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1. Introduction. This paper is a continuation of previous paper [6].
Let .Q be a bounded domain in/2 with smooth boundary 0Q. Let be a

fixed point in D. Let B(e, t) be the disk of radius e with the center . we
put .Q Q\B (s, t). Consider the following eigenvalue problem
(1.1) --Au(x) u(x) x

u(x) 0 x
uu(x) + kt-f (x) -0 x B (e, ).

Here k denotes a positive constant. And a is a real number. Here Ox
denotes the derivative along the exterior normal direction with respect to

Let /2(e) > 0 be the j-th eigenvalue of (1.1). Let /2 be the j-th eigen-
value of the problem
(1.2) Au(x) 2u(x) x [2

u (x) 0 x
Main aim of this paper is to give the following theorems. The details of

our proof of theorems will be published elsewhere.
Let q(x) be the L2-normalized eigenfunction associated with /2. We

have the following.
Theorem 1. Assume that/2 is a simple eigenvalue. Then,

t(e) g 2 7r p()/(log ) -4- O(llog
foraY_ 1.

Theorem 2. Assume that 12 is a simple eigenvalue. Then,
t() tz + O- + R + 0(2-) (- 1 < a < O)
l(s) + Rs2 + Qs1- + O(ea log e l) (- 2 < a

_
1)

a() l + Rs + O(sa log s [) (a

_
2),

where
Qy (2re/k)
R re(2 grad qg() [2

Remark. The case a [0, 1) is treated in [6]. It is curious to the au-
thors that the asymptotic behaviour of/2y() --/2 is the same when a

_
2. For the related papers we have Ozawa [7]-[9], Rauch-Taylor [10], Besson
[3], Chavel [4] and the references in the above papers.

For other related problems on singular variation of domains the readers
may be referred to Ann6 [1], Arrieta, Hale, and Han [2], Jimbo [5].
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2. Outline of the proof of Theorems 1 and 2. Let G(x, y) (resp.
G(x, y)) be the Green function of the Laplacian in /2 (resp. /2) associated
with boundary condition (1.2) (resp. (1.1)).

We introduce the following kernel p(x, y).
(2.1) p(x, y) G(x, y) 4- g(s)G(x, )G(, y)

+ h(s) (wG (x, ), wG (, y))
+ i () (HwG (x, ), HoG (, y)),

where

OWn OWn
02U 02v(Hu (W), Hv()) OWmOWn OWmOWn

when w (w, w) is an orthonormal frame of R. Here g(s), h(s), i(s) are

determined so that

(2.2) p(x, y) + ksxp(x, y)

is small in some sense.
If we put

(2.3)
(2.4)

and
(2.5)

x OB(s, )

g(s) (?" (2r) -1 log s + k(2rr)-ls-) -h(s) (ks- s)/((2rcs) - + k(2rc)-s-2)
=0

i (s) ks+V(rc- s-2 + 2krr- s-3)
=0

the above aim for (2.2) to be small is attained. Here
?" lim (G(x, ) + (27r) - log Ix

We put

(Gf )(x) f G(x, y)f (y)dy

(Gf (x) f9 G(x, y) f (y)dy

and

(a < 0)
(a_ 1)

(a < 0)
(a_ 1),

(Pf (x) f9 p(x, y)f (y)dy (a < O)

fop (x, y)f (y)dy (a

_
0).

In case of a < 0, Ps cannot operate on LP(D) because of the existence

of h(s)-term and (s)-term in (2.1).
Let T and T be operators on /2 and /2, respectively. Then, T II,,

denotes the operator norm on Lp(/2), L(D), respectively. Let f and

f be functions on D and D, respectively. Then, Ilfll,, IIf II,, denotes the
norm on L (/2), L (D), respectively.

At first we outline the proof of Theorem 1. A crucial part of our proof
of Theorem i is the following.

Theorem 3. Fix a

_
1. Then, there exists a constant C such that



188 S. OZAWA and S. ROPPONGI [Vol. 68(A),

(.6) zl%z I1,, - c l og -holds.
Here X is the characteristic function of Q.

Since G is approximated by xPx and the difference between P and

xPx is small in some sense, we know that everything reduces to our in-
vestigation of the perturbative analysis of G P. This is the outline of our

proof of Theorem 1.
Next we outline the proof of Theorem 2. One important part of our

proof of Theorem 2 is the following.
Theorem 4. Fix a O. Then, there exists a constant C such that

(2.7) (P- G)(Z)[Iz, Ce- (- 1 < a < 0)

hold.
We fix j and put

(.) p(z, g) G (z, g) s. G (z, ) G (, g)
+ g(s)G(, )G(, g)
+ () (G (z, ), G(, g)) (z) (g)
+ i(e) (HG(z, ), HG(, g)) (z)(g),

where () C(R) satisfies [(z)[ 1, (z) 1 for z R k
B(e, ), () 0 for B(s/2, ) and (-- ) is rotationary in-

variant. Furthermore we put

(Psf) (x) (x, y)f (y) dy.

The other important part of our proof of Theorem 2 is the follwing.

heorem g. Fix < O. Then, there exists a constant C sch that
(2.9) (zP- PZ) I1, cs- (- 1 < < 0)

Ce[loge (a 1)
hold.

Since (2.7) and (2.9) are both o(), we know that everything reduces to
our investigation of the perturbative analysis of G P. This is the outline
of our proof of Theorem 2.
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