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Introduction. In the index theory for a pair of type IIl-factors, Jones’
projections play an important role. A family of Jones’ projections is a se-
quence of projections {ei; 1,2,. .} satisfying the following condition
which we call Jones’ relations"

(a) eieietei /ei for i > 1 with a fixed constant/ (0 < / < 1),
(b) ee ee for li-jl -> 2,
(c) tr(eoo) 2tr(oo) for any word co on el,...

where tr is the canonical trace on {ei; 1,2,""
In this paper, we extend such a family by adding some number of pro-

jections. A neccesary and sufficient condition for the existence of such a
family is given by Theorems 1 and 2. For a family of extended Jones’ projec-
tions {ei, fi;i= 1,2,’’’, l<_j<_ m}, putA= {e,fi;i= 1,2,..., l<_j
_< m}" and B= {e;i= 1,2,. .}". We calculate the index [A’B] and
show that the relative commutant B’ fl A is trivial. Furthermore we specify
the fixed point subalgebras Aa c A of automorphisms a" A- A, defined by
permutations of {fi;1 <_ i N m}, and then calculate indices [A" A].

1. Family of extended Jones’ projections.
Definition 1. Let m,n Nand {e,fi;i-> 1, l_<j_< m} be a family

of non-zero projections of M, a type Hi-factor, such that
(R-l) ee+e 2e for i >_ 1,
(R-2) ee_lei 2e for i >-- 2; eljel ael for 1 <- j --< 1,
(R-3) ee= ee forli-jl 22; ed=fie fori_>2, I <_j<_ 1,
(R-4) tr(eco) 2tr(oo) for any word co on 1, f,..., fm, el,...,ei-1,

where tr is the canonical trace on M,
(R-5) . f 1,

where 1-1 4cos2(rr/(n -+- 2)), cr R, 0 < al -< or2 _< -< am. We
call the above relations (R-1)---(R-5) the extended Jones’ relations, and projec-
tions {ei, f i >- 1, 1 <- j <- m} extended Jones’ projections.

Theorem 1. Let M be a type Hi-factor. If there exists a family of extended

Jones’ projections corresponding to the data (n; c1,... ,am), then (n;
,am) is one of the following:

(n;2 2,__.) (O<-k<_ In--2])2 (2k;o, 20, -.) (k >- 2),

(10 ;/o, 1, 21), (16 20, 21, 2.), (28 20, ,1, 2a),
where , sin(k + 1)O,/(2cosO,sin(k + 2)0,) and 0 7r/(n -t- 2).
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Proof Since a sequence {fi, el, e,’’ ") is a tower of projections corre-
sponding to {ocj, 2, 2,’"}, ocj must be one of {/ ;0 < j <-- n 2} in Cot. 2.
11 of [4], and/ /o < 2 < < 2n-. So we have 2. Moreover from
relation (R-5), we get 1 . a m, hence m 2-. Hence m 2 or 3
and 2- m.

(a) CASE OF m 2" By simple calculation, we get , + n-,- 1. So

weobtain (n’a, ) (n’2, 2n-,-) for some k 0 k< -In-- 2]-
(b) CASEOFm 3" Since2-a m, 2- 4cosZ(/(n+ 2)),wehave

n 4. And a a implies that a 1/3. On the other hand 1/3
( n-, so a o. By o+ + a 1 and

(1 o)/2. Moreover > (1 o)/2 and so a o or .
b) CASEOF a= 2o" Since a= 1-- 2o {;0 E iE n-- 1}, we

have a3 , for some k, 0 k n- 1. Then 1 2o By a simple
calculation, n 2k + 4.

b) CASE OF a 1" Here a 1 o- 2. We obtain
or Ra because 4 > 1--o--. Assume that aa , then we get trigo-

nometric equation
sin sin 5 sin

2 cos sin 2, sin 3, 2 sin sin 3"
Solving this equation, we obtain n 10. Similarly
implies n = 16 (resp. n 28).

For any of the above data (n;a,...,am), there exists a family of ex-

tended Jones’ projections, or we have the following existence theorem.
Theorem . Let M be a type IIl-factor. Then for everyone of data

(n’, __) with 0 k -In-- 2]"2 (2k; o, Ro, R,-e) with k 2,

(10 io, , I), (16 Io, i, I) or (28 io, I, i) there exists a family of ex-

tended Jones" projections corresponding to it.

