45. Majorizations and Quasi-Subordinations for Certain Analytic Functions

By Osman ALTINTAS^{*)} and Shigeyoshi OWA^{**)}

(Communicated by Kiyosi ITÔ, M. J. A., Sept. 14, 1992)

Two subclasses $A(\alpha, \beta)$ and R(p) of certain analytic functions in the open unit disk U are introduced. For these classes a majorization problem and a quasi-subordination problem of analytic functions in U are discussed.

1. Introduction. Let $A(\alpha, \beta)$ be the class of functions of the form

(1.1)
$$h(z) = 1 - \sum_{n=1}^{\infty} c_n z^n$$
 $(c_n \ge 0)$

which are analytic in the open unit disk $U = \{z : |z| < 1\}$ and satisfy (1.2) Re $\{h(z) + \alpha z h'(z)\} > \beta$ $(z \in U)$,

where $\operatorname{Re}(\alpha) \ge 0$ and $0 \le \beta < 1$. The class $A(\alpha, \beta)$ for real $\alpha \ge 0$ was studied by Altintas [1].

Also, let R(p) denote the class of functions

(1.3)
$$g(z) = z + \sum_{n=2}^{\infty} b_n z^n$$

which are analytic in U and satisfy

for some function s(z) is analytic and univalent in U with s(0) = 0 and s'(0) = 1, where $p \ge 1$.

Let f(z) and g(z) be analytic in U. Then f(z) is said to be subordinate to g(z) if there exists an analytic function w(z) in U satisfying w(0) = 0, $|w(z)| \le |z| (z \in U)$ and f(z) = g(w(z)). We denote this subordination by

(1.5) $f(z) \prec g(z) \quad (z \in U) \quad (cf. [4, p. 226]).$

Further, f(z) is said to be quasi-subordinate to g(z) if there exists an analytic function w(z) such that f(z)/w(z) is analytic in U,

(1.6)
$$\frac{f(z)}{w(z)} \prec g(z) \quad (z \in U),$$

and $|w(z)| \leq 1$ $(z \in U)$. We also denote this quasi-subordination by (1.7) $f(z) \leq g(z)$ $(z \in U)$.

Note that the quasi-subordination (1.7) is equivalent to

(1.8)
$$f(z) = w(z)g(\phi(z)),$$

where $|w(z)| \leq 1$ $(z \in U)$ and $|\phi(z)| \leq |z|$ $(z \in U)$ (cf. [5]).

In the quasi-subordination (1.7), if $w(z) \equiv 1$, then (1.7) becomes the subordination (1.5).

¹⁹⁹¹ Mathematics Subject Classification. Primary 30C45.

^{*)} Department of Mathematics, Hacettepe University, Turkey.

^{**)} Department of Mathematics, Kinki University, Japan.

For analytic functions f(z) and g(z) in U, we say that f(z) is majorized by g(z) if there exists an analytic function w(z) in U satisfying $|w(z)| \leq 1$ and f(z) = w(z)g(z) ($z \in U$). We denote this majorization by (1.9) $f(z) \ll g(z)$ ($z \in U$) (cf. [3]).

If we take $\phi(z) = z$ in (1.8), then the quasi-subordination (1.7) becomes the majorization (1.9).

2. A majorization problem. To complete the proof of our result for majorization, we need the following lemmas.

Lemma 1. If h(z) defined by (1.1) is in the class $A(\alpha, \beta)$, then

(2.1)
$$\sum_{n=1}^{\infty} c_n \leq \frac{1+\beta}{1+\operatorname{Re}(\alpha)}$$

Proof. We note that $h(z) \in A(\alpha, \beta)$ gives

(2.2)
$$\operatorname{Re}(1-\sum_{n=1}^{\infty}(1+\alpha n)\ c_n z^n\} > \beta \qquad (z \in U).$$

Letting
$$z \rightarrow 1^-$$
 along the real axis, we find that

(2.3)
$$\sum (1 + n \operatorname{Re}(\alpha)) c_n \leq 1 - \beta,$$

and, since $c_n \ge 0$ and $\operatorname{Re}^{n=1}(\alpha) \ge 0$,

(2.4)
$$(1 + \operatorname{Re}(\alpha)) \sum_{n=1}^{\infty} c_n \leq \sum_{n=1}^{\infty} (1 + n\operatorname{Re}(\alpha)) c_n \leq 1 - \beta.$$

This gives the coefficient inequality (2.1).

Lemma 2. If h(z) defined by (1.1) is in the class $A(\alpha, \beta)$, then

$$(2.5)1 - \frac{1-\beta}{1+\operatorname{Re}(\alpha)} |z| \leq \operatorname{Re}(h(z)) \leq |h(z)| \leq 1 + \frac{1-\beta}{1+\operatorname{Re}(\alpha)} |z|$$

for $z \in U$.

