49. On a Problem of Dinaburg and Sinai

By Akio FUJII

Department of Mathematics, Rikkyo University (Communicated by Shokichi IYANAGA, M. J. A., Sept. 14, 1992)

§1. Introduction. Let N be a sufficiently large integer. Let

 $F_N = \{a/b; 1 \le a \le b \le N, (a, b) = 1, a \text{ and } b \text{ are integers}\}.$ For any fraction a/b in F_N , we can associate the minimum positive integer $x_0 \le b$ such that

$$|ax_0-by_0|=1$$

for some integer $y_0 \ge 1$. Let α_1 , β_1 , α_2 and β_2 be real numbers satisfying $0 < \alpha_1 < \beta_1 < \alpha_2 < \beta_2 < 1$.

Then we put

$$S_N = \{a \mid b \in F_N; \alpha_1 N < a < \beta_1 N < \alpha_2 N < b < \beta_2 N\}.$$

Dinaburg and Sinai [1] have studied the distribution of

$$x_0 / b$$

as a/b belongs to S_N and $N \rightarrow \infty$. We shall improve both their results and Remark by Voronin and Tvnek in p.171 of [1].

For any a/b in F_N , we may associate the minimum positive integer $x_1 \leq b$ such that

$$ax_1 - by_1 = 1$$

for some integer $y_1 \ge 1$. We may also treat the distribution of

$$x_1 / b$$

as a/b belongs to F_N or S_N and $N \rightarrow \infty$.

We may describe x_0/b in two ways. For (a, b) = 1, let \bar{a} be the unique positive integer $\leq b$ such that $a\bar{a} \equiv 1 \pmod{b}$. By the definition of x_0 , we see first that

$$x_0 = Min(\bar{a}, b - \bar{a})$$

We next express x_0/b in terms of the continued fraction expansion of a/b. We denote

$$\frac{1}{a_1 + \frac{1}{a_2 + \cdots + \frac{1}{a_n}}}$$

by $[a_1, a_2, \ldots, a_n]$ and also by p_n/q_n for $n \ge 1$, where a_1, a_2, \ldots and a_n are positive integers. We define $p_0 = 0$ and $q_0 = 1$. Now suppose that $a/b = [a_1, a_2, \ldots, a_s]$

with the minimum integer
$$s \ge 1$$
. Thus we suppose that $a_s \ge 2$ unless $a/b = 1$. When s is odd, then $p_s q_{s-1} - q_s p_{s-1} = (-1)^{s+1}$ with $p_s = a$, $q_s = b$ and $q_{s-1} = \bar{a}$. Thus

$$x_0/b = \bar{a}/b = q_{s-1}/q_s = [a_s, a_{s-1}, \ldots, a_2, a_1].$$

When s is even, then $p_s = a$, $q_s = b$ and $q_{s-1} = b - \bar{a}$. Thus in this case we

also have

 $x_0/b = (b - \bar{a})/b = q_{s-1}/q_s = [a_s, a_{s-1}, \dots, a_2, a_1].$ We may notice that for $b \ge 3$, $\bar{a} < b - \bar{a}$ if and only if s is odd.

Similarly, we see first that $x_1 = \bar{a}$. If the length s of the continued fraction expansion of a/b is odd, then $q_{s-1} = \bar{a}$ and $x_1/b = q_{s-1}/q_s = [a_s, a_{s-1}, \ldots, a_2, a_1]$. If s is even, then $q_{s-1} = b - \bar{a}$ and

$$x_1/b = \bar{a}/b = 1 - (q_{s-1}/q_s) = 1 - [a_s, a_{s-1}, \ldots, a_2, a_1]$$

 $= [1, a_s - 1, a_{s-1}, a_{s-2}, \dots, a_2, a_1].$ Namely, we have $x_1/b = [a'_t, a'_{t-1}, \dots, a'_2, a'_1]$ if $a/b = [a'_1, a'_2, \dots, a'_t]$ with the odd integer $t \ge 1$.

