leq N} \mu(d) \sum_{d \leq N, d \mid b} \sum_{d \mid a, b B} \leq a<b(B+x) \\
& =\sum_{d \leq N} \mu(d) \sum_{d \leq N / d}(x b+O(1))=x \frac{N^{2}}{2 \zeta(2)}+O(N \log N)
\end{aligned}
$$

We next treat the same problem for the fractions in S_{N}. By the definition, a / b in S_{N} must satisfy $A<a / b<A+\Delta$, where we put $A=a_{1} / \beta_{2}$ and $\Delta=\beta_{1} / \alpha_{2}-\alpha_{1} / \beta_{2}$. We shall prove in the following lemma that a / b is not uniformly distributed in the interval $(A, A+\Delta)$.

Lemma 2. For any x in $0 \leq x \leq \Delta$, we have

$$
\sum_{a / b \in S_{N},} \cdot 1<a / b<A+x=g(x) \frac{N^{2}}{\zeta(2)}\left(\beta_{2}-\alpha_{2}\right)\left(\beta_{1}-\alpha_{1}\right)+O(N \log N),
$$

where $g(x)$ will be defined below.
We define $g(x)$ in the following three cases, separately.
Case I. $\beta_{1} / \beta_{2}<\alpha_{1} / \alpha_{2}$.

$$
g(x)=\left\{\begin{array}{lll}
g_{1}(x) & \text { for } & \Delta_{1}<x \leq \Delta \\
\frac{1}{\beta_{2}-\alpha_{2}}\left(\beta_{2}-\frac{1}{2} \frac{1}{A+x}\left(\beta_{1}+\alpha_{1}\right)\right) & \text { for } & \Delta_{2}<x \leq \Delta_{1} \\
g_{2}(x) & \text { for } 0 \leq x \leq \Delta_{2}
\end{array}\right.
$$

where we put $\Delta_{1}=\alpha_{1} / \alpha_{2}-A, \Delta_{2}=\beta_{1} / \beta_{2}-A$,

$$
g_{1}(x)=\frac{1}{\left(\beta_{2}-\alpha_{2}\right)\left(\beta_{1}-\alpha_{1}\right)}\left(\alpha_{1} \alpha_{2}-\frac{1}{2}(A+x) \alpha_{2}^{2}\right.
$$

$$
\left.-\frac{1}{2} \frac{\beta_{1}^{2}}{\mathrm{~A}+x}+\left(\beta_{1}-\alpha_{1}\right) \beta_{2}\right)
$$

and

$$
g_{2}(x)=\frac{1}{\left(\beta_{2}-\alpha_{2}\right)\left(\beta_{1}-\alpha_{1}\right)}\left(\frac{(A+x) \beta_{2}^{2}}{2}+\frac{\alpha_{1}^{2}}{2(A+x)}-\alpha_{1} \beta_{2}\right)
$$

Case II. $\beta_{1} / \beta_{2}>\alpha_{1} / \alpha_{2}$.

$$
g(x)=\left\{\begin{array}{lll}
g_{1}(x) & \text { for } & \Delta_{2}<x \leq \Delta \\
\frac{1}{\beta_{1}-\alpha_{1}}\left(\frac{1}{2}(A+x)\left(\beta_{2}+\alpha_{2}\right)-\alpha_{1}\right) & \text { for } & \Delta_{1}<x \leq \Delta_{2} \\
g_{2}(x) & \text { for } & 0 \leq x \leq \Delta_{1} .
\end{array}\right.
$$

Case III. $\quad \beta_{1} / \beta_{2}=\alpha_{1} / \alpha_{2}$.

$$
g(x)=\left\{\begin{array}{lll}
g_{1}(x) & \text { for } & \Delta_{1}=\Delta_{2}<x \leq \Delta \\
g_{2}(x) & \text { for } & 0 \leq x \leq \Delta_{1}=\Delta_{2}
\end{array}\right.
$$

In any case, we have $g(\Delta)=1$ and $g(0)=0$.
Proof of Lemma 2. In the Case I, we have $\Delta_{2}<\Delta_{1}<\Delta$. We shall treat only for $\Delta_{1}<x \leq \Delta$ in this case, since the rests are similar.

