46. Singular Variation of Domain and Eigenvalues of the Laplacian with the Third Boundary Condition

By Shin Ozawa and Susumu Roppongi
Department of Mathematics, Faculty of Sciences, Tokyo Institute of Technology
(Communicated by Kiyosi ITÔ, M. J. A., Sept. 14, 1992)

1. Introduction. This paper is a continuation of previous paper [6].

Let Ω be a bounded domain in \boldsymbol{R}^{2} with smooth boundary $\partial \Omega$. Let \widetilde{w} be a fixed point in Ω. Let $B(\varepsilon, \widetilde{w})$ be the disk of radius ε with the center \widetilde{w}. we put $\Omega_{\varepsilon}=\Omega \backslash \overline{B(\varepsilon, \widetilde{w})}$. Consider the following eigenvalue problem

$$
\begin{array}{rlrl}
-\Delta u(x) & =\lambda u(x) & x & \in \Omega_{\varepsilon} \tag{1.1}\\
u(x) & =0 & & \\
u(x) & +k \varepsilon^{\sigma} \frac{\partial u}{\partial \nu_{x}}(x) & =0 \quad x \in \partial B(\varepsilon, \widetilde{w}) .
\end{array}
$$

Here k denotes a positive constant. And σ is a real number. Here $\frac{\partial}{\partial \nu_{x}}$ denotes the derivative along the exterior normal direction with respect to Ω_{ε}.

Let $\mu_{j}(\varepsilon)>0$ be the j-th eigenvalue of (1.1). Let μ_{j} be the j-th eigenvalue of the problem

$$
\begin{align*}
-\Delta u(x) & =\lambda u(x) & & x \in \Omega \tag{1.2}\\
u(x) & =0 & & x \in \partial \Omega .
\end{align*}
$$

Main aim of this paper is to give the following theorems. The details of our proof of theorems will be published elsewhere.

Let $\varphi_{j}(x)$ be the L^{2}-normalized eigenfunction associated with μ_{j}. We have the following.

Theorem 1. Assume that μ_{j} is a simple eigenvalue. Then,

$$
\mu_{j}(\varepsilon)=\mu_{j}-2 \pi \varphi_{j}(\widetilde{w})^{2} /(\log \varepsilon)+\mathbf{O}\left(|\log \varepsilon|^{-2}\right)
$$

for $\sigma \geqq 1$.
Theorem 2. Assume that μ_{j} is a simple eigenvalue. Then,

$$
\begin{array}{lr}
\mu_{j}(\varepsilon)=\mu_{j}+Q_{j} \varepsilon^{1-\sigma}+R_{j} \varepsilon^{2}+\mathbf{O}\left(\varepsilon^{2-\sigma}\right) & (-1<\sigma<0) \\
\mu_{j}(\varepsilon)=\mu_{j}+R_{j} \varepsilon^{2}+Q_{j} \varepsilon^{-\sigma}+\mathbf{O}\left(\varepsilon^{3}|\log \varepsilon|\right) & (-2<\sigma \leqq-1) \\
\mu_{j}(\varepsilon)=\mu_{j}+R_{j} \varepsilon^{2}+\mathbf{O}\left(\varepsilon^{3}|\log \varepsilon|\right) & (\sigma \leqq-2),
\end{array}
$$

where

$$
\begin{aligned}
& Q_{j}=(2 \pi / k) \varphi_{j}(\widetilde{w})^{2} \\
& R_{j}=-\pi\left(2\left|\operatorname{grad} \varphi_{j}(\widetilde{w})\right|^{2}-\mu_{j} \varphi_{j}(\widetilde{w})^{2}\right) .
\end{aligned}
$$

Remark. The case $\sigma \in[0,1)$ is treated in [6]. It is curious to the authors that the asymptotic behaviour of $\mu_{j}(\varepsilon)-\mu_{j}$ is the same when $\sigma \leqq-$ 2. For the related papers we have Ozawa [7]-[9], Rauch-Taylor [10], Besson [3], Chavel [4] and the references in the above papers.

For other related problems on singular variation of domains the readers may be referred to Anné [1], Arrieta, Hale, and Han [2], Jimbo [5].
2. Outline of the proof of Theorems 1 and 2. Let $G(x, y)$ (resp. $G_{\varepsilon}(x, y)$) be the Green function of the Laplacian in Ω (resp. Ω_{ε}) associated with boundary condition (1.2) (resp. (1.1)).

