5. On Fundamental Units of Real Quadratic Fields with Norm +1

By Shin-ichi KATAYAMA

College of General Education, Tokushima University

(Communicated by Shokichi IYANAGA, M. J. A., Jan. 13, 1992)

1. In our previous paper [2], we gave a new explicit form of the fundamental units of real quadratic fields with norm -1. In this note, we shall show that similar results also hold for the fundamental units of real quadratic fields with norm +1.

Let *m* be a positive integer which is not a perfect square and *K* be the real quadratic field $Q(\sqrt{m})$. ε_0 denotes the fundamental unit of *K*. *N* denotes the norm map from *K* to *Q*, and for any $x \in K$, \bar{x} will denote the conjugate of *x*. We put

 $R_{+} = \{K: real quadratic fields with N \epsilon_{0} = +1\},\$

 $E_{+} = \{\varepsilon: units \text{ of } real \text{ quadratic fields such that } N\varepsilon = +1 \text{ and } \varepsilon + \varepsilon \ge 3\}.$

Then it is easy to see $R_{+} \subset \{Q(\sqrt{a^{2}+4a}): a \in N\}$, where N is the set of all the natural numbers.

Fix now a unit $\varepsilon = (t+2+u\sqrt{m})/2 = (t+2+\sqrt{t(t+4)})/2 \in E_+$ (t>0) for a while, and denote $\varepsilon^n = (t_n+2+u_n\sqrt{m})/2$.

Since $t_n + 2 = \varepsilon^n + \overline{\varepsilon}^n$, we have

 $t_{n+1} = \varepsilon^{n+1} + \overline{\varepsilon}^{n+1} - 2 = (\varepsilon + \overline{\varepsilon})(\varepsilon^n + \overline{\varepsilon}^n) - \varepsilon^{n-1} - \overline{\varepsilon}^{n-1} - 2$

 $=(t+2)(t_n+2)-(t_{n-1}+2)-2=(t+2)t_n-t_{n-1}+2t \quad (n\geq 2).$

Using the fact $t_1=t$ and $t_2=t^2+4t$ and this recurrence, we get inductively $t|t_n$ and $t_{n+1}-t_n=(t+1)t_n-t_{n-1}+2t>(t+1)(t_n-t_{n-1})$ $(n\geq 2)$. Hence $t_{n+1}-t_n \geq t(t+3)(t+1)^{n-1}$ $(n\geq 1)$. Furthermore we have

$$(t_{n+1}-t_n)^2 = \{(\varepsilon^{n+1}+\varepsilon^{n+1})-(\varepsilon^n+\varepsilon^n)\}^2 = (\varepsilon^{2n+2}+\varepsilon^{2n+2})+(\varepsilon^{2n}+\varepsilon^{2n})-2(\varepsilon^{2n+1}+\varepsilon^{2n+1}) \\ -2(\varepsilon+\varepsilon)+4 = t_{2n+2}+2+t_{2n}+2-2(t_{2n+1}+2)-2(t+2)+4 = t_{2n+1}.$$

Therefore we have obtained the following lemma.

Lemma 1. With the above notation, we have

- (i) $t_1 = t$, $t_2 = t^2 + 4t$, and $t_{n+1} = (t+2)t_n t_{n-1} + 2t$ ($n \ge 2$),
- (ii) $t \mid t_n \text{ and } t_{n+1} t_n \ge t(t+3)(t+1)^{n-1} (n \ge 1),$
- (iii) $tt_{2n+1} = (t_{n+1} t_n)^2 \ (n \ge 1).$

Until now ε has been fixed. Now let ε vary in E_+ and write $t_n(\varepsilon) = \varepsilon^n + \varepsilon^n - 2$.

Lemma 2. For any $\varepsilon \in E_+$ and $n \ge 2$, $t_n(\varepsilon)$ is not a prime except in the case n=2 and $\varepsilon = (3+\sqrt{5})/2$.

Proof. Suppose n decomposes into n=ij, where $i, j \ge 2$. Then, from (ii) of Lemma 1, $\varepsilon^n = (\varepsilon^i)^j$ implies $t_i(\varepsilon) | t_n(\varepsilon)$, and furthermore $t_i(\varepsilon) \ge t_2(\varepsilon) \ge 5t$, and $t_n(\varepsilon) \ge 5t_i(\varepsilon)$. Hence $t_n(\varepsilon)$ is not prime in this case.

Next, suppose $n \ge 2$ and $t(\varepsilon) = t \ge 2$. Then one gets $t(\varepsilon) | t_n(\varepsilon)$ and $t_n(\varepsilon) \ge 1$

 $t_2(\varepsilon) \ge t(\varepsilon)(t(\varepsilon)+4)$. Hence $t_n(\varepsilon)$ is also not prime in this case.

Finally, Lemma 1 (iii) implies $t_{2n+1}(\varepsilon)$ is not prime for any ε and $n \ge 1$. Hence $t_n(\varepsilon)$ $(n \ge 2)$ is prime if and only if $t(\varepsilon)=1$ and n=2, that is, $t_2(\varepsilon)=5$, which completes the proof.

Proposition 1. Let $s \in N$ and put $\varepsilon = (s+2+\sqrt{s(s+4)})/2$. If $Q(\sqrt{s(s+4)}) \in R_+$, then ε is the fundamental unit of $Q(\sqrt{s(s+4)})$ if and only if there exist no units η in this field such that $t_n(\eta) = s$. If $Q(\sqrt{s(s+4)}) \notin R_+$, then $t_n(\eta) \neq s$ for any $\eta \in E_+$, $n \geq 2$ implies that s is a perfect square.

