45. Majorizations and Quasi-Subordinations for Certain Analytic Functions

By Osman Altintas*) and Shigeyoshi Owa**)
(Communicated by Kiyosi ITô, M. J. A., Sept. 14, 1992)

Two subclasses $A(\alpha, \beta)$ and $R(p)$ of certain analytic functions in the open unit disk U are introduced. For these classes a majorization problem and a quasi-subordination problem of analytic functions in U are discussed.

1. Introduction. Let $A(\alpha, \beta)$ be the class of functions of the form

$$
\begin{equation*}
h(z)=1-\sum_{n=1}^{\infty} c_{n} z^{n} \quad\left(c_{n} \geqq 0\right) \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $U=\{z:|z|<1\}$ and satisfy

$$
\begin{equation*}
\operatorname{Re}\left\{h(z)+\alpha z h^{\prime}(z)\right\}>\beta \quad(z \in U) \tag{1.2}
\end{equation*}
$$

where $\operatorname{Re}(\alpha) \geqq 0$ and $0 \leqq \beta<1$. The class $A(\alpha, \beta)$ for real $\alpha \geqq 0$ was studied by Altintas [1].

Also, let $R(p)$ denote the class of functions

$$
\begin{equation*}
g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \tag{1.3}
\end{equation*}
$$

which are analytic in U and satisfy

$$
\begin{equation*}
\operatorname{Re}\left\{\sqrt[p]{\frac{g(z)}{s(z)}}\right\}>\frac{1}{2} \quad(z \in U) \tag{1.4}
\end{equation*}
$$

for some function $s(z)$ is analytic and univalent in U with $s(0)=0$ and $s^{\prime}(0)=1$, where $p \geqq 1$.

Let $f(z)$ and $g(z)$ be analytic in U. Then $f(z)$ is said to be subordinate to $g(z)$ if there exists an analytic function $w(z)$ in U satisfying $w(0)=0, \quad|w(z)| \leqq|z|(z \in U)$ and $f(z)=g(w(z))$. We denote this subordination by

$$
\begin{equation*}
f(z) \prec g(z) \quad(z \in U) \quad(\text { cf. [4, p. 226] }) \tag{1.5}
\end{equation*}
$$

Further, $f(z)$ is said to be quasi-subordinate to $g(z)$ if there exists an analytic function $w(z)$ such that $f(z) / w(z)$ is analytic in U,

$$
\begin{equation*}
\frac{f(z)}{w(z)} \prec g(z) \quad(z \in U) \tag{1.6}
\end{equation*}
$$

and $|w(z)| \leqq 1(z \in U)$. We also denote this quasi-subordination by

$$
\begin{equation*}
f(z) \underset{q}{\prec} g(z) \quad(z \in U) \tag{1.7}
\end{equation*}
$$

Note that the quasi-subordination (1.7) is equivalent to

$$
\begin{equation*}
f(z)=w(z) g(\phi(z)) \tag{1.8}
\end{equation*}
$$

where $|w(z)| \leqq 1(z \in U)$ and $|\phi(z)| \leqq|z|(z \in U)$ (cf. [5]).
In the quasi-subordination (1.7), if $\boldsymbol{w}(z) \equiv 1$, then (1.7) becomes the subordination (1.5).

[^0]For analytic functions $f(z)$ and $g(z)$ in U, we say that $f(z)$ is majorized by $g(z)$ if there exists an analytic function $w(z)$ in U satisfying $|w(z)| \leqq 1$ and $f(z)=w(z) g(z)(z \in U)$. We denote this majorization by (1.9) $\quad f(z) \ll g(z) \quad(z \in U) \quad$ (cf. [3]).

If we take $\phi(z)=z$ in (1.8), then the quasi-subordination (1.7) becomes the majorization (1.9).
2. A majorization problem. To complete the proof of our result for majorization, we need the following lemmas.