Proof. Since

(2.6)
$$|h(z)| \leq 1 + |z| \sum_{n=1}^{\infty} c_n,$$

Lemma 1 leads to

(2.7)
$$|h(z)| \leq 1 + \frac{1-\beta}{1+\operatorname{Re}(\alpha)}|z|.$$

On the other hand, we have

(2.8)
$$\operatorname{Re}(h(z)) = 1 - \operatorname{Re}\left\{\sum_{n=1}^{\infty} c_n z^n\right\} \ge 1 - \left|\sum_{n=1}^{\infty} c_n z^n\right|$$
$$\ge 1 - \left|z\right| \sum_{n=1}^{\infty} c_n \ge 1 - \frac{1 - \beta}{1 + \operatorname{Re}(\alpha)} \left|z\right|.$$

Now we prove

Theorem 1. Let $f(z) = a_1 z - \sum_{n=2}^{\infty} a_n z^n$ $(a_1 \neq 0, a_n \ge 0)$ be analytic in U. If $f(z) \ll g(z)$ and $zg'(z)/g(z) \stackrel{n=2}{\in} A(\alpha, \beta)$, then (2.9) $|f'(z)| \le |g'(z)|$ $(|z| \le r(\alpha, \beta))$, where $r(\alpha, \beta)$ is the root of the cubic equation

(2.10)
$$(1 - \beta)r^3 - (1 + \operatorname{Re}(\alpha))r^2 + (\beta - 2\operatorname{Re}(\alpha) - 3)r + 1 + \operatorname{Re}(\alpha) = 0$$

contained in the interval (0, 1).

Proof. For g(z) such that $zg'(z)/g(z) \in A(\alpha, \beta)$, we have from Lemma 2 that

Majorizations and Quasi-subordinations

(2.11)
$$\left|\frac{zg'(z)}{g(z)}\right| \ge 1 - \frac{1-\beta}{1+\operatorname{Re}(\alpha)}r \quad (|z|=r),$$

or

No. 7]

(2.12)
$$|g(z)| \leq \frac{(1 + Re(\alpha))r}{1 + Re(\alpha) - (1 - \beta)r} |g'(z)| \quad (|z| = r).$$

Since $f(z) \ll g(z)$, there exists an analytic function w(z) such that f(z) = w(z)g(z) and $|w(z)| \leq 1$ ($z \in U$). Thus we have (2.13) f'(z) = w(z)g'(z) + w'(z)g(z). Noting that w(z) satisfies (2.14) $|w'(z)| \leq \frac{1 - |w(z)|^2}{1 - |z|^2}$ ($z \in U$) (cf. [4, p. 168]), we see that (2.15) |f'(z)|

$$\leq \left\{ |w(z)| + \frac{1 - |w(z)|^2}{1 - r^2} \frac{(1 + \operatorname{Re}(\alpha))r}{1 + \operatorname{Re}(\alpha) - (1 - \beta)r} \right\} |g'(z)|$$

=
$$\frac{-(1 + \operatorname{Re}(\alpha))rX^2 + (1 - r^2)(1 + \operatorname{Re}(\alpha) - (1 - \beta)r)X + (1 + \operatorname{Re}(\alpha))r}{(1 - r^2)(1 + \operatorname{Re}(\alpha) - (1 - \beta)r)} \times |g'(z)|,$$

where X = |w(z)|. Note that the function H(X) defined by $H(X) = -(1 + \operatorname{Re}(\alpha))rX^{2} + (1 - r^{2})(1 + \operatorname{Re}(\alpha) - (1 - \beta)r)X$ $+ (1 + \operatorname{Re}(\alpha))r \quad (0 \le X \le 1)$

takes its maximum value at X = 1 with the condition (2.10). Let $r(\alpha, \beta)$ ($0 < r(\alpha, \beta) < 1$) be the root of the equation (2.10). If $0 \le a \le r(\alpha, \beta)$, then the function

(2.16)
$$\psi(X) = -(1 + \operatorname{Re}(\alpha))aX^2$$

+ $(1 - a^2)(1 + \operatorname{Re}(\alpha) - (1 - \beta)a)X + (1 + \operatorname{Re}(\alpha))a$ increases in the interval $0 \leq X \leq 1$ so that $\psi(X)$ does not exceed $\psi(1) = (1 - a^2)(1 + \operatorname{Re}(\alpha) - (1 - \beta)a)$. Therefore, from this fact, (2.15) gives the inequality (2.9).

