47. Extension of Jones' Projections

By Atsushi Sakuramoto
Department of Mathematics, Faculty of Science,
Kyoto University
(Communicated by Kiyosi ITô, M. J. A., Sept. 14, 1992)

Introduction. In the index theory for a pair of type II_{1}-factors, Jones' projections play an important role. A family of Jones' projections is a sequence of projections $\left\{e_{i} ; i=1,2, \cdots\right\}$ satisfying the following condition which we call Jones' relations:
(a) $e_{i} e_{i \pm 1} e_{i}=\lambda e_{i}$ for $i \geq 1$ with a fixed constant $\lambda(0<\lambda<1)$,
(b) $e_{i} e_{j}=e_{j} e_{i}$ for $|i-j| \geq 2$,
(c) $\operatorname{tr}\left(e_{i} \omega\right)=\lambda \operatorname{tr}(\omega)$ for any word ω on e_{1}, \ldots, e_{i-1},
where tr is the canonical trace on $\left\{e_{i} ; i=1,2, \cdots\right\}^{\prime \prime}$.
In this paper, we extend such a family by adding some number of projections. A neccesary and sufficient condition for the existence of such a family is given by Theorems 1 and 2 . For a family of extended Jones' projections $\left\{e_{i}, f_{j} ; i=1,2, \cdots, 1 \leq j \leq m\right\}$, put $A=\left\{e_{i}, f_{j} ; i=1,2, \cdots, 1 \leq j\right.$ $\leq m\} "$ and $B=\left\{e_{i} ; i=1,2, \cdots\right\} "$. We calculate the index $[A: B]$ and show that the relative commutant $B^{\prime} \cap A$ is trivial. Furthermore we specify the fixed point subalgebras $A^{\sigma} \subset A$ of automorphisms $\sigma: A \rightarrow A$, defined by permutations of $\left\{f_{i} ; 1 \leq i \leq m\right\}$, and then calculate indices [$A: A^{\sigma}$].

§1. Family of extended Jones' projections.

Definition 1. Let $m, n \in \boldsymbol{N}$ and $\left\{e_{i}, f_{j} ; i \geq 1,1 \leq j \leq m\right\}$ be a family of non-zero projections of M, a type $I I_{1}$-factor, such that
(R-1) $e_{i} e_{i+1} e_{i}=\lambda e_{i}$ for $i \geq 1$,
(R-2) $e_{i} e_{i-1} e_{i}=\lambda e_{i}$ for $i \geq 2$; $\quad e_{1} f_{j} e_{1}=\alpha_{j} e_{1}$ for $1 \leq j \leq l$,
(R-3) $e_{i} e_{j}=e_{j} e_{i}$ for $|i-j| \geq 2$; $\quad e_{i} f_{j}=f_{j} e_{i}$ for $i \geq 2,1 \leq j \leq l$,
$(\mathrm{R}-4) \operatorname{tr}\left(\mathrm{e}_{i} \omega\right)=\lambda \operatorname{tr}(\omega)$ for any word ω on $1, f_{1}, \ldots, f_{m}, e_{1}, \ldots, e_{i-1}$,
where $t r$ is the canonical trace on M,
(R-5) $\sum_{j} f_{j}=1$,
where $\lambda^{-1}=4 \cos ^{2}(\pi /(n+2)), \alpha_{j} \in \boldsymbol{R}, 0<\alpha_{1} \leq \alpha_{2} \leq \cdots \leq \alpha_{m}$. We call the above relations $(\mathrm{R}-1) \sim(\mathrm{R}-5)$ the extended Jones' relations, and projections $\left\{e_{i}, f_{j} ; i \geq 1,1 \leq j \leq m\right\}$ extended Jones' projections.