$$
\begin{aligned}
& \sum_{a / b \in S_{N},} \cdot 1=\sum_{A<a / b<A+x} \sum_{\alpha_{2} N<b<\beta_{2} N} \sum_{\substack{\alpha_{1} N<a<\beta_{N} \\
b A<a<b(+x) \\
(a, b)=1}} \cdot 1 \\
& =\sum_{\substack{\alpha_{2} N<b<\beta 2 N \\
\beta_{1} N /(A+x)<b}} \sum_{\substack{\alpha_{1} N<a<\beta_{1} N \\
(a, b)=1}} \cdot 1+\sum_{\substack{\alpha 2 N<b<\beta_{2} N \\
\alpha_{1} N /(A+x)<b \leq \beta_{1} N /(A+x)}} \sum_{\substack{\alpha_{1} N<a<b(a+x) \\
(a, b)=1}} \cdot 1 \\
& =S_{1}+S_{2} \text {, say. } \\
& S_{1}=\sum_{d \leq N} \mu(d) \sum_{\beta_{1} N / d(A+x)<b<\beta_{2} N / d} \sum_{\alpha_{1} N / d<a<\beta_{1} N / d} \cdot 1 \\
& =N^{2}\left(\beta_{1}-\alpha_{1}\right)\left(\beta_{2}-\frac{\beta_{1}}{A+x}\right) \frac{1}{\zeta(2)}+O(N \log N) .
\end{aligned}
$$

We have also

$$
\begin{aligned}
S_{2}= & \sum_{d \leq N} \mu(d) \sum_{\alpha_{2} N / d<b \leq \beta_{1} N / d(A+x)}\left(b(A+x)-\frac{\alpha_{1} N}{d}\right)+O(N \log N) \\
= & N^{2} \frac{1}{\zeta(2)}\left\{\frac{\beta_{1}^{2}}{2(A+x)}-\frac{1}{2}(A+x) \alpha_{2}^{2}-\frac{\alpha_{1} \beta_{1}}{A+x}\right. \\
& \left.+\alpha_{1} \alpha_{2}\right\}+O(N \log N) .
\end{aligned}
$$

These give our result for the present case.
§3. The distribution of $\boldsymbol{x}_{1} / \boldsymbol{b}$. We recall that $x_{1}=\bar{a}$. For any $0 \leq$ $B<1,0 \leq x \leq 1-B$ and any $0 \leq y \leq 1$, we put

$$
F_{N}(B, x, y)=\left\{a / b \in F_{N} ; B \leq a / b<B+x, \bar{a} / b<y\right\}
$$

Similarly, we define, for $0 \leq x \leq \Delta$ and $0 \leq y \leq 1$,

$$
S_{N}(x, y)=\left\{a / b \in S_{N} ; A<a / b<A+x, \bar{a} / b<y\right\}
$$

where A and Δ are the same as in the previous section. We shall evaluate the cardinalities $f_{N}(B, x, y)$ and $s_{N}(x, y)$ of $F_{N}(B, x, y)$ and $S_{N}(x, y)$, respectively. The following theorems will be proved. ε denotes always an
arbitralily small positive number.
Theorem 1. For any $0 \leq B<1,0 \leq x \leq 1-B$ and $0 \leq y \leq 1$, we have

$$
f_{N}(B, x, y)=y x N^{2} / 2 \zeta(2)+O\left(N^{3 / 2+\varepsilon}\right)
$$

Theorem 2. For any $0 \leq x \leq \Delta$ and $0 \leq y \leq 1$, we have

$$
s_{N}(x, y)=y g(x) N^{2} / \zeta(2)\left(\beta_{2}-\alpha_{2}\right)\left(\beta_{1}-\alpha_{1}\right)+O\left(N^{3 / 2+\varepsilon}\right),
$$ where $g(x)$ is the same as in Lemma 2.

As a special case of Theorem 2, we get the following corollary.
Corollary 1. For any y in $0 \leq y \leq 1$, we have

$$
\left|\frac{\#\left\{a / b \in S_{N} ; 0<x_{1} / b<y\right\}}{\# S_{N}}-y\right| \ll N^{-\frac{1}{2}+\varepsilon}
$$

where \# S denotes the cardinality of the set S.
We shall prove only Theorem 2, since Theorem 1 can be proved in a similar manner.