Dinaburg and Sinai [1] have reduced their problem to the question of whether a certain special flow over the natural extension of the Gauss transformation in the theory of continued fraction is mixing (cf. p. 165 of [1]). Our approach is elementary and we shall use the estimate of Kloosterman sums as is also noticed in Remarks in p. 171 of [1].

§2. Some lemmas. We start with noticing the following lemma which says that a/b in F_N is uniformly distributed.

Lemma 1. For a given B in $0 \le B \le 1$,

$$\sum_{a/b \in F_{N,B} \le a/b < B+x} \cdot 1 = x \frac{N^2}{2\zeta(2)} + O(N \log N)$$

uniformly for x in $0 \le x \le 1 - B$, where $1/\zeta(2) = 6/\pi^2$.

Proof. The left hand side is

$$= \sum_{d \le N} \mu(d) \sum_{d \le N, d \mid b} \sum_{d \mid a, bB \le a < b(B+x)} \cdot 1 = \sum_{d \le N} \mu(d) \sum_{b \le N/d} \sum_{bB \le a < b(B+x)} \cdot 1$$
$$= \sum_{d \le N} \mu(d) \sum_{b \le N/d} (xb + O(1)) = x \frac{N^2}{2\zeta(2)} + O(N \log N).$$

We next treat the same problem for the fractions in S_N . By the definition, a/b in S_N must satisfy $A < a/b < A + \Delta$, where we put $A = a_1/\beta_2$ and $\Delta = \beta_1/\alpha_2 - \alpha_1/\beta_2$. We shall prove in the following lemma that a/b is not uniformly distributed in the interval $(A, A + \Delta)$.

Lemma 2. For any x in $0 \le x \le \Delta$, we have

$$\sum_{a/b\in S_N,\ A< a/b< A+x} \cdot 1 = g(x) \frac{N^2}{\zeta(2)} (\beta_2 - \alpha_2) (\beta_1 - \alpha_1) + O(N \log N),$$

where g(x) will be defined below.

We define g(x) in the following three cases, separately.

Case I. $\beta_1/\beta_2 < \alpha_1/\alpha_2$.

$$g(x) = \begin{cases} g_1(x) & \text{for } \Delta_1 < x \leq \Delta \\ \frac{1}{\beta_2 - \alpha_2} \left(\beta_2 - \frac{1}{2} \frac{1}{A + x} \left(\beta_1 + \alpha_1 \right) \right) & \text{for } \Delta_2 < x \leq \Delta_1 \\ g_2(x) & \text{for } 0 \leq x \leq \Delta_2, \end{cases}$$

where we put $\Delta_1 = \alpha_1/\alpha_2 - A$, $\Delta_2 = \beta_1/\beta_2 - A$, $g_1(x) = \frac{1}{(\beta_2 - \alpha_2)(\beta_1 - \alpha_1)} \left(\alpha_1 \alpha_2 - \frac{1}{2} (A + x) \alpha_2^2 \right)$

No. 7]

 $-\frac{1}{2}\frac{\beta_1^2}{A+x}+(\beta_1-\alpha_1)\beta_2\Big)$

and

$$g_2(x) = \frac{1}{(\beta_2 - \alpha_2)(\beta_1 - \alpha_1)} \left(\frac{(A+x)\beta_2^2}{2} + \frac{\alpha_1^2}{2(A+x)} - \alpha_1\beta_2 \right).$$

Case II. $\beta_1/\beta_2 > \alpha_1/\alpha_2.$
$$(g_1(x)) \qquad \qquad \text{for} \quad \Delta_2 < x \le \Delta$$

$$g(x) = \begin{cases} g_1(x) & \text{for } \Delta_2 < x \le \Delta \\ \frac{1}{\beta_1 - \alpha_1} \left(\frac{1}{2} (A + x) (\beta_2 + \alpha_2) - \alpha_1 \right) & \text{for } \Delta_1 < x \le \Delta_2 \\ g_2(x) & \text{for } 0 \le x \le \Delta_1. \end{cases}$$

Case III.
$$\beta_1/\beta_2 = \alpha_1/\alpha_2.$$

 $g(x) = \begin{cases} g_1(x) & \text{for } \Delta_1 = \Delta_2 < x \le \Delta \\ g_2(x) & \text{for } 0 \le x \le \Delta_1 = \Delta_2. \end{cases}$

In any case, we have $g(\Delta) = 1$ and g(0) = 0.