Theorem 1. Let M be a type $I I_{1}$-factor. If there exists a family of extended Jones' projections corresponding to the data ($n ; \alpha_{1}, \ldots, \alpha_{m}$), then ($n ; \alpha_{1}, \ldots$,α_{m}) is one of the following:

$$
\begin{aligned}
& \quad\left(n ; \lambda_{k}, \lambda_{n-k-2}\right)\left(0 \leq k \leq\left[\frac{n-2}{2}\right]\right),\left(2 k ; \lambda_{0}, \lambda_{0}, \lambda_{k-2}\right)(k \geq 2), \\
& \left(10 ; \lambda_{0}, \lambda_{1}, \lambda_{1}\right),\left(16 ; \lambda_{0}, \lambda_{1}, \lambda_{2}\right),\left(28 ; \lambda_{0}, \lambda_{1}, \lambda_{3}\right), \\
& \text { where } \lambda_{k}=\sin (k+1) \theta_{n} /\left(2 \cos \theta_{n} \sin (k+2) \theta_{n}\right) \text { and } \theta_{n}=\pi /(n+2) .
\end{aligned}
$$

Proof. Since a sequence $\left\{f_{i}, e_{1}, e_{2}, \cdots\right\}$ is a tower of projections corresponding to $\left\{\alpha_{j}, \lambda, \lambda, \cdots\right\}, \alpha_{j}$ must be one of $\left\{\lambda_{j} ; 0 \leq j \leq n-2\right\}$ in Cor. 2 . 11 of [4], and $\lambda=\lambda_{0}<\lambda_{1}<\cdots<\lambda_{n-1}$. So we have $\alpha_{j} \geq \lambda$. Moreover from relation (R-5), we get $1=\sum_{j=1}^{m} \alpha_{j} \geq m \lambda$, hence $m \leq \lambda^{-1}$. Hence $m=2$ or 3 and $\lambda^{-1} \geq m$.
(a) CASE OF $m=2$: By simple calculation, we get $\lambda_{k}+\lambda_{n-k-2}=1$. So we obtain ($n ; \alpha_{1}, \alpha_{2}$) $=\left(n ; \lambda_{k}, \lambda_{n-k-2}\right.$) for some $k, 0 \leq k \leq\left[\frac{n-2}{2}\right]$.
(b) CASE OF $m=3$: Since $\lambda^{-1} \geq m, \lambda^{-1}=4 \cos ^{2}(\pi /(n+2)$), we have $n \geq 4$. And $\alpha_{1} \leq \alpha_{j}$ implies that $\alpha_{1} \leq 1 / 3$. On the other hand $1 / 3<\lambda_{1}<$ $\cdots<\lambda_{n-1}$, so $\alpha_{1}=\lambda_{0}$. By $\lambda_{0}+\alpha_{1}+\alpha_{2}=1$ and $\alpha_{2} \leq \alpha_{3}$, we get $\alpha_{2} \leq$ $\left(1-\lambda_{0}\right) / 2$. Moreover $\lambda_{2}>\left(1-\lambda_{0}\right) / 2$ and so $\alpha_{2}=\lambda_{0}$ or λ_{1}.
b_{1}) CASE OF $\alpha_{2}=\lambda_{0}$: Since $\alpha_{3}=1-2 \lambda_{0} \in\left\{\lambda_{i} ; 0 \leq i \leq n-1\right\}$, we have $\alpha_{3}=\lambda_{k}$ for some $k, 0 \leq k \leq n-1$. Then $\lambda_{k}=1-2 \lambda_{0}$ By a simple calculation, $n=2 k+4$.
b_{2}) CASE OF $\alpha_{2}=\lambda_{1}$: Here $\alpha_{3}=1-\lambda_{0}-\lambda_{1}$. We obtain $\alpha_{3}=\lambda_{1}, \lambda_{2}$ or λ_{3} because $\lambda_{4}>1-\lambda_{0}-\lambda_{1}$. Assume that $\alpha_{3}=\lambda_{1}$, then we get trigonometric equation

$$
\frac{\sin \theta_{n} \sin 5 \theta_{n}}{2 \cos \theta_{n} \sin 2 \theta_{n} \sin 3 \theta_{n}}=\frac{\sin 2 \theta_{n}}{2 \sin \theta_{n} \sin 3 \theta_{n}}
$$

Solving this equation, we obtain $n=10$. Similarly $\alpha_{3}=\lambda_{2}$ (resp. $\alpha_{3}=\lambda_{3}$) implies $n=16$ (resp. $n=28$).