We introduce the following kernel $p_{\varepsilon}(x, y)$.

$$
\begin{align*}
p_{\varepsilon}(x, y)=G(x, y) & +g(\varepsilon) G(x, \widetilde{w}) G(\widetilde{w}, y) \tag{2.1}\\
& +h(\varepsilon)\left\langle\nabla_{w} G(x, \widetilde{w}), \nabla_{w} G(\widetilde{w}, y)\right\rangle \\
& +i(\varepsilon)\left\langle H_{w} G(x, \widetilde{w}), H_{w} G(\widetilde{w}, y)\right\rangle,
\end{align*}
$$

where

$$
\begin{aligned}
& \left\langle\nabla_{w} u(\widetilde{w}), \nabla_{w} v(\widetilde{w})\right\rangle=\left.\sum_{n=1}^{2} \frac{\partial u}{\partial w_{n}} \frac{\partial v}{\partial w_{n}}\right|_{w=\tilde{w}} \\
& \left\langle H_{w} u(\widetilde{w}), H_{w} v(\widetilde{w})\right\rangle=\left.\sum_{m, n=1}^{2} \frac{\partial^{2} u}{\partial w_{m} \partial w_{n}} \frac{\partial^{2} v}{\partial w_{m} \partial w_{n}}\right|_{w=\tilde{w}}
\end{aligned}
$$

when $w=\left(w_{1}, w_{2}\right)$ is an orthonormal frame of \boldsymbol{R}^{2}. Here $g(\varepsilon), h(\varepsilon), i(\varepsilon)$ are determined so that

$$
\begin{equation*}
p_{\varepsilon}(x, y)+k \varepsilon^{\sigma} \frac{\partial}{\partial \nu_{x}} p_{\varepsilon}(x, y) \quad x \in \partial B(\varepsilon, \widetilde{w}) \tag{2.2}
\end{equation*}
$$

is small in some sense.
If we put

$$
\begin{align*}
g(\varepsilon) & =-\left(\gamma-(2 \pi)^{-1} \log \varepsilon+k(2 \pi)^{-1} \varepsilon^{\sigma-1}\right)^{-1} & & \tag{2.3}\\
h(\varepsilon) & =\left(k \varepsilon^{\sigma}-\varepsilon\right) /\left((2 \pi \varepsilon)^{-1}+k(2 \pi)^{-1} \varepsilon^{\sigma-2}\right) & & (\sigma<0) \tag{2.4}\\
& =0 & & (\sigma \geqq 1)
\end{align*}
$$

and

$$
\begin{align*}
i(\varepsilon) & =k \varepsilon^{\sigma+1} /\left(\pi^{-1} \varepsilon^{-2}+2 k \pi^{-1} \varepsilon^{\sigma-3}\right) & & (\sigma<0) \tag{2.5}\\
& =0 & & (\sigma \geqq 1)
\end{align*}
$$

the above aim for (2.2) to be small is attained. Here

$$
\gamma=\lim _{x \rightarrow \widetilde{w}}\left(G(x, \widetilde{w})+(2 \pi)^{-1} \log |x-\widetilde{w}|\right) .
$$

We put

$$
\begin{aligned}
(\boldsymbol{G} f)(x) & =\int_{\Omega} G(x, y) f(y) d y \\
\left(\boldsymbol{G}_{\varepsilon} f\right)(x) & =\int_{\Omega_{\varepsilon}} G_{\varepsilon}(x, y) f(y) d y
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\boldsymbol{P}_{\varepsilon} f\right)(x) & =\int_{\Omega_{\varepsilon}} p_{\varepsilon}(x, y) f(y) d y & & (\sigma<0) \\
& =\int_{\Omega} p_{\varepsilon}(x, y) f(y) d y & & (\sigma \geqq 0)
\end{aligned}
$$

In case of $\sigma<0, \boldsymbol{P}_{\varepsilon}$ cannot operate on $L^{p}(\Omega)$ because of the existence of $h(\varepsilon)$-term and $i(\varepsilon)$-term in (2.1).

Let T and T_{ε} be operators on Ω and Ω_{ε}, respectively. Then, $\|T\|_{p}$, $\left\|T_{\varepsilon}\right\|_{p, \varepsilon}$ denotes the operator norm on $L^{p}(\Omega), L^{p}\left(\Omega_{\varepsilon}\right)$, respectively. Let f and f_{ε} be functions on Ω and Ω_{ε}, respectively. Then, $\|f\|_{p},\left\|f_{\varepsilon}\right\|_{p, \varepsilon}$ denotes the norm on $L^{p}(\Omega), L^{p}\left(\Omega_{\varepsilon}\right)$, respectively.

At first we outline the proof of Theorem 1. A crucial part of our proof of Theorem 1 is the following.

Theorem 3. Fix $\sigma \geqq$. Then, there exists a constant C such that

$$
\begin{equation*}
\left\|\chi_{\varepsilon} \boldsymbol{P}_{\varepsilon} \chi_{\varepsilon}-\boldsymbol{G}_{\varepsilon}\right\|_{2, \varepsilon} \leqq C \varepsilon|\log \varepsilon|^{-1} \tag{2.6}
\end{equation*}
$$

holds.
Here χ_{ε} is the characteristic function of $\bar{\Omega}_{\varepsilon}$.
Since $\boldsymbol{G}_{\varepsilon}$ is approximated by $\chi_{\varepsilon} \boldsymbol{P}_{\varepsilon} \chi_{\varepsilon}$ and the difference between $\boldsymbol{P}_{\varepsilon}$ and $\chi_{\varepsilon} \boldsymbol{P}_{\varepsilon} \chi_{\varepsilon}$ is small in some sense, we know that everything reduces to our investigation of the perturbative analysis of $\boldsymbol{G} \rightarrow \boldsymbol{P}_{\varepsilon}$. This is the outline of our proof of Theorem 1.