3. A quasi-subordination problem. Our result of quasi-subordinations for the class R(p) contained in

Theorem 2. Let $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ be analytic in U and $g(z) \in R(p)$. If $f(z) \leq g(z)$, then

(3.1)
$$|a_n| \leq \frac{(p+n)!}{(p+1)!(n-1)!} \quad (n \geq 2).$$

Equality in (3.1) is attained for the function f(z) given by

(3.2)
$$f(z) = \frac{z}{(1-z)^{p+2}}$$

Proof. It follows from $f(z) \prec g(z)$ that (3.3) $f(z) \stackrel{q}{=} w(z)g(\phi(z)),$

where w(z) is analytic in U with $|w(z)| \leq 1$ ($z \in U$) and $\phi(z)$ is analytic in U with $|\phi(z)| \leq |z|$ ($z \in U$). Define the function h(z) by

(3.4)
$$\sqrt[p]{\frac{g(z)}{s(z)}} = h(z)$$

with a function s(z) analytic and univalent in U. Then $g(z) \in R(p)$ gives

 $\operatorname{Re}(h(z)) > 1/2 \ (z \in U)$, that is,

$$(3.5) h(z) \prec \frac{1}{1-z} (z \in U).$$

Let

$$H = \{h(z) : h(z) \prec 1/(1-z)\}$$

and

$$H^{p} = \{h(z)^{p} : h(z) \in H\}.$$

Then from [6, p. 16], we have

(3.6) $\operatorname{exc\bar{o}} H^{p} = \{u(z) : u(z) = 1/(1 - \eta z)^{p}, |\eta| = 1\},\$ where $\operatorname{exc\bar{o}} H^{p}$ means the set of extreme points of the closed convex hull of H^{p} . If we take g(z)/s(z) = k(z), then we have (3.7) $f(z) = w(z)s(\phi(z))k(\phi(z)).$ Letting $Q(z) = w(z)s(\phi(z))$ and $R(z) = k(\phi(z))$, we get (3.8) $Q(z) \stackrel{\checkmark}{\prec} s(z) \quad (z \in U)$ and

 $(3.9) R(z) \prec k(z) \quad (z \in U).$

Since Q(z) is of the form $\sum_{n=1}^{\infty} q_n z^n$ and s(z) is analytic and univalent in U, using [5] and [2], we have $|q_n| \le n (n \ge 2)$.

Noting that $k(z) = h(z)^{p} \in H^{p}$, it follows from (3.9) that R(z) is subordinate to a function belonging to $\exp \overline{O} H^{p}$. This gives

(3.10)
$$R(z) \prec \frac{1}{(1-\eta z)^p} \quad (z \in U; |\eta| = 1)$$

or

(3.11)
$$R(z) < \frac{1}{(1 - \eta \phi(z))^{p}} \quad (|\eta| = 1)$$

Without a loss of generality, we can take $\eta = 1$, so $R(z) = 1/(1 - \phi(z))^{p}$. Since

$$\frac{1}{1-\phi(z)} \prec \frac{1}{1-z} \qquad (z \in U),$$

the modulus of every coefficient of $1/(1 - \phi(z))^p$ does not exceed the corresponding coefficient of $1/(1 - z)^p$ (cf. [6, p. 17]). Therefore, we have

(3.12)
$$|r_n| \leq \frac{(p+n-1)!}{n!(p-1)!}$$

where $R(z) = 1 + r_1 z + r_2 z^2 \dots$ Since (3.13) f(z) = Q(z)R(z) $= (q_1 z + q_2 z^2 + \dots)(1 + r_1 z + r_2 z^2 + \dots),$

that is,

(3.14)
$$a_n = q_n + q_{n-1}r_1 + q_{n-2}r_2 + \ldots + q_1r_{n-1},$$

with the help of $|q_n| \le n$ $(n \le 2)$ and (3.12), we obtain

(3.15)
$$|a_n| \le n + (n-1)p + (n-2)\frac{p(p+1)}{2!} + \dots + \frac{p(p+1)\dots(p+n-2)}{(n-1)!} = \frac{(p+n)!}{(p+1)!(n-1)!}.$$

184

[Vol. 68(A),

Finally, for the equality in (3.1), taking w(z) = 1, $\phi(z) = z$, $s(z) = z/(1-z)^2$, and $k(z) = 1/(1-z)^p$ in (3.7), we get $f(z) = z/(1-z)^{p+2}$. This completes the assertion of Theorem 2.

References

- O. Altintas: On majorization by univalent functions. Ph. D. Thesis, Hacettepe University (1979).
- [2] L. de Branges: A proof of the Bieberbach conjecture. Acta Math., 154, 137-152 (1985).
- [3] T. H. MacGregor: Majorization by univalent functions. Duke Math. J., 34, 95-102 (1967).
- [4] Z. Nehari: Conformal Mappings. McGraw-Hill, New York (1952).
- [5] M. S. Robertson: Quasi-subordination and coefficients conjectures. Bull. Amer. Math. Soc., 76, 1-9 (1970).
- [6] G. Schober: Univalent Functions Selected Topics. Springer-Verlag, Berlin, Heidelberg, New York (1975).