For any of the above data ($n ; \alpha_{1}, \cdots, \alpha_{m}$), there exists a family of extended Jones' projections, or we have the following existence theorem.

Theorem 2. Let M be a type $I I_{1}$-factor. Then for everyone of data $\left(n ; \lambda_{k}, \lambda_{n-k-2}\right)$ with $0 \leq k \leq\left[\frac{n-2}{2}\right],\left(2 k ; \lambda_{0}, \lambda_{0}, \lambda_{k-2}\right)$ with $k \geq 2$, $\left(10 ; \lambda_{0}, \lambda_{1}, \lambda_{1}\right),\left(16 ; \lambda_{0}, \lambda_{1}, \lambda_{2}\right)$ or $\left(28 ; \lambda_{0}, \lambda_{1}, \lambda_{3}\right)$ there exists a family of extended Jones' projections corresponding to it.

Actually we construct a family of extended Jones' projections by use of string algebra, as explained below.

Let G be an unoriented pointed graph. Moreover we require that G be bipartite, locally finite and accessible. Denote a distinguished point by $\boldsymbol{*}$.

Definition 2 (cf. [3]). For $x, y \in G^{(0)}, n \in N$, we put
Path $_{x}^{(n)}=$ the set of paths of length n with source x,
$\operatorname{Path}_{x, y}^{(n)}=\left\{\xi \in \operatorname{Path}_{x}^{(n)} ; \quad r(\xi)=y\right\}$,
String $g_{x}^{(n)}=$ the set of strings of length n with source x,
$H_{n}=$ Hilbert space with orthonormal basis Path ${ }_{*}^{(n)}$.
For a string $\rho=\left(\rho_{+}, \rho_{-}\right) \in$ String $_{*}^{(n)}$, we represent ρ on H_{n} by $\rho \xi=$ $\delta\left(\rho_{-}, \xi\right) \rho_{+}$for $\xi \in H_{n}$, and denote by A_{n} a finite dimensional C^{*}-algebra generated by $\operatorname{String}_{*}^{(n)}$.

Let μ be a weight which is a map $G^{(0)} \rightarrow \boldsymbol{R}^{+}=\{\lambda ; \lambda>0\}$ with $\mu(*)$ $=1$, and Λ be Laplacian of G. Assume that μ is harmonic i.e. $\Lambda \mu=\beta \mu$ with $\beta \in \boldsymbol{R}^{+}$and define a trace tr on A_{n} by $\operatorname{tr}(\rho)=\beta^{-n} \mu(r(\rho)) \delta\left(\rho_{+}, \rho_{-}\right)$for $\rho=\left(\rho_{+}, \rho_{-}\right) \in \operatorname{String}_{*}^{(n)}$. For $n \in \boldsymbol{N}$ a projection $e_{n} \in A_{n+1}$ is defined by

$$
e_{n}=\beta^{-1} \sum_{\alpha \in \operatorname{Path}_{*}^{(n-1)}} \sum_{\xi, n \in \operatorname{Path}_{r(\alpha)}^{(1)}} \frac{\sqrt{\mu(r(\xi)) \mu(r(\eta))}}{\mu(r(\alpha))}\left(\alpha \circ \xi \circ \xi^{\sim}, \alpha \circ \eta \circ \eta^{\sim}\right) \in A_{n+1}
$$

Then it can be proved by calculations that the sequence $\left\{e_{n} ; n=1,2, \cdots\right\}$ satisfies the following relations (cf. [3]):
(a) $e_{n} e_{n \pm 1} e_{n}=\beta^{-2} e_{n}$ for $n \in \boldsymbol{N}$; (b) $e_{n} e_{m}=e_{m} e_{n}$ for $|m-n| \geq 2$;
(c) $\operatorname{tr}\left(\omega e_{m+1}\right)=\beta^{-2} \operatorname{tr}(\omega) \quad$ for any word ω in e_{1}, \ldots, e_{m}.