Proof of Theorem 2. Let $\chi_{I}(t)$ be the characteristic function of the interval I. Let δ be a number in $0<\delta<1 / 4$. Suppose first that $2 \delta \leq x \leq 1$ -2δ and $2 \delta \leq y \leq 1-2 \delta$. Then by Vinogradov's Lemma 2 in p. 196 of [3], we get two periodic functions $\Psi_{1}(t)$ and $\psi_{1}(t)$ of period 1 such that
(i) $\quad \Psi_{1}(t)-\chi_{(A, A+x)}(t)=0$ except in

$$
(A-\delta, A) \cup(A+x, A+x+\delta)
$$

$$
\psi_{1}(t)-\chi_{(A, A+x)}(t)=0 \quad \text { except in }
$$

$$
(A, A+\delta) \cup(A+x-\delta, A+x)
$$

$$
0<\Psi_{1}(t)<1 \text { for any } t \text { in }(A-\delta, A) \cup(A+x, A+x+\delta)
$$

and

$$
0<\psi_{1}(t)<1 \text { for any } t \text { in }(A, A+\delta) \cup(A+x-\delta, A+x)
$$

and
(ii) $\quad \Psi_{1}(t)=x+\sum_{m=1}^{\infty}\left(a_{m} e(t m)+b_{m} e(-t m)\right)$
and
$\phi_{1}(t)=x+\sum_{m=1}^{\infty}\left(a_{m}^{\prime} e(t m)+b_{m}^{\prime} e(-t m)\right)$,
where $e(t)=e^{2 \pi i t}$ and

$$
\left|a_{m}\right|,\left|b_{m}\right|,\left|a_{m}^{\prime}\right|,\left|b_{m}^{\prime}\right|<\operatorname{Min}\left(\frac{1}{\pi m}, x, \frac{1}{(\pi m)^{2} \delta}\right)
$$

Similarly, for the interval $[0, y)$ we get two functions $\Psi_{2}(t)$ and $\psi_{2}(t)$ having the same properties as above with the Fourier coefficients $c_{m}, d_{m}, c_{m}^{\prime}$ and d_{m}^{\prime}, respectively.

Using these functions, we have

$$
\sum_{2} \equiv \sum_{a / b \in S_{N}} \psi_{1}\left(\frac{a}{b}\right) \psi_{2}\left(\frac{\bar{a}}{b}\right) \leq \sum_{\substack{a<b \in S_{N} \\ A<a / b<A+x \\ \bar{a} / b<y}} \cdot 1 \leq \sum_{a / b \in S_{N}} \Psi_{1}\left(\frac{a}{b}\right) \Psi_{2}\left(\frac{\bar{a}}{b}\right) \equiv \sum_{1}, \text { say }
$$

We shall treat only Σ_{1}.

$$
\begin{aligned}
\Sigma_{1} & =y \sum_{a / b \in S_{N}} \Psi_{1}\left(\frac{a}{b}\right)+\sum_{a / b \in S_{N}} \Psi_{1}\left(\frac{a}{b}\right)\left(\Psi_{2}\left(\frac{\bar{a}}{b}\right)-y\right) \\
& =y \sum_{a / b \in S_{N}} \chi_{[A, A+x)}\left(\frac{a}{b}\right)+y \sum_{a / b \in S_{N}}\left(\Psi_{1}\left(\frac{a}{b}\right)-\chi_{[A, A+x)}\left(\frac{a}{b}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& +x \sum_{a / b \in S_{N}}\left(\Psi_{2}\left(\frac{\bar{a}}{b}\right)-y\right)+\sum_{a / b \in S_{N}}\left(\Psi_{1}\left(\frac{a}{b}\right)-x\right)\left(\Psi_{2}\left(\frac{\bar{a}}{b}\right)-y\right) \\
= & \sum_{3}+\sum_{4}+\sum_{5}+\sum_{6}, \text { say. }
\end{aligned}
$$

