5. On Fundamental Units of Real Quadratic Fields with Norm +1

By Shin-ichi Katayama
College of General Education, Tokushima University
(Communicated by Shokichi Iyanaga, m. J. A., Jan. 13, 1992)

1. In our previous paper [2], we gave a new explicit form of the fundamental units of real quadratic fields with norm -1 . In this note, we shall show that similar results also hold for the fundamental units of real quadratic fields with norm +1 .

Let m be a positive integer which is not a perfect square and K be the real quadratic field $\boldsymbol{Q}(\sqrt{m})$. ε_{0} denotes the fundamental unit of $K . \quad N$ denotes the norm map from K to \boldsymbol{Q}, and for any $x \in K$, \bar{x} will denote the conjugate of x. We put
$R_{+}=\left\{K\right.$: real quadratic fields with $\left.N \varepsilon_{0}=+1\right\}$,
$E_{+}=\{\varepsilon$: units of real quadratic fields such that $N \varepsilon=+1$ and $\varepsilon+\bar{\varepsilon} \geq 3\}$.
Then it is easy to see $R_{+} \subset\left\{Q\left(\sqrt{a^{2}+4 a}\right): a \in N\right\}$, where N is the set of all the natural numbers.

Fix now a unit $\varepsilon=(t+2+u \sqrt{m}) / 2=(t+2+\sqrt{t(t+4)}) / 2 \in E_{+}(t>0)$ for a while, and denote $\varepsilon^{n}=\left(t_{n}+2+u_{n} \sqrt{m}\right) / 2$.

Since $t_{n}+2=\varepsilon^{n}+\bar{\varepsilon}^{n}$, we have

$$
\begin{aligned}
t_{n+1} & =\varepsilon^{n+1}+\bar{\varepsilon}^{n+1}-2=(\varepsilon+\bar{\varepsilon})\left(\varepsilon^{n}+\bar{\varepsilon}^{n}\right)-\varepsilon^{n-1}-\bar{\varepsilon}^{n-1}-2 \\
& =(t+2)\left(t_{n}+2\right)-\left(t_{n-1}+2\right)-2=(t+2) t_{n}-t_{n-1}+2 t \quad(n \geq 2) .
\end{aligned}
$$

Using the fact $t_{1}=t$ and $t_{2}=t^{2}+4 t$ and this recurrence, we get inductively $t \mid t_{n}$ and $t_{n+1}-t_{n}=(t+1) t_{n}-t_{n-1}+2 t>(t+1)\left(t_{n}-t_{n-1}\right)(n \geq 2)$. Hence $t_{n+1}-t_{n}$ $\geq t(t+3)(t+1)^{n-1}(n \geq 1)$. Furthermore we have
$\left(t_{n+1}-t_{n}\right)^{2}=\left\{\left(\varepsilon^{n+1}+\bar{\varepsilon}^{n+1}\right)-\left(\varepsilon^{n}+\bar{\varepsilon}^{n}\right)\right\}^{2}=\left(\varepsilon^{2 n+2}+\bar{\varepsilon}^{2 n+2}\right)+\left(\varepsilon^{2 n}+\bar{\varepsilon}^{2 n}\right)-2\left(\varepsilon^{2 n+1}+\bar{\varepsilon}^{2 n+1}\right)$

$$
-2(\varepsilon+\bar{\varepsilon})+4=t_{2 n+2}+2+t_{2 n}+2-2\left(t_{2 n+1}+2\right)-2(t+2)+4=t t_{2 n+1} .
$$

Therefore we have obtained the following lemma.
Lemma 1. With the above notation, we have
(i) $t_{1}=t, t_{2}=t^{2}+4 t$, and $t_{n+1}=(t+2) t_{n}-t_{n-1}+2 t(n \geq 2)$,
(ii) $t \mid t_{n}$ and $t_{n+1}-t_{n} \geq t(t+3)(t+1)^{n-1}(n \geq 1)$,
(iii) $t t_{2 n+1}=\left(t_{n+1}-t_{n}\right)^{2}(n \geq 1)$.