Moreover for an $x \in G^{(0)}$ such that $P a t h ~_{*, x}^{(1)} \neq \emptyset$, we define a projection $f_{x} \in A_{1}$ by $f_{x}=\sum_{\xi \in \operatorname{Path}_{*, x}^{(1)}}(\xi, \xi)$. Then the next proposition gives the relations between f_{x} and e_{n}.

Proposition 1. (1) $e_{1} f_{x} e_{1}=\#\left(\operatorname{Path}_{*, x}^{(1)}\right) \mu(x) \beta^{-1} e_{1}$,
(2) $f_{x} e_{n}=e_{n} f_{x}$ for $n \geq 2$.

Let us now construct a family of extended Jones' projections.

1) CASE OF ($n ; \lambda_{k}, \lambda_{n-k-2}$) : Let G be a Dynkin diagram of type A_{n+1} and the distinguished point $*$ be a vertex with distance $k+1$ from the end vertex.

Then $\beta=2 \cos (\pi /(n+2)), \mu((i))=\sin i \theta_{n} / \sin (k+2) \theta_{n}$. Take e_{n}, f_{x} with $x=(k+1),(k+3)$, and denote $f_{(k+1)}, f_{(k+3)}$ by f_{1}, f_{2} respectively. From [3] and Proposition 1, we see that $\left\{e_{n}, f_{1}, f_{2} ; n \geq 1\right\}$ is a family of extended Jones' projections corresponding to ($n ; \lambda_{k}, \lambda_{n-k-2}$).
2) CASE OF $\left(2 k ; \lambda_{0}, \lambda_{0}, \lambda_{k-2}\right)$ or $\left(n ; \lambda_{0}, \lambda_{1}, \lambda_{i}\right)(1 \leq i \leq 3)$: Let G be a Dynkin diagram of type D_{k+2} or E_{i+5} respectively and the distinguished point $*$ be a vertex which is a source point of three edges.

(4)
E_{i+5}

Similarly we can construct a family of extended Jones' projections.
§2. The indicies of the pairs of II_{1}-factors. Here for a pair of type II_{1}-factors $A \supset B$ generated by a family of extended Jones' projections, we give index $[A: B]$ by using Wenzl's index formula.

Theorem 3. Let M be a type $I I_{1}$-factor, $\left\{e_{i}, f_{j} ; i \geq 1,1 \leq j \leq m\right\}$ be a family of extended Jones' projections in M corresponding to ($n ; \alpha_{1}, \cdots, \alpha_{m}$) and $A=\left\{e_{i}, f_{j} ; i \geq 1,1 \leq j \leq m\right\}$ ", $B=\left\{e_{i} ; i \geq 1\right\}$ ". Then A and B are hyperfinite type $I I_{1}$-factors and the index $[A: B]$ is given as follows:

1) Case of $\left(n ; \alpha_{1}, \alpha_{2}\right)=\left(n ; \lambda_{k}, \lambda_{n-k-2}\right)\left(0 \leq k \leq\left[\frac{n-2}{2}\right]\right)$:

$$
[A: B]=\frac{\sin ^{2}(k+2) \theta_{n}}{\sin ^{2} \theta_{n}}, \text { with } \theta_{n}=\frac{\pi}{n+2}
$$

2) Case of $\left(n ; \alpha_{1}, \alpha_{2}, \alpha_{3}\right)=\left(2 k ; \lambda_{0}, \lambda_{0}, \lambda_{k-2}\right)(k \geq 2): \quad[A: B]=$ $2 \cot ^{2} \theta_{n}$.
3) Case of $\left(n ; \alpha_{1}, \alpha_{2}, \alpha_{3}\right)=\left(10 ; \lambda_{0}, \lambda_{1}, \lambda_{1}\right): \quad[A: B]=18+10 \sqrt{3}$.
4) Case of $\left(n ; \alpha_{1}, \alpha_{2}, \alpha_{3}\right)=\left(16 ; \lambda_{0}, \lambda_{1}, \lambda_{2}\right)$:

$$
[A: B]=9\left\{2 \sin ^{2} \theta_{n}\left(\frac{\sin ^{2} 2 \theta_{n}}{\sin ^{2} 4 \theta_{n}}+\frac{\sin ^{2} \theta_{n}}{\sin ^{2} 3 \theta_{n}}+1\right)\right\}^{-1}
$$