Proof of Lemma 2. In the Case I, we have $\Delta_2 < \Delta_1 < \Delta$. We shall treat only for $\Delta_1 < x \leq \Delta$ in this case, since the rests are similar.

$$\sum_{a/b \in S_N, A < a/b < A+x} \cdot 1 = \sum_{\alpha_2 N < b < \beta_2 N} \sum_{\substack{\alpha_1 N < a < \beta_1 N \\ bA < a < b(A+x) \\ (a,b) = 1}} \cdot 1$$

$$= \sum_{\substack{\alpha_2 N < b < \beta_2 N \\ \beta_1 N / (A+x) < b}} \sum_{\substack{\alpha_1 N < a < \beta_1 N \\ (a,b) = 1}} \cdot 1 + \sum_{\substack{\alpha_2 N < b < \beta_2 N \\ \alpha_1 N / (A+x) < b < \beta_1 N / (A+x)}} \sum_{\substack{\alpha_1 N < a < b(A+x) \\ (a,b) = 1}} \cdot 1$$

$$= S_1 + S_2, \text{ say.}$$

$$S_1 = \sum_{a \le N} \mu(d) \sum_{\substack{\beta_1 N / d(A+x) < b < \beta_2 N / d \\ \beta_1 N / d(A+x) < b < \beta_2 N / d }} \sum_{\alpha_1 N / d < a < \beta_1 N / d}} \cdot 1$$

$$= N^2(\beta_1 - \alpha_1) \left(\beta_2 - \frac{\beta_1}{A+x}\right) \frac{1}{\zeta(2)} + O(N \log N).$$

We have also

$$S_{2} = \sum_{d \le N} \mu(d) \sum_{\alpha_{2}N/d < b \le \beta_{1}N/d(A+x)} \left(b(A+x) - \frac{\alpha_{1}N}{d} \right) + O(N \log N)$$

= $N^{2} \frac{1}{\zeta(2)} \left\{ \frac{\beta_{1}^{2}}{2(A+x)} - \frac{1}{2} (A+x)\alpha_{2}^{2} - \frac{\alpha_{1}\beta_{1}}{A+x} + \alpha_{1}\alpha_{2} \right\} + O(N \log N).$

These give our result for the present case.

§3. The distribution of x_1/b . We recall that $x_1 = \overline{a}$. For any $0 \le B < 1$, $0 \le x \le 1 - B$ and any $0 \le y \le 1$, we put

$$F_N(B, x, y) = \{a/b \in F_N; B \le a/b < B + x, \bar{a}/b < y\}.$$

Similarly, we define, for $0 \le x \le \Delta$ and $0 \le y \le 1$,
 $S_N(x, y) = \{a/b \in S_N; A < a/b < A + x, \bar{a}/b < y\},$

where A and Δ are the same as in the previous section. We shall evaluate the cardinalities $f_N(B, x, y)$ and $s_N(x, y)$ of $F_N(B, x, y)$ and $S_N(x, y)$, respectively. The following theorems will be proved. ε denotes always an

200

arbitralily small positive number.

Theorem 1. For any $0 \le B < 1$, $0 \le x \le 1 - B$ and $0 \le y \le 1$, we have

 $f_N(B, x, y) = yx N^2/2\zeta(2) + O(N^{3/2+\varepsilon}).$

Theorem 2. For any $0 \le x \le \Delta$ and $0 \le y \le 1$, we have

 $s_N(x, y) = yg(x) N^2 / \zeta(2) (\beta_2 - \alpha_2) (\beta_1 - \alpha_1) + O(N^{3/2 + \varepsilon}),$

where g(x) is the same as in Lemma 2.