Lemma 1. If $h(z)$ defined by (1.1) is in the class $A(\alpha, \beta)$, then

$$
\begin{equation*}
\sum_{n=1}^{\infty} c_{n} \leqq \frac{1+\beta}{1+\operatorname{Re}(\alpha)} \tag{2.1}
\end{equation*}
$$

Proof. We note that $h(z) \in A(\alpha, \beta)$ gives

$$
\begin{equation*}
\operatorname{Re}\left(1-\sum_{n=1}^{\infty}(1+\alpha n) c_{n} z^{n}\right\}>\beta \quad(z \in U) \tag{2.2}
\end{equation*}
$$

Letting $z \rightarrow 1^{-}$along the real axis, we find that

$$
\begin{equation*}
\sum_{n=1}^{\infty}(1+n \operatorname{Re}(\alpha)) c_{n} \leqq 1-\beta, \tag{2.3}
\end{equation*}
$$

and, since $c_{n} \geqq 0$ and $\operatorname{Re}(\alpha) \geqq 0$,

$$
\begin{equation*}
(1+\operatorname{Re}(\alpha)) \sum_{n=1}^{\infty} c_{n} \leqq \sum_{n=1}^{\infty}(1+n \operatorname{Re}(\alpha)) c_{n} \leqq 1-\beta \tag{2.4}
\end{equation*}
$$

This gives the coefficient inequality (2.1).
Lemma 2. If $h(z)$ defined by (1.1) is in the class $A(\alpha, \beta)$, then
$1-\frac{1-\beta}{1+\operatorname{Re}(\alpha)}|z| \leqq \operatorname{Re}(h(z)) \leqq|h(z)| \leqq 1+\frac{1-\beta}{1+\operatorname{Re}(\alpha)}|z|$
for $z \in U$.
Proof. Since

$$
\begin{equation*}
|h(z)| \leqq 1+|z| \sum_{n=1}^{\infty} c_{n}, \tag{2.6}
\end{equation*}
$$

Lemma 1 leads to

$$
\begin{equation*}
|h(z)| \leqq 1+\frac{1-\beta}{1+\operatorname{Re}(\alpha)}|z| \tag{2.7}
\end{equation*}
$$

On the other hand, we have

$$
\begin{align*}
& \operatorname{Re}(h(z))=1-\operatorname{Re}\left\{\sum_{n=1}^{\infty} c_{n} z^{n}\right\} \geqq 1-\left|\sum_{n=1}^{\infty} c_{n} z^{n}\right| \tag{2.8}\\
& \quad \geqq 1-|z| \sum_{n=1}^{\infty} c_{n} \geqq 1-\frac{1-\beta}{1+\operatorname{Re}(\alpha)}|z| .
\end{align*}
$$

Now we prove
Theorem 1. Let $f(z)=a_{1} z-\sum_{n=2}^{\infty} a_{n} z^{n}\left(a_{1} \neq 0, a_{n} \geqq 0\right)$ be analytic in U. If $f(z) \ll g(z)$ and $z g^{\prime}(z) / g(z) \stackrel{n=2}{\in} A(\alpha, \beta)$, then

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \leqq\left|g^{\prime}(z)\right| \quad(|z| \leqq r(\alpha, \beta)) \tag{2.9}
\end{equation*}
$$

where $r(\alpha, \beta)$ is the root of the cubic equation

$$
\begin{gather*}
(1-\beta) r^{3}-(1+\operatorname{Re}(\alpha)) r^{2} \tag{2.10}\\
+(\beta-2 \operatorname{Re}(\alpha)-3) r+1+\operatorname{Re}(\alpha)=0
\end{gather*}
$$

contained in the interval $(0,1)$.
Proof. For $g(z)$ such that $z g^{\prime}(z) / g(z) \in A(\alpha, \beta)$, we have from Lemma 2 that

$$
\begin{equation*}
\left|\frac{z g^{\prime}(z)}{g(z)}\right| \geqq 1-\frac{1-\beta}{1+\operatorname{Re}(\alpha)} r \quad(|z|=r) \tag{2.11}
\end{equation*}
$$

or

$$
\begin{equation*}
|g(z)| \leqq \frac{(1+\operatorname{Re}(\alpha)) r}{1+\operatorname{Re}(\alpha)-(1-\beta) r}\left|g^{\prime}(z)\right| \quad(|z|=r) \tag{2.12}
\end{equation*}
$$

Since $f(z) \ll g(z)$, there exists an analytic function $w(z)$ such that $f(z)=w(z) g(z)$ and $|w(z)| \leqq 1(z \in U)$. Thus we have

$$
\begin{equation*}
f^{\prime}(z)=w(z) g^{\prime}(z)+w^{\prime}(z) g(z) \tag{2.13}
\end{equation*}
$$