5) Case of $\left(n ; \alpha_{1}, \alpha_{2}, \alpha_{3}\right)=\left(28 ; \lambda_{0}, \lambda_{1}, \lambda_{3}\right)$;

$$
[A: B]=15\left\{2 \sin ^{2} \theta_{n}\left(\frac{\sin ^{2} \theta_{n}}{\sin ^{2} 5 \theta_{n}}+\frac{\sin ^{2} 3 \theta_{n}}{\sin ^{2} 5 \theta_{n}}+\frac{\sin ^{2} \theta_{n}}{\sin ^{2} 3 \theta_{n}}+1\right)\right\}^{-1}
$$

§3. Relative commutant $B^{\prime} \cap A$.
Theorem 4. Let M be a type $I I_{1}$-factor, $\left\{e_{i}, f_{j} ; i \geq 1,1 \leq j \leq m\right\}$ be a family of extended Jones' projections in M corresponding to ($n ; \alpha_{1}, \cdots, \alpha_{m}$) and $A=\left\{e_{i} ; f_{j} ; i \geq 1,1 \leq j \leq m\right\}^{\prime \prime}, B=\left\{e_{i} ; i \geq 1\right\}^{\prime \prime}$. Then relative commutant $B^{\prime} \cap A$ is trivial.

Proof. Here we give the proof in case of $\left(n ; \alpha_{1}, \alpha_{2}\right)=\left(n ; \lambda_{k}\right.$, $\left.\lambda_{n-k-2}\right)\left(0 \leq k \leq\left[\frac{n-2}{2}\right]\right)$. Other cases can be treated similarly.
Let G be a Dynkin diagram of type A_{n+1}, the distinguished point $*$ be a vertex with distance $k+1$ from the end vertex and $A(G)$ be a hyperfinite II_{1}-factor generated by string algebras of G. Then we can construct a family of extended Jones' projections $\left\{e_{i}, f_{j} ; i \geq 1,1 \leq j \leq 2\right\}$ corresponding to $\left(n, \alpha_{1}, \alpha_{2}\right)=\left(n ; \lambda_{k}, \lambda_{n-k-2}\right)$ and put $A=\left\{e_{i}, f_{j} ; i=1,2, \cdots, 1 \leq j\right.$ $\leq m\}^{\prime \prime}$ and $B=\left\{e_{i} ; i=1,2, \cdots\right\}^{\prime \prime}$. From Theorem 3, we have $[A: B]=$ $\sin ^{2}(k+2) \theta_{n} /\left(\sin ^{2} \theta_{n}\right)$. On the other hand, $[A(G): B]=\sin ^{2}(k+2) \theta_{n} /$ $\left(\sin ^{2} \theta_{n}\right.$) by Prop. 4. 5. 2 of [1]. Since $A(G) \supset A \supset B$, we obtain $A(G)=A$. So by $A(G) \cap B^{\prime}=\boldsymbol{C}$ it follows that $A \cap B^{\prime}=\boldsymbol{C}$.
§4. Fixed point subalgebras for permutations of f_{j} 's. For a family of extended Jones' projections $\left\{e_{i}, f_{j} ; i \geq 1,1 \leq j \leq 3\right\}$, we define von Neumann subalgebras $A(j)$ of $A(j=1,2,3)$ by $A(j)=\left\{e_{i}, f_{j} ; i \geq 1\right\}$ ". Since $\left\{e_{i}, f_{j} ; 1-f_{j} ; i \geq 1\right\}$ is a family of extended Jones' projections corresponding to ($n ; \alpha_{j}, 1-\alpha_{j}$), we have, by Theorem 3 , that $A(j)$ is a hyperfinite II_{1}-factor and $[A(j): B]=\sin ^{2}\left(k_{j}+2\right) \theta_{n} /\left(\sin ^{2} \theta_{n}\right)$, where k_{j} is an integer such that $\lambda_{k j}=\alpha_{j}$.