As a special case of Theorem 2, we get the following corollary.

Corollary 1. For any y in $0 \le y \le 1$, we have $\left| \frac{\# \{a/b \in S_N; 0 \le x_1/b \le y\}}{\# S_N} - y \right| \ll N^{-\frac{1}{2}+\varepsilon},$

where # S denotes the cardinality of the set S.

We shall prove only Theorem 2, since Theorem 1 can be proved in a similar manner.

Proof of Theorem 2. Let $\chi_I(t)$ be the characteristic function of the interval *I*. Let δ be a number in $0 < \delta < 1/4$. Suppose first that $2\delta \leq x \leq 1$ - 2δ and $2\delta \leq y \leq 1 - 2\delta$. Then by Vinogradov's Lemma 2 in p. 196 of [3], we get two periodic functions $\Psi_1(t)$ and $\psi_1(t)$ of period 1 such that

(i) $\Psi_1(t) - \chi_{[A,A+x]}(t) = 0$ except in

$$(A - \delta, A) \cup (A + x, A + x + \delta),$$

$$\psi_1(t) - \chi_{[A,A+x)}(t) = 0 \quad \text{except in}$$

$$(A, A + \delta) \cup (A + x - \delta, A + x),$$

$$0 < \Psi_1(t) < 1 \text{ for any } t \text{ in } (A - \delta, A) \cup (A + x, A + x + \delta)$$

and

$$0 < \psi_1(t) < 1 \text{ for any } t \text{ in } (A, A + \delta) \cup (A + x - \delta, A + x)$$

(ii)

$$\Psi_1(t) = x + \sum_{m=1}^{\infty} (a_m e(tm) + b_m e(-tm))$$

and

$$\psi_1(t) = x + \sum_{m=1}^{\infty} (a'_m e(tm) + b'_m e(-tm)),$$

where $e(t) = e^{2\pi i t}$ and

$$|x - b| + b = |x'| + b' + c \quad \text{Min} \left(\frac{1}{2} - \frac{\pi}{2} - \frac{1}{2} \right)$$

$$|a_{m}|, |b_{m}|, |a'_{m}|, |b'_{m}| < Min\left(\frac{1}{\pi m}, x, \frac{1}{(\pi m)^{2}\delta}\right)$$

Similarly, for the interval [0, y) we get two functions $\Psi_2(t)$ and $\psi_2(t)$ having the same properties as above with the Fourier coefficients c_m , d_m , c'_m and d'_m , respectively.

Using these functions, we have

$$\sum_{2} \equiv \sum_{a/b \in S_{N}} \psi_{1}\left(\frac{a}{b}\right) \psi_{2}\left(\frac{\bar{a}}{b}\right) \leq \sum_{\substack{a/b \in S_{N} \\ A \leq a/b \leq A+x \\ \bar{a}/b \leq y}} \cdot 1 \leq \sum_{a/b \in S_{N}} \Psi_{1}\left(\frac{a}{b}\right) \Psi_{2}\left(\frac{\bar{a}}{b}\right) \equiv \sum_{1}, \text{ say.}$$

We shall treat only \sum_{1} .

$$\Sigma_{1} = y \sum_{a/b \in S_{N}} \Psi_{1}\left(\frac{a}{b}\right) + \sum_{a/b \in S_{N}} \Psi_{1}\left(\frac{a}{b}\right) \left(\Psi_{2}\left(\frac{\bar{a}}{b}\right) - y\right)$$
$$= y \sum_{a/b \in S_{N}} \chi_{[A,A+x]}\left(\frac{a}{b}\right) + y \sum_{a/b \in S_{N}} \left(\Psi_{1}\left(\frac{a}{b}\right) - \chi_{[A,A+x]}\left(\frac{a}{b}\right)\right)$$