Proof. The first part of this proposition is easy to see.

Assume now $Q(\sqrt{s(s+4)}) \notin R_+$, that is, $Q(\sqrt{s(s+4)})$ contains the fundamental unit ε_0 with norm -1. Then ε_0 is expressed in the form $\varepsilon_0 = (r + \sqrt{r^2+4})/2$ $(r \in N)$ and $\varepsilon_0^2 = (r^2+2+r\sqrt{r^2+4})/2$. If there exist no units $\eta \in E_+$ such that $t_n(\eta) = s$ for some $n \ge 2$, then we have $\varepsilon = \varepsilon_0^2$. Therefore $s = r^2$.

Conversely if $s = r^2$ for some $r \in N$, then $\varepsilon = \varepsilon_0^2$ holds for $\varepsilon_0 = (r + \sqrt{r^2 + 4})/2$. Combining Lemma 2 and Proposition 1, we have the following

Theorem 1. For any prime $p \neq 5$, $\varepsilon = (p+2+\sqrt{p(p+4)})/2$ is the fundamental unit of $Q(\sqrt{p(p+4)})$.

One can easily generalize this theorem in the follwing way.

Proposition 2. Let k be a given positive integer and $\varepsilon = (t+2+\sqrt{t(t+4)})/2$ be a unit. Then there exist only finitely many t and $n \ge 2$ such that $t_n(\varepsilon) = kp$ (p: prime).

Proof. Assume $t_n(\varepsilon) = kp$ $(n \ge 2)$. Then $p \mid t$ or $t \mid k$. First we consider the case $p \mid t$. Then t is expressed in the form $t = pt_1$, where t_1 is a natural number. From the assumption, we have $kp = t_n(\varepsilon) \ge t_2(\varepsilon) = t(t+4)$ $= pt_1(pt_1+4)$. Hence $k \ge t_1(pt_1+4)$. Hence there exist only finitely many primes p and natural numbers t_1 . Therefore there exist only finitely many t in this case.

For the case t | k, it is obvious that there exist only finitely many t. Therefore there exist only finitely many t such that $t_n(\varepsilon) = kp$ (p: prime).

Next we shall show that for any fixed k and t, there exist only finitely many n such that $t_n(\varepsilon) = kp$ for some prime p. We put n = l(2j+1), where $l=2^r$ $(r \ge 0 \text{ and } j\ge 0)$. If $j\ne 0$, then we put $\eta = \varepsilon^l = (t(\eta)+2+\sqrt{t(\eta)(t(\eta)+4)})/2$. Using Lemma 1 (iii), $kp = t_{2j+1}(\eta) = t(\eta)(t_{j+1}(\eta) - t_j(\eta))^2$ implies $(t_{j+1}(\eta) - t_j(\eta)) | k$. Since $\lim_{j\to\infty} (t_{j+1}(\eta) - t_j(\eta)) = \infty$ for any $t(\eta)$, there exist only finitely many $j\ne 0$ such that $(t_{j+1}(\eta) - t_j(\eta)) | k$.

Finally we put $\rho = \varepsilon^{2j+1} = (t(\rho) + 2 + \sqrt{t(\rho)(t(\rho) + 4)})/2$. $\Omega(x)$ denotes the number of primes which divide x. Since $kp = t_i(\rho)$, we have $\Omega(t_i(\rho)) = \Omega(k) + 1$. On the other hand, $t_2(\rho) = t(\rho)(t(\rho) + 4)$ implies $\Omega(t_i(\rho)) \ge \Omega(t_{i/2}(\rho)) + 1 \ge r$. Therefore r is bounded. Hence we have shown there exist only finitely many n such that $t_n(\varepsilon) = kp$ for some prime p.

From Propositions 1 and 2, we have shown the following

Theorem 2. Let k be a given positive integer. For almost all $p, \varepsilon = (kp+2+\sqrt{kp(kp+4)})/2$ is the fundamental unit of $Q(\sqrt{kp(kp+4)})$.

No. 1]

For the case k=2, we have the following

Corollary. For any prime $p \neq 2$, $\varepsilon = p + 1 + \sqrt{p(p+2)}$ is the fundamental unit of $Q(\sqrt{p(p+2)})$.

References

- G. Degert: Über die Bestimmung der Grundeinheit gewisser reell-quadratischer Zahlkörper. Abh. Math. Sem. Univ. Hamburg, 22, 92–97 (1958).
- [2] S. Katayama: On fundamental units of real quadratic fields with norm -1. Proc. Japan Acad., 67A, 343-345 (1991).
- [3] M. Kutsuna: On the fundamental units of real quadratic fields. ibid., 50, 580–583 (1974).
- [4] R. Morikawa: On units of real quadratic fields. J. Number Theory, 4, 503-507 (1972).
- [5] T. Nakahara: On the determination of the fundamental units of certain real quadratic fields. Mem. Fac. Sci., Kyushu Univ., 24, 300-304 (1970).
- [6] P. Ribenboim: The Book of Prime Number Records. Springer-Verlag, New York, Berlin (1988).
- [7] C. Richaud: Sur la résolution des équations $x^2 Ay^2 = +1$. Atti Accad. Pontif Nuovi Lincei, 177–182 (1866).
- [8] H. Yokoi: On real quadratic fields containing units with norm -1. Nagoya Math. J., 33, 139-152 (1968).
- [9] ——: The fundamental unit and class number one problem of real quadratic fields with prime discriminant. ibid., **120**, 51–59 (1990).