Since $[A: B]=[A: A(j)][A(j): B]$, the next theorem follows by Theorem 3 and a simple calculation.

Theorem 5. Let A and $A(j)$ be as above. Then index for a pair $A \supset A(j)$ is given as follows.

1) Case of $\left(n ; \alpha_{1}, \alpha_{2}, \alpha_{3}\right)=\left(2 k ; \lambda_{0}, \lambda_{0}, \lambda_{k-2}\right)(k \geq 2)$:

$$
[A: A(1)]=[A: A(2)]=\left(2 \sin ^{2} \theta_{n}\right)^{-1},[A: A(3)]=2
$$

2) Case of $\left(n ; \alpha_{1}, \alpha_{2}, \alpha_{3}\right)=\left(10 ; \lambda_{0}, \lambda_{1}, \lambda_{1}\right)$:

$$
[A: A(1)]=6+2 \sqrt{3},[A: A(2)]=[A: A(3)]=3+\sqrt{3}
$$

3) Case of ($n ; \alpha_{1}, \alpha_{2}, \alpha_{3}$) $=\left(16 ; \lambda_{0}, \lambda_{1}, \lambda_{2}\right)$:

$$
[A: A(j)]=9 \beta\left\{2 \sin ^{2}(j+1) \theta_{n}\right\}^{-1}(j=1,2,3)
$$

where $\beta^{-1}=\frac{\sin ^{2} 2 \theta_{n}}{\sin ^{2} 4 \theta_{n}}+\frac{\sin ^{2} \theta_{n}}{\sin ^{2} 3 \theta_{n}}+1$.
4) Case of $\left(n ; \alpha_{1}, \alpha_{2}, \alpha_{3}\right)=\left(28 ; \lambda_{0}, \lambda_{1}, \lambda_{3}\right)$:

$$
[A: A(j)]=15 \gamma\left\{2 \sin ^{2}\left(k_{j}+2\right) \theta_{n}\right\}^{-1}(j=1,2,3)
$$

where $r^{-1}=\frac{\sin ^{2} \theta_{n}}{\sin ^{2} 5 \theta_{n}}+\frac{\sin ^{2} 3 \theta_{n}}{\sin ^{2} 5 \theta_{n}}+\frac{\sin ^{2} \theta_{n}}{\sin ^{2} 3 \theta_{n}}+1$ and $\left(k_{1}, k_{2}, k_{3}\right)=(0,1,3)$.
Now let us consider automorphisms of A by permutations of $\left\{f_{j} ; 1 \leq\right.$ $j \leq m\}$. If $\sigma \in \operatorname{Aut}(A)$ and $\sigma\left(f_{i}\right)=f_{j}$, then $\operatorname{tr}\left(f_{j}\right)=\operatorname{tr}\left(\sigma\left(f_{i}\right)\right)=\operatorname{tr}\left(f_{i}\right)$ i.e. $\alpha_{i}=\alpha_{j}$. So there exists such an automorphism, if and only if
$\left(n ; \alpha_{1}, \alpha_{2}\right)=\left(2 k ; \lambda_{k-1}, \lambda_{k-1}\right)$ with $k \geq 1$, or
$\left(n ; \alpha_{1}, \alpha_{2}, \alpha_{3}\right)=\left(2 k ; \lambda_{0}, \lambda_{0}, \lambda_{k-2}\right)$ with $k \geq 2$, or ($10 ; \lambda_{0}, \lambda_{1}, \lambda_{1}$).
Here we consider fixed point algebras in case of ($n ; \alpha_{1}, \alpha_{2}$) $=\left(2 k ; \lambda_{k-1}\right.$, $\left.\lambda_{k-1}\right)$ with $k \geq 2$ and $\left(n ; \alpha_{1}, \alpha_{2}, \alpha_{3}\right)=\left(10 ; \lambda_{0}, \lambda_{1}, \lambda_{1}\right)$.