and

[Vol. 68(A),

$$+ x \sum_{a/b \in S_N} \left(\Psi_2 \left(\frac{\bar{a}}{b} \right) - y \right) + \sum_{a/b \in S_N} \left(\Psi_1 \left(\frac{\bar{a}}{b} \right) - x \right) \left(\Psi_2 \left(\frac{\bar{a}}{b} \right) - y \right)$$

$$= \sum_3 + \sum_4 + \sum_5 + \sum_6, \text{ say.}$$

By Lemma 2, we get

$$\sum_{3} = yg(x) \left(\beta_{2} - \alpha_{2}\right) \left(\beta_{1} - \alpha_{1}\right) \frac{N^{2}}{\zeta(2)} + O(N \log N).$$

$$\begin{split} \sum_{4} \ll \sum_{\substack{a/b \in S_N \\ A-\delta \leq a/b \leq A}} \cdot 1 + \sum_{\substack{a/b \in S_N \\ A+x \leq a/b \leq A+x+\delta}} \cdot 1 \ll \sum_{\substack{a/b \in F_N \\ A-\delta \leq a/b \leq A}} \cdot 1 + \sum_{\substack{a/b \in F_N \\ A+x \leq a/b \leq A+x+\delta}} \cdot 1. \\ \text{Applying Lemma 1 to the last two sums, we get} \\ \sum_{4} \ll N^2 \delta + N \log N. \end{split}$$

We take $H = N$ and $\delta = 1/\sqrt{N}$ below. By the definition of $\Psi_2(t)$, we get

$$\sum_{5} = x \sum_{a/b \in S_{N}} \sum_{1 \le m \le H} \left(c_{m} e \left(\frac{\bar{a}}{b} m \right) + d_{m} e \left(- \frac{\bar{a}}{b} m \right) \right) + O \left(\frac{N^{2}}{H \delta} \right)$$
$$\ll \sum_{1 \le m \le H} \frac{1}{m} \bigg| \sum_{a/b \in S_{N}} e \left(\frac{\bar{a}}{b} m \right) \bigg| + \frac{N^{2}}{H \delta}.$$

Using the estimates on Kloosterman sums (cf. Lemma 4 in p. 36 of Hooley [2]), the last inner sum is

$$= \sum_{\substack{\alpha_{2N} < b < \beta_{2N} \\ (a,b)=1}} \sum_{\substack{\alpha_{1N} < a < \beta_{1N} \\ (a,b)=1}} e\left(\frac{\bar{a}}{b} m\right) \ll \sum_{\substack{a_{2N} < b < \beta_{2N} \\ a_{2N} < b < \beta_{2N}}} b^{\frac{1}{2}+\varepsilon}(b, m)^{\frac{1}{2}},$$

where (b, m) is the greatest common divisor of b and m. Thus we get $\sum_{5} \ll \sum_{1 \le m \le H} \frac{1}{m} \sum_{\alpha_{2N} < b < \beta_{2N}} b^{\frac{1}{2} + \varepsilon} (b, m)^{\frac{1}{2}} + \frac{N^2}{H\delta} \ll N^{\frac{3}{2} + \varepsilon}.$

We shall finally treat
$$\Sigma_6$$
.

$$\begin{split} \sum_{6} &= \sum_{a/b \in S_{N}} \left(\sum_{1 \leq j \leq H} \left(a_{j}e\left(\frac{a}{b}j\right) + b_{j}e\left(-\frac{a}{b}j\right) \right) + O\left(\frac{1}{H\delta}\right) \right) \\ &\cdot \left(\sum_{1 \leq m \leq H} \left(c_{m}e\left(\frac{\bar{a}}{b}m\right) + d_{m}e\left(-\frac{\bar{a}}{b}m\right) \right) + O\left(\frac{1}{H\delta}\right) \right) \\ &\ll \sum_{1 \leq j,m \leq H} \frac{1}{jm} \left| \sum_{a/b \in S_{N}} e\left(\frac{a}{b}j + \frac{\bar{a}}{b}m\right) \right| \\ &+ \sum_{1 \leq j,m \leq H} \frac{1}{jm} \left| \sum_{a/b \in S_{N}} e\left(-\frac{a}{b}j + \frac{\bar{a}}{b}m\right) \right| \\ &+ O\left(\frac{\log H}{H\delta}N^{2}\right) + O\left(\frac{N^{2}}{H^{2}\delta^{2}}\right). \end{split}$$