Noting that $w(z)$ satisfies

$$
\begin{equation*}
\left|w^{\prime}(z)\right| \leqq \frac{1-|w(z)|^{2}}{1-|z|^{2}} \quad(z \in U) \quad \text { (cf. [4, p. 168]) } \tag{2.14}
\end{equation*}
$$

we see that

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \tag{2.15}
\end{equation*}
$$

$$
\begin{gathered}
\leqq\left\{|w(z)|+\frac{1-|w(z)|^{2}}{1-r^{2}} \frac{(1+\operatorname{Re}(\alpha)) r}{1+\operatorname{Re}(\alpha)-(1-\beta) r}\right\}\left|g^{\prime}(z)\right| \\
\left.=\frac{-(1+\operatorname{Re}(\alpha)) r X^{2}+\left(1-r^{2}\right)(1+\operatorname{Re}(\alpha)-(1-\beta) r) X+(1+\operatorname{Re}(\alpha)) r}{\left(1-r^{2}\right)(1+\operatorname{Re}(\alpha)-(1-\beta) r)} \times \times g^{\prime}(z) \right\rvert\,,
\end{gathered}
$$

where $X=|w(z)|$. Note that the function $H(X)$ defined by

$$
\begin{gathered}
H(X)=-(1+\operatorname{Re}(\alpha)) r X^{2}+\left(1-r^{2}\right)(1+\operatorname{Re}(\alpha)-(1-\beta) r) X \\
+(1+\operatorname{Re}(\alpha)) r \quad(0 \leqq X \leqq 1)
\end{gathered}
$$

takes its maximum value at $X=1$ with the condition (2.10). Let $r(\alpha, \beta)$ $(0<r(\alpha, \beta)<1)$ be the root of the equation (2.10). If $0 \leqq a \leqq r(\alpha, \beta)$, then the function

$$
\begin{align*}
& \phi(X)=-(1+\operatorname{Re}(\alpha)) a X^{2} \tag{2.16}\\
& +\left(1-a^{2}\right)(1+\operatorname{Re}(\alpha)-(1-\beta) a) X+(1+\operatorname{Re}(\alpha)) a
\end{align*}
$$

increases in the interval $0 \leqq X \leqq 1$ so that $\psi(X)$ does not exceed $\phi(1)=\left(1-a^{2}\right)(1+\operatorname{Re}(\alpha)-(1-\beta) a)$. Therefore, from this fact, (2.15) gives the inequality (2.9).
3. A quasi-subordination problem. Our result of quasi-subordinations for the class $R(p)$ contained in
$\begin{array}{cc}\text { Theorem } & \text { 2. Let } \quad f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \quad \text { be analytic in } U\end{array}$ $g(z) \in R(p)$. If $f(z) \underset{q}{\prec} g(z)$, then

$$
\begin{equation*}
\left|a_{n}\right|^{q} \leqq \frac{(p+n)!}{(p+1)!(n-1)!} \quad(n \geqq 2) \tag{3.1}
\end{equation*}
$$

Equality in (3.1) is attained for the function $f(z)$ given by

$$
\begin{equation*}
f(z)=\frac{z}{(1-z)^{p+2}} \tag{3.2}
\end{equation*}
$$

Proof. It follows from $f(z) \underset{q}{\prec} g(z)$ that

$$
\begin{equation*}
f(z) \stackrel{q}{=} w(z) g(\phi(z)) \tag{3.3}
\end{equation*}
$$ where $w(z)$ is analytic in U with $|w(z)| \leqq 1(z \in U)$ and $\phi(z)$ is analytic in U with $|\phi(z)| \leqq|z|(z \in U)$. Define the function $h(z)$ by

$$
\begin{equation*}
\sqrt[p]{\frac{g(z)}{s(z)}}=h(z) \tag{3.4}
\end{equation*}
$$

with a function $s(z)$ analytic and univalent in U. Then $g(z) \in R(p)$ gives
$\operatorname{Re}(h(z))>1 / 2(z \in U)$, that is,

$$
\begin{equation*}
h(z) \prec \frac{1}{1-z} \quad(z \in U) \tag{3.5}
\end{equation*}
$$