Next we outline the proof of Theorem 2. One important part of our proof of Theorem 2 is the following.

Theorem 4. Fix $\sigma<0$. Then, there exists a constant C such that

$$
\begin{align*}
\left\|\left(\boldsymbol{P}_{\varepsilon}-\boldsymbol{G}_{\varepsilon}\right)\left(\chi_{\varepsilon} \varphi_{j}\right)\right\|_{2, \varepsilon} & \leqq C \varepsilon^{2-\sigma} & (-1<\sigma<0) \tag{2.7}\\
& \leqq C \varepsilon^{3}|\log \varepsilon| & (\sigma \leqq-1)
\end{align*}
$$

hold.
We fix j and put

$$
\begin{align*}
\bar{p}_{\varepsilon}(x, y)=G(x, y) & -\pi \mu_{j} \varepsilon^{2} \cdot G(x, \widetilde{w}) G(\widetilde{w}, y) \tag{2.8}\\
& +g(\varepsilon) G(x, \widetilde{w}) G(\widetilde{w}, y) \\
& +h(\varepsilon)\left\langle\nabla_{w} G(x, \widetilde{w}), \nabla_{w} G(\widetilde{w}, y)\right\rangle \xi_{\varepsilon}(x) \xi_{\varepsilon}(y) \\
& +i(\varepsilon)\left\langle H_{w} G(x, \widetilde{w}), H_{w} G(\widetilde{w}, y)\right\rangle \xi_{\varepsilon}(x) \xi_{\varepsilon}(y),
\end{align*}
$$

where $\xi_{\varepsilon}(x) \in C^{\infty}\left(\boldsymbol{R}^{2}\right)$ satisfies $\left|\xi_{\varepsilon}(x)\right| \leqq 1, \xi_{\varepsilon}(x)=1$ for $x \in \boldsymbol{R}^{2} \backslash$ $\overline{B(\varepsilon, \widetilde{w})}, \xi_{\varepsilon}(x)=0$ for $x \in B(\varepsilon / 2, \widetilde{w})$ and $\xi_{\varepsilon}(x-\widetilde{w})$ is rotationary invariant. Furthermore we put

$$
\left(\overline{\boldsymbol{P}}_{\varepsilon} f\right)(x)=\int_{\Omega} \bar{p}_{\varepsilon}(x, \mathrm{y}) f(\mathrm{y}) \mathrm{dy}
$$

The other important part of our proof of Theorem 2 is the follwing.
Theorem 5. Fix $\sigma<0$. Then, there exists a constant C such that

$$
\begin{align*}
\left\|\left(\chi_{\varepsilon} \boldsymbol{P}_{\varepsilon}-\boldsymbol{P}_{\varepsilon} \chi_{\varepsilon}\right) \varphi_{j}\right\|_{2, \varepsilon} & \leqq C \varepsilon^{2-\sigma} \tag{2.9}\\
& \leqq C \varepsilon^{3}|\log \varepsilon|
\end{align*}
$$

($-1<\sigma<0$)
($\sigma \leqq-1$)
hold.
Since (2.7) and (2.9) are both $o\left(\varepsilon^{2}\right)$, we know that everything reduces to our investigation of the perturbative analysis of $\boldsymbol{G} \rightarrow \overline{\boldsymbol{P}}_{\varepsilon}$. This is the outline of our proof of Theorem 2.

References

[1] C. Anné: Spectre du laplacien et écrasement d'ansens. Ann. Sci. Ecole Norm. Sup., 20, 271-280 (1987).
[2] J. M. Arrieta, J. Hale, and Q. Han: Eigenvalue problems for nonsmoothly perturbed domains. J. Diff. Equations, 91, 24-52 (1991).
[3] G. Besson: Comportement asymptotique des valeurs propres du laplacien dans un domaine avec un trou. Bull. Soc. Math. France, 113, 211-239 (1985).
[4] I. Chavel: Eigenvalues in Riemannian Geometry. Academic Press (1984).
[5] S. Jimbo: The singularly perturbed domain and the characterization for the eigenfunctions with Neumann boundary condition. J. Diff. Equations, 77, 322-350 (1989).
[6] S. Ozawa: Singular variation of domain and spectra of the Laplacian with small Robin coditional boundary. I (to appear in Osaka J. Math.).
[7] -: Spectra of domains with small spherical Neumann boundary. J. Fac. Sci.

Univ. Tokyo, Sec. IA, 30, 259-277 (1983).
[8] S. Ozawa: Asymptotic property of an eigenfunction of the Laplacian under singular variation of domains -the Neumann condition-. Osaka J. Math., 22, 639-655 (1985).
[9] -: Electrostatic capacity and eigenvalues of the Laplacian. J. Fac. Sci. Univ. Tokyo, Sec. IA, 30, 53-62 (1983).
[10] J. Rauch and M. Taylor: potential and scattering theory on wildly perturbed domains. J. Funct. Anal. , 19, 27-59 (1975).