Actually we construct a family of extended Jones’ projections by use of
string algebra, as explained below.

Let G be an unoriented pointed graph. Moreover we require that G be
bipartite, locally finite and accessible. Denote a distinguished point by

Definition 2 (cf. [3]). For x, y G (), n N, we put
Pathn) the set of paths of length n with source x,
P-t () { Path ()
-..x., r()=y},

String> the set of strings of length n with source x,
H Hilbert space with orthonormal basis Path).
For a string p (p+, p_) String, we represent p on H by p

(p_, )p+ for H, and denote by An a finite dimensional C*-algebra
generated by String$).

Let g be a weight which is a map G () R+ { > 0} with p($)
1, and A be Laplacian of G. Assume that p is harmonic i.e. Ap tip with

fl R+ and define a trace tr on A, by tr(p) fl-’(r(p))6(p+, p_) for
p (p+, p_) String>. For n N a projection e, A,+ is defined by
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"Path-1) ,,Patg) (r (a))
Then it can be proved by calculations that the sequence (e ;n 1,2,’’ "}
satisfies the following relations (el. [3]):

(a) e,e,en fl-2en for n N (b) enem eme for [m n] 2 2
(c) tr(em+) fl-tr() for any word in e,..., e.
Moreover for an x G () such that Path,,x , we define a projection

fx A by fx Path) (, ). Then the next proposition gives the rela-
tions between fx and en.

Proposition 1. (1) edxe (Path () (x)-,x] el,

(2) Ae ef for n 2 2.
Let us now construct a family of extended Jones’ projections.
1) CASE OF (n ;2, 2n--z) Let G be a Dynkin diagram of type A+

and the distinguished point be a vertex with distance k + 1 from the end
vertex.

An+ o o o ,o o
(l) (2) (h+l) (h+2) (h+:) (n+l)

Then fl 2 cos (n/(n + 2)), ((i)) siniO/sin (k + 2) 0. Take e, fx
with x (k + 1), (k + 3), and denote +), f(+a) by , A respectively.
From [3] and Proposition 1, we see that {e, f, f n 1} is a family of ex-
tended Jones’ projections corresponding to (n 2, 2__).

2) CnSE OF (2k; 2o, 20, 2-) or (n ;20, 2, 2)(1 i 3): Let G be a
Dynkin diagram of type D+ or E+s respectively and the distinguished
point be a vertex which is a source point of three edges. /O

/(+)
o o o o

D+ () (2) () (-

(4) (+2)

Ei+s o o ,o o
() () () () (i+)

Similarly we can construct a family of extended Jones’ projections.

2. The indieies of the pairs of II-faetors. Here for a pair of type
II-factors A B generated by a family of extended Jones’ projections, we
give index [A:B] by using Wenzl’s index formula.

Theorem 3. Let M be a type II-factor, {e,A;i 1, l j m} be a
family of extended Jones’ projections in M corresponding to (n a," ,a) and
A= {e,A;i 1, 1 jm} ",B- {e;i 1} ". Ten A and B are
hyperfinite type II-factors and the index [A:B] is given as follows:

[A" B] sin2(k + 2)0, with 0
sin20n n + 2"

2) Case of (n ;, 2, ) (2k;20,
2cot20.
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3) Case of (n dl, d2, d3) (10 ;o, 21, 1) [A’B] 18 + 10/-.
4) Case of (n dl, a2, d3) (16 ;20, /]1, /]2)

[A’B] -9{2sin0 ( sin20 + sin0 + 1)} -sin40, sin30,
5) Case of (n all, d2, da) = (28 o, /1, 2a)

[A" B] 15 2sin0, sin0 + sin"30" + sin"0" + 1
sin50, sin50, sin30,

3. Relative commutant B fq A.
Theorem 4. Let M be a type HI-factor, {ei, J 2 1, 1 <- j <- m} be a

family of extended Jones’ projections in M corresponding to (n dl, ", din) and
A {e;fi > 1, 1 _< j _< m}", B {e; i > 1}". Then relative commutant
B" C A is trivial.

Proof. Here we give the proof in case of (;dl, de,)- (;,

n-k-.) (0 <k < [n 2])2 Other cases can be treated similarly.

