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49. On a Problem of Dinaburg and Sinai
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Department of Mathematics, Rikkyo University

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 14, 1992)

1. Introduetion. Let N be a sufficiently large integer. Let
FN {a/b; 1 <_ a <- b <- N, (a, b) 1, a and b are integers}.

For any fractior a/b in FN, we can associate the minimum positive integer

Xo <-- b such that
axo byo 1

for some integer y0 -> 1. Let al, ill, c2 and f12 be real numbers satisfying
0 < ll < 1 < 12 < i2 < 1.

Then we put
SN {a/b FN aN < a < flN < a2N < b < fl2N}.

Dinaburg and Sinai [11 have studied the distribution of
xo/b

as a/b belongs to SN and N---* c. We shall improve both their results and
Remark by Voronin and Tvnek in p.171 of [1].

For any a/b in FN, we may associate the minimum positive integer

x --< b such that
ax- by 1

for some integer yt -> 1. We may also treat the distribution of
Xl/b

as a/b belongs to F or S and N--’ .
We may describe xo/b in two ways. For (a, b) 1, let be the unique

positive integer <-- b such that a7---- 1(rood b). By the definition of Xo, we

see first that
xo Min(& b-- ).

Wenext express xo/b in terms of the continued fraction expansion of a/b.

We denote
1

al % a +.

by [al, a.,...,an] and also by p,/q, gor n > 1, where ax, a,.., and a, ar
positive integers. We defin Po 0 and qo 1. Now suppose that

a/b [a, a,..., a]
with the minimum integer s 1. Thus we suppose that a 2 unless a/b

1. When s is odd, then Psq-- qsPs- (- 1) s+ with Ps a, qs b
and qs- . Thus

xo/b g/b qs-/qs [as, as-,..., a, ax].
When s is even, then p a, q b and q_t b g. Thus in this case we
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also have
xo/b (b- )/b-- qs-/qs [as, as-,..., a, a].

We may notice that for b >- 3, t7 < b if and only if s is odd.
Similarly, we see first that xx 7. If the length s of the continued frac-

tion expansion of a/b is odd, then qs-x and xx/b qs-x/qs [as, as-l,

a., a x]. If s is even, then qs- b and
x/b a/b- 1 (qs-x/qs) 1 [as, as-i,..., a, a]

[1, as- 1, as-l, as-2,..., a2, all.
Namely, we have
with the odd integer t >_ 1.

Dinaburg and Sinai [1] have reduced their problem to the question of
whether a certain special flow over the natural extension of the Gauss trans-
formation in the theory of continued fraction is mixing (of. p. 165 of [1]). Our
approach is elementary and we shall use the estimate of Kloosterman sums
as is also noticed in Remarks in p. 171 of[ll.

2. Some lemmas. We start with noticing the following lemma which
says that a/b in FN is uniformly distributed.

Lemrna 1. For a given B in 0 <- B < 1,
N2 1 =x2(2) + O(NlogN)

a/bFr,B a/b<B+x

uniformly for x in 0 <_ x <_ 1 B, where 1 / (2) 6 /rc.
Proof. The left hand side is

/z(d) .1 t(d) 2 .1
dN dN, dlb dla,bB a<b(B+x) dN b<N/d bB<a<b(B+x)

g, l(d) E (xb+ 0(1)) =x2(2) + 0(NlogN).
dN bN/d

We next treat the same problem for the fractions in SN. By the defini-
tion, a/b in SN must satisfy A < a/b < A + A, where we put A ax/2
and A fix/cz- cx//32. We shall prove in the following lemma that a/b is

not uniformly distributed in the interval (A, A + A).
Lemma2. For any x in O <_ x <_ A, we have

N1 g (x) (2) (/3z ce2) (fix ax) + 0 (N log N),
a/bSr, A<a/b<A+x

where g (x) will be defined below.
We define g(x) in the following three cases, separately.
Case I. fix/i2 < ll/2.

gx (x)
1 (/32g(x) flz--ce2

g2(x)

1 ( + a) )2A+x

for A <X_<A

for Az < x < A

for 0 < x < Az,

where we put A1 =otl A, A. [3/fl- A,

(gx(x) (flz az) (fix cex) aa. -ff (A + x)a
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and

1
2A+x

1 ( (Ag(x) (fl_ a)(fl-- a) 2 2(A + x)
Case II. fl/fl2 > a/2.

g (x) for

g (x) 1- 0[.1

g.(x) for

Case III.
[g(x) for A=A<x<A

g (x)
g2(x) for O<x<A=A.

A2<x<A

A1 < x <_ A2

O <_x<_A.

In any case, we have g (A) 1 and g (0) 0.
Proof of Lemma 2. In the Case I, we have Az < A1 < A. We shall treat

only for A1 < x _< A in this case, since the rests are similar.
E "1 E E "1

a/bSN, A<a/b<A+x a2N<b<B2N oaN<a<flN
hA<a< b(A+x)

(a,b) =1

E E
azN<b<B2N alN<a<B1N
B1N/(A+x)<b (a,b)=l

S + S., say.

1+ E E "1
a2N< <B2N a1N<a< (A +x)

alN/(A +x) <b B1N/(A+x) (a,b

B1N/d(A+x) <b<B2N/d aN/d<a<B1N/d

x/ (2)al) (B2 A +Nz (fl

We have also

32 E /- (d) E
dN a2N/d<b B1N/d(A+x)

+ 0 (N log N).

aN) + 0(Nlog N)b(A + x)

A+x

+ aaz} + O(Nlog N).

N2 1 { fli 1
(2) 2(,4’+x) 2 (A+x)a

These give our result for the present case.