By Lemma 2, we get

$$
\begin{gathered}
\sum_{3}=y g(x)\left(\beta_{2}-\alpha_{2}\right)\left(\beta_{1}-\alpha_{1}\right) \frac{N^{2}}{\zeta(2)}+O(N \log N) \\
\Sigma_{4} \ll \sum_{\substack{a / b \in S_{N} \\
A-\delta \leq a / b \leq A}} \cdot 1+\sum_{\substack{a / b \in S_{N} \\
A+x \leq a / b \leq A+x+\delta}} \cdot 1 \ll \sum_{\substack{a / b \in F_{N} \leq A \\
A-\delta \leq a / b \leq A}} \cdot 1+\sum_{\substack{a / b \in F_{N} \\
A+x \leq a / b \leq A+x+\delta}} \cdot 1 .
\end{gathered}
$$

Applying Lemma 1 to the last two sums, we get

$$
\Sigma_{4} \ll N^{2} \delta+N \log N
$$

We take $H=N$ and $\delta=1 / \sqrt{N}$ below. By the definition of $\Psi_{2}(t)$, we get

$$
\begin{aligned}
\sum_{5} & =x \sum_{a / b \in S_{N}} \sum_{1 \leq m \leq H}\left(c_{m} e\left(\frac{\bar{a}}{b} m\right)+d_{m} e\left(-\frac{\bar{a}}{b} m\right)\right)+O\left(\frac{N^{2}}{H \delta}\right) \\
& \ll \sum_{1 \leq m \leq H} \frac{1}{m}\left|\sum_{a / b \in S_{N}} e\left(\frac{\bar{a}}{b} m\right)\right|+\frac{N^{2}}{H \delta} .
\end{aligned}
$$

Using the estimates on Kloosterman sums (cf. Lemma 4 in p. 36 of Hooley [2]), the last inner sum is

$$
=\sum_{\alpha_{2} N<b<\beta_{2} N} \sum_{\substack{\alpha_{1} N<a<\beta_{1} N \\(a, b)=1}} e\left(\frac{\bar{a}}{b} m\right) \ll \sum_{a_{2} N<b<\beta_{2} N} b^{\frac{1}{2}+\varepsilon}(b, m)^{\frac{1}{2}},
$$

where (b, m) is the greatest common divisor of b and m. Thus we get $\sum_{5} \ll \sum_{1 \leq m \leq H} \frac{1}{m} \sum_{\alpha_{2} N<b<\beta_{2} N} b^{\frac{1}{2}+\varepsilon}(b, m)^{\frac{1}{2}}+\frac{N^{2}}{H \delta} \ll N^{\frac{3}{2}+\varepsilon}$.

We shall finally treat Σ_{6}.

$$
\begin{aligned}
\sum_{6} & =\sum_{a / b \in S_{N}}\left(\sum_{1 \leq j \leq H}\left(a_{j} e\left(\frac{a}{b} j\right)+b_{j} e\left(-\frac{a}{b} j\right)\right)+O\left(\frac{1}{H \delta}\right)\right) \\
& \cdot\left(\sum_{1 \leq m \leq H}\left(c_{m} e\left(\frac{\bar{a}}{b} m\right)+d_{m} e\left(-\frac{\bar{a}}{b} m\right)\right)+O\left(\frac{1}{H \delta}\right)\right) \\
\ll & \sum_{1 \leq j, m \leq H} \frac{1}{j m}\left|\sum_{a / b \in S_{N}} e\left(\frac{a}{b} j+\frac{\bar{a}}{b} m\right)\right| \\
& \left.+\left.\sum_{1 \leq j, m \leq H} \frac{1}{j m}\right|_{a / b \in S_{N}} e\left(-\frac{a}{b} j+\frac{\bar{a}}{b} m\right) \right\rvert\, \\
& +O\left(\frac{\log H}{H \delta} N^{2}\right)+O\left(\frac{N^{2}}{H^{2} \delta^{2}}\right) .
\end{aligned}
$$

Estimating the last two inner sums by Lemma 4 of Hooley [2], we get
$\sum_{6} \ll \sum_{1 \leq j, m \leq H} \frac{1}{j m} \sum_{\alpha_{2} N<b<\beta_{2} N} b^{\frac{1}{2}+\varepsilon}(b, m)^{\frac{1}{2}}+\frac{N^{2} \log N}{H \delta}+\frac{N^{2}}{H^{2} \delta^{2}} \ll N^{\frac{3}{2}+\varepsilon}$.
Thus we have obtained

$$
\Sigma_{1}=y g(x)\left(\beta_{2}-\alpha_{2}\right)\left(\beta_{1}-\alpha_{1}\right) \frac{N^{2}}{\zeta(2)}+O\left(N^{\frac{3}{2}+\varepsilon}\right)
$$