Until now ε has been fixed. Now let ε vary in E_{+}and write $t_{n}(\varepsilon)=$ $\varepsilon^{n}+\bar{\varepsilon}^{n}-2$.

Lemma 2. For any $\varepsilon \in E_{+}$and $n \geq 2, t_{n}(\varepsilon)$ is not a prime except in the case $n=2$ and $\varepsilon=(3+\sqrt{5}) / 2$.

Proof. Suppose n decomposes into $n=i j$, where $i, j \geq 2$. Then, from (ii) of Lemma $1, \varepsilon^{n}=\left(\varepsilon^{i}\right)^{j}$ implies $t_{i}(\varepsilon) \mid t_{n}(\varepsilon)$, and furthermore $t_{i}(\varepsilon) \geq t_{2}(\varepsilon) \geq 5 t$, and $t_{n}(\varepsilon) \geq 5 t_{i}(\varepsilon)$. Hence $t_{n}(\varepsilon)$ is not prime in this case.

Next, suppose $n \geq 2$ and $t(\varepsilon)=t \geq 2$. Then one gets $t(\varepsilon) \mid t_{n}(\varepsilon)$ and $t_{n}(\varepsilon) \geq$
$t_{2}(\varepsilon) \geq t(\varepsilon)(t(\varepsilon)+4)$. Hence $t_{n}(\varepsilon)$ is also not prime in this case.
Finally, Lemma 1 (iii) implies $t_{2 n+1}(\varepsilon)$ is not prime for any ε and $n \geq 1$. Hence $t_{n}(\varepsilon)(n \geq 2)$ is prime if and only if $t(\varepsilon)=1$ and $n=2$, that is, $t_{2}(\varepsilon)=5$, which completes the proof.

Proposition 1. Let $s \in N$ and put $\varepsilon=(s+2+\sqrt{s(s+4)}) / 2$. If $\boldsymbol{Q}(\sqrt{s(s+4)})$ $\in R_{+}$, then ε is the fundamental unit of $\boldsymbol{Q}(\sqrt{s(s+4)})$ if and only if there exist no units η in this field such that $t_{n}(\eta)=s$. If $\boldsymbol{Q}(\sqrt{s(s+4)}) \notin R_{+}$, then $t_{n}(\eta) \neq s$ for any $\eta \in E_{+}, n \geq 2$ implies that s is a perfect square.

Proof. The first part of this proposition is easy to see.
Assume now $\boldsymbol{Q}(\sqrt{s(s+4)}) \notin R_{+}$, that is, $\boldsymbol{Q}(\sqrt{s(s+4)})$ contains the fundamental unit ε_{0} with norm -1. Then ε_{0} is expressed in the form $\varepsilon_{0}=(r+$ $\left.\sqrt{r^{2}+4}\right) / 2(r \in N)$ and $\varepsilon_{0}^{2}=\left(r^{2}+2+r \sqrt{r^{2}+4}\right) / 2$. If there exist no units $\eta \in E_{+}$ such that $t_{n}(\eta)=s$ for some $n \geq 2$, then we have $\varepsilon=\varepsilon_{0}^{2}$. Therefore $s=r^{2}$.

Conversely if $s=r^{2}$ for some $r \in N$, then $\varepsilon=\varepsilon_{0}^{2}$ holds for $\varepsilon_{0}=\left(r+\sqrt{r^{2}+4}\right) / 2$.
Combining Lemma 2 and Proposition 1, we have the following
Theorem 1. For any prime $p \neq 5, \varepsilon=(p+2+\sqrt{p(p+4)}) / 2$ is the fundamental unit of $\boldsymbol{Q}(\sqrt{p(p+4)})$.

One can easily generalize this theorem in the follwing way.
Proposition 2. Let k be a given positive integer and $\varepsilon=(t+2+$ $\sqrt{t(t+4)}) / 2$ be a unit. Then there exist only finitely many t and $n \geq 2$ such that $t_{n}(\varepsilon)=k p$ (p : prime).