3. The distribution of x/b. We recall that xl- . For any 0--<
B < 1, 0 <- x<- 1-- B and any 0--< y<-- 1, we put

FN(B, x, y) = {a/b FN; B <- a/b < B + x, /b y}.
Similarly, we define, for 0 <_ x _< A and 0 <_ y <_ 1,

SN(X, y) {a/b SN ;A < a/b < A + x, /b < y},

where A and A are the same as in the previous section. We shall evaluate
the cardinalities fN(B, X, y) and SN(X, y) of FN(B, x, y) and SN(X, y),
respectively. The following theorems will be proved, e denotes always an
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arbitralily small positive number.
Theorem 1. For any 0 <-- B < 1, 0 <- x < 1 B and 0 <-- y <-- 1, we

have
fN(B, X, y) yxN/2(2) + O(N/+O.

Theorem 2. For any O <_ x <_ A and O <_ y <_ 1, we have
SN(X y) yg (x) N / (2) (fl .) (fl ) + O (N/+O

where g (x) is the same as in Lemma 2.
As a special case of Theorem 2, we get the following corollary.
Corollary 1. For any y in O -- y -- 1, we have

# {a/b SN;0#SN< Xl/b < y}
--Y <<N-1/2+,

where # S denotes the cardinality of the set S.
We shall prove only Theorem 2, since Theorem 1 can be proved in a

similar manner.

Proof of Theorem 2. Let xx(t) be the characteristic function of the inter-
val /. Let be a number in 0 < < 1/4. Suppose first that 2 --< x <-- 1
--2 and 26--< y--< 1- 26. Then by Vinogradov’s Lemma 2 in p. 196 of
[3], we get two periodic functions l(t) and 1(t) of period 1 such that

(i) (t) X IA,A+x)(t) 0 except in
(A-- ,A) U (A + x,A + x+

bx(t) ZIA,A+x)(t) 0 except in
(A,A+ a) U (A+x--a,A+x),

0< x(t) < lforanytin (A 6, A) U (A W x, A W x + 6)
and
0< (t) < lforany tin (A,A+ #) U (A+x-- #,A+x)

and
(ii) (t) x + ]-_ (ame (tin) + brae (-- tin))
and

(t) x + ]=1 (a’e (tin) + be (-- tin)),

where e(t) e2it and

am 1, Ibm l, a I, b;l < Min

Similarly, for the interval [0, y) we get two functions e(t) and (t)
having the same properties as above with the Fourier coefficients c, d, c
and d, respectively.

Using these functions, we have

2 ()2(),, "1 ()2(),, , say.
a/bSu a/bSu

We shall treat only x.
a/bS

a/bSv
A<a/b<A+x

d/b<y
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-+- 4 -+- -+- , say.
By Lemma 2, we get

NE3 yg (x) (f12 a2) (ill al) (2) + 0 (N log N).

Z4<< Z "1 + Z "1 << Z "1 + Z "1.
a/b espy a/b espy a/beFv a/beFv

A-6 a/bA A+xa/bA+x+6 A-6 a/bA A+xa/bA+x+6

Applying Lemma 1 to the last two sums, we get

4 << N6 + NlogN.
We take H N and 6 1/N below. By the definition of (t), we get

Z X Z Z (Cme m + dine -- m + 0
a/bS m

lmH a/bSN

Using the estimates on Kloosterman sums (cf. Lemma 4 in p. 36 of Hooley
[2]), the last inner sum is

b+ (b, m),
2N<b<BzN qN<a<BN u / a2N<b<B2N

(a,b)=l

where (b, m) is the greatest common divisor of b and m. Thus we get
N

lmgH m a2N<b<BN

We shall finally treat

(ce(m) + de (-m))+ 0())
H

m)

Estimating the last two inner sums by Lemma 4 of Hooley [2], we get
1 b+ N log N N

,,jm ,.N<<,N H6 H6

Thus we have obtained
N.,1-" yg (x) (fl. a) (fl a) (2) + 0 (N-+).

Similarly, we get
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g
yg (x) (fl. cry.)(ill- crl) (2) + oE2

Hence, we get
N

SN(X, y) yg(x) (fl. a2) (ill- al) (2) + O(N-+)"
Similarly, we can treat the case when either 2

_
x

_
1- 2 or

2 -- y -- 1 28 fails (cf. p. 244 of Vinogradov [3]).
3. The distribution of xo/b. We recall that

if < b/2
Xo=

b-- 8 ifS> b/2,
Thus 0 xo/b 1/2. As a consequence of Theorem 2, we see the follow-
ing.

Theorem 3. For any x in 0 -- x _ A and y in 0 < y -- 1/2, we have
NUn(X, y) 2yg(x) (f12- 2) (fl ) (2) + O(N-+)’

where UN(X, y) is the cardinality of the set
UN(X, y) {a/b Sn;A < a/b < A + x and 0 < xo/b < y}.

To see this, we notice only that
uN(x, y) "1

o2N<b<B2N lN<a<BxN,(a, b)=l
A<a/b<A+x, Kb/2, d’/b<y

+ E E "1
a2N<b<B.N OtlN<a<B1N, (a,b)=l

A<a/b<A+x,b/2<<b, 1-/b<y

E E "1
o2N<b<B2N aN<a<BN, (a,b)=l

A<a/b<A+x, ’/b<y

+ E E "1.
o.N<b<BzN aN<a<BN, (a,b)

A<a/b<A+x, 1-y<d’/b<l

At this stage we use Theorem 2 and get Theorem 3 as described above.
As a special case of this theorem, we get the following corollary.
Corollary 2. For any y in 0 < y -- 1/2, we get

# {a/b SN#sN;O < xo/b < y}
--2y <<N-1/2+.

This should be compared with Cot. i in the previous section and also
with Dinaburg and Sinai’s theorem.
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