Similarly, we get

$$
\Sigma_{2}=y g(x)\left(\beta_{2}-\alpha_{2}\right)\left(\beta_{1}-\alpha_{1}\right) \frac{N^{2}}{\zeta(2)}+O\left(N^{\frac{3}{2}+\varepsilon}\right) .
$$

Hence, we get

$$
s_{N}(x, y)=y g(x)\left(\beta_{2}-\alpha_{2}\right)\left(\beta_{1}-\alpha_{1}\right) \frac{N^{2}}{\zeta(2)}+O\left(N^{\frac{3}{2}+\varepsilon}\right) .
$$

Similarly, we can treat the case when either $2 \delta \leq x \leq 1-2 \delta$ or $2 \delta \leq y \leq 1-2 \delta$ fails (cf. p. 244 of Vinogradov [3]).
§3. The distribution of $\boldsymbol{x}_{0} / \boldsymbol{b}$. We recall that

$$
x_{0}= \begin{cases}\bar{a} & \text { if } \bar{a} \leq b / 2 \\ b-\bar{a} & \text { if } \bar{a} \geq b / 2,\end{cases}
$$

Thus $0<x_{0} / b \leq 1 / 2$. As a consequence of Theorem 2, we see the following.

Theorem 3. For any x in $0 \leq x \leq \Delta$ and y in $0<y \leq 1 / 2$, we have

$$
u_{N}(x, y)=2 y g(x)\left(\beta_{2}-\alpha_{2}\right)\left(\beta_{1}-\alpha_{1}\right) \frac{N^{2}}{\zeta(2)}+O\left(N^{\frac{3}{2}+\varepsilon}\right)
$$

where $u_{N}(x, y)$ is the cardinality of the set
$U_{N}(x, y)=\left\{a / b \in S_{N} ; A<a / b<A+x\right.$ and $\left.0<x_{0} / b<y\right\}$.
To see this, we notice only that

$$
\begin{aligned}
u_{N}(x, y)= & \sum_{\alpha_{2} N<b<\beta_{2} N} \sum_{\substack{\alpha_{1} N<a<\beta_{1} N,(a, b)=1 \\
A<a / b<A+x, \bar{a} \leq b / 2, \bar{a} / b<y}} \cdot 1 \\
& +\sum_{\alpha_{2} N<b<\beta_{2} N} \sum_{\substack{\left.\alpha_{1} N<a<\beta_{2} N,(a, b)=1 \\
A<a / b<A+x, b / 2<\bar{a}<b, b\right) \\
1-\bar{a} / b<y}} \cdot 1 \\
= & \sum_{\alpha_{2} N<b<\beta_{2} N} \sum_{\substack{\alpha_{1} N<a<\beta_{1} N,(a, b)=1 \\
A<a / b<A+x, \bar{a}, b<y}} \cdot 1 \\
& +\sum_{\alpha_{2} N<b<\beta_{2} N} \sum_{\substack{\alpha_{1} N<\alpha<\beta 1 N N,(a, b)=1 \\
A<a / b<A+x, 1 \\
1}} \cdot 1 .
\end{aligned}
$$

At this stage we use Theorem 2 and get Theorem 3 as described above.
As a special case of this theorem, we get the following corollary.
Corollary 2. For any y in $0<y \leq 1 / 2$, we get

$$
\left|\frac{\#\left\{a / b \in S_{N} ; 0<x_{0} / b<y\right\}}{\# S_{N}}-2 y\right| \ll N^{-\frac{1}{2}+\varepsilon} .
$$

This should be compared with Cor. 1 in the previous section and also with Dinaburg and Sinai's theorem.

References

[1] E. I. Dinaburg and Y. G. Sinai: Statistics of the solutions of the integral equation $a x-b y= \pm 1$. Funct. Anal. Appl., 24, 165-171 (1990).
[2] C. Hooley: Applications of Sieve Methods to the Theory of Numbers. Cambridge Univ. Press (1976).
[3] I. M. Vinogradov: Selected Works. Springer-Verlag (1985).