1) CASE OF $\left(n ; \alpha_{1}, \alpha_{2}\right)=\left(2 k ; \lambda_{k-1}, \lambda_{k-1}\right)$ for $k \geq 2: \quad$ Take $\sigma \in \operatorname{Aut}(A)$ such that $\sigma\left(f_{1}\right)=f_{2}, \sigma\left(f_{2}\right)=f_{1}$ and $\sigma\left(e_{i}\right)=e_{i}$ for $i \geq 1$. Since $A \supset A^{\sigma} \supset$ B and $B^{\prime} \cap A=\boldsymbol{C}, \sigma$ is an outer automorphism of A. Hence $\left[A: A^{\sigma}\right]=|\langle\sigma\rangle|$ $=2$. On the other hand, $[A: B]=\left(\sin ^{2} \theta_{n}\right)^{-1}$ from Theorem 3. Since $[A: B]=\left(\sin ^{2} \theta_{n}\right)^{-1} \neq 2=\left[A: A^{\sigma}\right]$, we have A^{σ} ? B and $\left[A^{\sigma}: B\right]=(2$ $\left.\sin ^{2} \theta_{n}\right)^{-1}$. It follows that $\left(A^{\sigma}\right)^{\prime} \cap A=\boldsymbol{C}$ from $B^{\prime} \cap A=\boldsymbol{C}$.
2) CASE OF $\left(n ; \alpha_{1}, \alpha_{2}, \alpha_{3}\right)=\left(10 ; \lambda_{0}, \lambda_{1}, \lambda_{1}\right)$: Define $\sigma \in \operatorname{Aut}(A)$ by $\sigma\left(f_{1}\right)=f_{1}, \sigma\left(f_{2}\right)=f_{3}, \sigma\left(f_{3}\right)=f_{2}$ and $\sigma\left(e_{i}\right)=e_{i}$ for $i \geq 1$. Comparing indicies, we have $A^{\sigma} \supsetneq A$ (1) and $\left[A^{\sigma}: A(1)\right]=3+\sqrt{3}$.

From the above arguments, we obtain the next theorem.
Theorem 6. Notations are as above.

1) Case of $\left(n ; \alpha_{1}, \alpha_{2}\right)=\left(2 k ; \lambda_{k-1}, \lambda_{k-1}\right)$ with $k \geq 2$:

$$
A^{S_{2}} \supseteq B,\left[A^{S_{2}}: B\right]=\left(2 \sin ^{2} \theta_{n}\right)^{-1}, B^{\prime} \cap A^{S_{2}}=\boldsymbol{C} .
$$

2) Case of $\left(n ; \alpha_{1}, \alpha_{2}\right)=\left(10 ; \lambda_{0}, \lambda_{1}, \lambda_{1}\right)$:

$$
A^{s_{2}} \equiv A(1),\left[A^{s_{2}}: A(1)\right]=3+\sqrt{3}, A(1)^{\prime} \cap A^{s_{2}}=\boldsymbol{C} .
$$

References

[1] F. M. Goodman, P. de la Harpe and V. F. R. Jones: Coxeter Graphs and Towers of Algebras. MSRI Publications. vol. 14, Springer-Verlag, New York (1989).
[2] V. F. R. Jones: Index for subfactors. Invent. math., 72, 1-25 (1983).
[3] A. Ocneanu: Graph geometry, quantized groups and nonamenable subfactors. Lake Tahoe Lectures (1989).
[4] S. Popa: Relative dimension, tower of projections and commuting squares of subfactors. Pacific J. Math., 137, 181-207 (1989).
[5] H. Wenzl: Hecke algebras of type A_{n} and subfactors. Invent. math., 92, 349-383 (1988).