Let G be a Dynkin diagram of type An+l, the distinguished point $ be a ver-
tex with distance k + 1 from the end vertex and A(G) be a hyperfinite

IIl-factor generated by string algebras of G. Then we can construct a family
of extended Jones’ projections {e, i >_ 1, 1 < j <_ 2} corresponding
to(n,a, a.) (n;2,2,__.) and put A= {e,fi;i= 1,2, ,l<_j
<-m}" and B {ei;i 1,2,’’ "}". From Theorem 3, we have [A" B]
sin(k + 2)0/(sinZ0D. On the other hand, A(G) B] sinZ(k + 2)0./
(sin0,) by Prop. 4. 5. 2 of [1]. Since A(G) A B, we obtain A(G) A.
So by A(G) f B"= C it follows that A B’= C.

4. Fixed point subalgebras for permutations of fi’s. For a family of
extended Jones’ projections {ei, f > 1, 1 <- j < 3} we define von
Neumann subalgebras A(j) of A (j 1, 2, 3) by A(j) {ei, f;i >_ 1}".
Since {e,f;1--fi;i> 1} is a family of extended Jones’ projections cor-

responding to (n;d, 1- d), we have, by Theorem 3, that A(j) is a
hyperfinite IIl-factor and [A(j)" B] sinZ(k + 2)0/(sinZ0,), where k is
an integer such that

Since [A’B]--[A’A(j)][A(j)’B], the next theorem follows by
Theorem 3 and a simple calculation.

Theorem 5. Let A and A(j) be as above. Then index for a pair A A(j)
is given as follows.

1) Case of (n cq, d., d)
[A :A(1)] [A :A(2)]

2) Case of (n ;dl, d., d3)
[A :A(1)] 6 + 2/, [A

3) Case of (n ;all, d, d)

(2k 2o,/o, ,k-) (k _> 2)
(2sin0.) -, [A :A(3)] 2.
(10 ;20, 9.1, /1)
:A(2)] [A :A(3)] 3 + /-.
(16;/lo, /ll, /t.)

[A:A(j)] 9fl{2sin(j + 1)0) -1 (j 1, 2, 3),

where fl-l= sin20. + sin"0" + 1.
sin40, sin30,

4) Case of (n dl, de, d3) (28 ;/o, /1, /3)
[A :A(j)] 15r{2sin(k + 2)0,} - (] 1, 2, 3),
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where 7
-1-" sin"0 + sin"30 + sin"0______+ 1 and (k, k,., k) (0,1,3).

sin50 sin50, sin’30
Now let us consider automorphisrns of A by permutations of {f;1

j K m}. If a Aut(A) and a(fi) A, then tr(f) tr(a(fi)) tr(f) i.e.
c c. So there exists such an automorphisrn, if and only if

(n c1, c,) (2k ;/k-1, Rk-1) with k >_ 1, or
(n c1, c2, a3) (2k ;2o,/o, /k-2) with k >- 2, or (10 ;/o,

Here we consider fixed point algebras in case of (n c1, ct2) (2k -1,
,-1) with k -> 2 and (n ;al, a., a3) (10 ;,o, ,1,

1) CASE OF (n ;c1, c.) (2k ;/_1, /-1) for k 2" Take a Aut(A)
such that a(fl) f,., a(f.) fl and a(ei) ei for i--> 1. Since A =A
B and B’ a A C, a is an outer automorphism of A. Hence [A’A

2. On the other hand, A" B] (sin0n) -1 from Theorem 3. Since
[A’B] (sinO)- 2 [A’A], we have AB and [A’B] (2
sin"0n) -1. It follows that (A) A C from B’ Cl A C.

2) CASE OF (n ;al, a,., a) (10 ;,o, ,1, ,1) Define a Aut(A) by
a ffl)--fl, aft2)--A, aft3)--A and a(ei)= ei for _> 1. Comparing in-
dicies, we have A A (1) and [A A(1)] 3 + /-.

From the above arguments, we obtain the next theorem.
Theorem 6. Notations are as above.
1) Case of (n al, c2) (2k ,-1, /k-1) with k 2

As’ B, [As’.. B] (2sin0,) -, B" As’. C.
2) Case of (n al, a,.) (10 ,o, ,

1,
, 1)

As’. A(1), [AS"A(1)] 3 + x/, A(1)’ Cl As C.

[11
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[51
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