Proof. Assume $t_{n}(\varepsilon)=k p(n \geq 2)$. Then $p \mid t$ or $t \mid k$. First we consider the case $p \mid t$. Then t is expressed in the form $t=p t_{1}$, where t_{1} is a natural number. From the assumption, we have $k p=t_{n}(\varepsilon) \geq t_{2}(\varepsilon)=t(t+4)$ $=p t_{1}\left(p t_{1}+4\right)$. Hence $k \geq t_{1}\left(p t_{1}+4\right)$. Hence there exist only finitely many primes p and natural numbers t_{1}. Therefore there exist only finitely many t in this case.

For the case $t \mid k$, it is obvious that there exist only finitely many t. Therefore there exist only finitely many t such that $t_{n}(\varepsilon)=k p$ (p : prime).

Next we shall show that for any fixed k and t, there exist only finitely many n such that $t_{n}(\varepsilon)=k p$ for some prime p. We put $n=l(2 j+1)$, where $l=2^{r}(r \geq 0$ and $j \geq 0)$. If $j \neq 0$, then we put $\eta=\varepsilon^{l}=(t(\eta)+2+\sqrt{t(\eta)(t(\eta)+4)}) / 2$. Using Lemma 1 (iii), $k p=t_{2 j+1}(\eta)=t(\eta)\left(t_{j+1}(\eta)-t_{j}(\eta)\right)^{2}$ implies $\left(t_{j+1}(\eta)-t_{j}(\eta)\right) \mid k$. Since $\lim _{j \rightarrow \infty}\left(t_{j+1}(\eta)-t_{j}(\eta)\right)=\infty$ for any $t(\eta)$, there exist only finitely many $j \neq 0$ such that $\left(t_{j+1}(\eta)-t_{j}(\eta)\right) \mid k$.

Finally we put $\rho=\varepsilon^{2 j+1}=(t(\rho)+2+\sqrt{t(\rho)(t(\rho)+4)}) / 2 . \quad \Omega(x)$ denotes the number of primes which divide x. Since $k p=t_{l}(\rho)$, we have $\Omega\left(t_{l}(\rho)\right)=\Omega(k)$ +1 . On the other hand, $t_{2}(\rho)=t(\rho)(t(\rho)+4)$ implies $\Omega\left(t_{l}(\rho)\right) \geq \Omega\left(t_{l / 2}(\rho)\right)+1$ $\geq r$. Therefore r is bounded. Hence we have shown there exist only finitely many n such that $t_{n}(\varepsilon)=k p$ for some prime p.

From Propositions 1 and 2, we have shown the following
Theorem 2. Let k be a given positive integer. For almost all $p, \varepsilon=$ $(k p+2+\sqrt{k p(k p+4)}) / 2$ is the fundamental unit of $\boldsymbol{Q}(\sqrt{k p(k p+4)})$.

For the case $k=2$, we have the following
Corollary. For any prime $p \neq 2, \varepsilon=p+1+\sqrt{p(p+2)}$ is the fundamental unit of $\boldsymbol{Q}(\sqrt{p(p+2)})$.

References

[1] G. Degert: Über die Bestimmung der Grundeinheit gewisser reell-quadratischer Zahlkörper. Abh. Math. Sem. Univ. Hamburg, 22, 92-97 (1958).
[2] S. Katayama: On fundamental units of real quadratic fields with norm -1. Proc. Japan Acad., 67A, 343-345 (1991).
[3] M. Kutsuna: On the fundamental units of real quadratic fields. ibid., 50, 580-583 (1974).
[4] R. Morikawa: On units of real quadratic fields. J. Number Theory, 4, 503-507 (1972).
[5] T. Nakahara: On the determination of the fundamental units of certain real quadratic fields. Mem. Fac. Sci., Kyushu Univ., 24, 300-304 (1970).
[6] P. Ribenboim: The Book of Prime Number Records. Springer-Verlag, New York, Berlin (1988).
[7] C. Richaud: Sur la résolution des équations $x^{2}-A y^{2}=+1$. Atti Accad. Pontif Nuovi Lincei, 177-182 (1866).
[8] H. Yokoi: On real quadratic fields containing units with norm -1. Nagoya Math. J., 33, 139-152 (1968).
[9] ——: The fundamental unit and class number one problem of real quadratic fields with prime discriminant. ibid., 120, 51-59 (1990).