Estimating the last two inner sums by Lemma 4 of Hooley [2], we get $\sum_{6} \ll \sum_{1 \le j,m \le H} \frac{1}{jm} \sum_{\alpha_{2N} < b < \beta_{2N}} b^{\frac{1}{2}+\varepsilon}(b, m)^{\frac{1}{2}} + \frac{N^2 \log N}{H\delta} + \frac{N^2}{H^2 \delta^2} \ll N^{\frac{3}{2}+\varepsilon}.$

Thus we have obtained

$$\sum_{1} = yg(x)(\beta_{2} - \alpha_{2})(\beta_{1} - \alpha_{1})\frac{N^{2}}{\zeta(2)} + O(N^{\frac{3}{2}+\epsilon}).$$

Similarly, we get

$$\Sigma_2 = yg(x)(\beta_2 - \alpha_2)(\beta_1 - \alpha_1)\frac{N^2}{\zeta(2)} + O(N^{\frac{3}{2}+\varepsilon}).$$

Hence, we get

$$s_N(x, y) = yg(x)(\beta_2 - \alpha_2)(\beta_1 - \alpha_1) \frac{N^2}{\zeta(2)} + O(N^{\frac{3}{2}+\epsilon}).$$

Similarly, we can treat the case when either $2\delta \le x \le 1 - 2\delta$ or $2\delta \le y \le 1 - 2\delta$ fails (cf. p. 244 of Vinogradov [3]).

§3. The distribution of x_0 / b . We recall that

$$x_0 = \begin{cases} \bar{a} & \text{if } \bar{a} \le b/2\\ b - \bar{a} & \text{if } \bar{a} \ge b/2, \end{cases}$$

Thus $0 < x_0/b \le 1/2$. As a consequence of Theorem 2, we see the following.

Theorem 3. For any x in $0 \le x \le \Delta$ and y in $0 < y \le 1/2$, we have $u_N(x, y) = 2yg(x)(\beta_2 - \alpha_2)(\beta_1 - \alpha_1)\frac{N^2}{\zeta(2)} + O(N^{\frac{3}{2}+\varepsilon}),$

where
$$u_N(x, y)$$
 is the cardinality of the set
 $U_N(x, y) = \{a/b \in S_N; A < a/b < A + x \text{ and } 0 < x_0/b < y\}.$
To see this, we notice only that
 $u_N(x, y) = \sum_{\substack{\alpha_{2N} < b < \beta_{2N} \\ \alpha_{2N} < \beta_{2N} \\ \alpha_{2N}$

At this stage we use Theorem 2 and get Theorem 3 as described above. As a special case of this theorem, we get the following corollary.

Corollary 2. For any y in
$$0 < y \le 1/2$$
, we get

$$\left| \frac{\# \{a/b \in S_N; 0 < x_0/b < y\}}{\# S_N} - 2y \right| \ll N^{-\frac{1}{2}+\varepsilon}$$

This should be compared with Cor. 1 in the previous section and also with Dinaburg and Sinai's theorem.

References

- [1] E. I. Dinaburg and Y. G. Sinai: Statistics of the solutions of the integral equation $ax by = \pm 1$. Funct. Anal. Appl., 24, 165-171 (1990).
- [2] C. Hooley: Applications of Sieve Methods to the Theory of Numbers. Cambridge Univ. Press (1976).
- [3] I. M. Vinogradov: Selected Works. Springer-Verlag (1985).

No. 7]