Let

$$
H=\{h(z): h(z) \prec 1 /(1-z)\}
$$

and

$$
H^{p}=\left\{h(z)^{p}: h(z) \in H\right\}
$$

Then from [6, p. 16], we have
(3.6) $\quad \operatorname{exco} H^{p}=\left\{u(z): u(z)=1 /(1-\eta z)^{p},|\eta|=1\right\}$,
where exco H^{p} means the set of extreme points of the closed convex hull of H^{p}. If we take $g(z) / s(z)=k(z)$, then we have

$$
\begin{equation*}
f(z)=w(z) s(\phi(z)) k(\phi(z)) \tag{3.7}
\end{equation*}
$$

Letting $Q(z)=w(z) s(\phi(z))$ and $R(z)=k(\phi(z))$, we get

$$
\begin{equation*}
Q(z) \underset{q}{\prec} s(z) \quad(z \in U) \tag{3.8}
\end{equation*}
$$

Since $Q(z)$ is of the form $\sum^{\infty} q_{n} z^{n}$ and $s(z)$ is analytic and univalent in U, using [5] and [2], we have $\left|\begin{array}{l}n=1 \\ q_{n}\end{array}\right| \leqq n(n \geqq 2)$.

Noting that $k(z)=h(z)^{p} \in H^{p}$, it follows from (3.9) that $R(z)$ is subordinate to a function belonging to exco H^{p}. This gives

$$
\begin{equation*}
R(z) \prec \frac{1}{(1-\eta z)^{p}} \quad(z \in U ;|\eta|=1) \tag{3.10}
\end{equation*}
$$

or

$$
\begin{equation*}
R(z) \prec \frac{1}{(1-\eta \phi(z))^{p}} \quad(|\eta|=1) \tag{3.11}
\end{equation*}
$$

Without a loss of generality, we can take $\eta=1$, so $R(z)=1 /(1-\phi(z))^{p}$. Since

$$
\frac{1}{1-\phi(z)}<\frac{1}{1-z} \quad(z \in U)
$$

the modulus of every coefficient of $1 /(1-\phi(z))^{p}$ does not exceed the corresponding coefficient of $1 /(1-z)^{p}$ (cf. [6, p. 17]). Therefore, we have

$$
\begin{equation*}
\left|r_{n}\right| \leqq \frac{(p+n-1)!}{n!(p-1)!} \tag{3.12}
\end{equation*}
$$

where $R(z)=1+r_{1} z+r_{2} z^{2} \ldots$ Since

$$
\begin{align*}
f(z) & =Q(z) R(z) \tag{3.13}\\
& =\left(q_{1} z+q_{2} z^{2}+\ldots\right)\left(1+r_{1} z+r_{2} z^{2}+\ldots\right),
\end{align*}
$$

that is,
(3.14) $\quad a_{n}=q_{n}+q_{n-1} r_{1}+q_{n-2} r_{2}+\ldots+q_{1} r_{n-1}$,
with the help of $\left|q_{n}\right| \leqq n(n \leqq 2)$ and (3.12), we obtain

$$
\begin{align*}
\left|a_{n}\right| \leqq n+ & (n-1) p+(n-2) \frac{p(p+1)}{2!} \tag{3.15}\\
& +\ldots+\frac{p(p+1) \ldots(p+n-2)}{(n-1)!} \\
& =\frac{(p+n)!}{(p+1)!(n-1)!} .
\end{align*}
$$

Finally, for the equality in (3.1), taking $w(z)=1, \phi(z)=z$, $s(z)=z /(1-z)^{2}$, and $k(z)=1 /(1-z)^{p}$ in (3.7), we get $f(z)=z /(1-z)^{p+2}$. This completes the assertion of Theorem 2.

References

[1] O. Altintas: On majorization by univalent functions. Ph. D. Thesis, Hacettepe University (1979).
[2] L. de Branges: A proof of the Bieberbach conjecture. Acta Math., 154, 137-152 (1985).
[3] T. H. MacGregor: Majorization by univalent functions. Duke Math. J., 34, 95-102 (1967).
[4] Z. Nehari: Conformal Mappings. McGraw-Hill, New York (1952).
[5] M. S. Robertson: Quasi-subordination and coefficients conjectures. Bull. Amer. Math. Soc., 76, 1-9 (1970).
[6] G. Schober: Univalent Functions Selected Topics. Springer-Verlag, Berlin, Heidelberg, New York (1975).

[^0]: 1991 Mathematics Subject Classification. Primary 30C45.
 *) Department of Mathematics, Hacettepe University, Turkey.
 **) Department of Mathematics, Kinki University, Japan.

