36. The Centralizer Algebras of Mixed Tensor Representations of $U_q(gl_n)$ and the HOMFLY Polynomial of Links[†]

By Masashi Kosuda*) and Jun MURAKAMI**)

(Communicated by Shokichi IYANAGA, M.J.A., June 9, 1992)

Introduction. We construct an algebra $H_{N-1,M-1}(a,q)$ with complex parameters a and q. The centralizer algebra of a mixed tensor representation of $U_q(gl_n)$ is a quotient of it. The HOMFLY polynomial of links in S^3 is equal to a trace of $H_{N-1,M-1}(a,q)$. Each irreducible character of it corresponds to an invariant of links in a solid torus. As an application, we get a formula for the HOMFLY polynomial of satellite links. The detail will be published elsewhere.

1. The centralizer algebra of mixed tensor representation. The quantum group $\mathcal{U}_q(gl_n)$ is the q-analogue of the universal enveloping algebra $\mathcal{U}(gl_n)$. The Lie algebra gl_n acts on $V_n := C^n$ naturally and it is called the vector representation. This representation can be deformed for the q-analogue $\mathcal{U}_q(gl_n)$ and is also called the vector representation. Let V_n^* denote the dual representation of V_n . Since $\mathcal{U}_q(gl_n)$ is a Hopf algebra, it acts on

$$V_n^{(N,M)} := \underbrace{V_n \otimes \cdots \otimes V_n}_{N \text{ times}} \otimes \underbrace{V_n^* \otimes \cdots \otimes V_n^*}_{M \text{ times}}.$$

This representation is called the *mixed tensor* representation of $U_q(gl_n)$. Let

 $C_n^{(N,M)} := \{ x \in \operatorname{End} (V_n^{(N,M)}) \mid xa = ax \text{ for any } a \in \mathcal{U}_q(gl_n) \}.$

Then $C_n^{(N,M)}$ is an algebra and is called the *centralizer algebra* with respect to $V_n^{(N,M)}$. Jimbo shows in [2] that $C_n^{(N,0)}$ is a quotient of the Iwahori-Hecke algebra $H_{N-1}(q)$. Let q and a be generic complex parameters. In other words, they are not equal to 0 nor any root of unity. Let $H_{N-1,M-1}(a,q)$ be the algebra defined by the following generators and relations.

$$\begin{split} H_{N^{-1},M^{-1}}(a,q) &= \langle T_{1}^{+}, \cdots, T_{N^{-1}}^{+}, T_{1}^{-}, \cdots, T_{M^{-1}}^{-}, E \mid T_{i}^{\pm} T_{i+1}^{\pm} T_{i}^{\pm} = T_{i+1}^{\pm} T_{i}^{\pm} T_{i}^{\pm} T_{i}^{\pm} \\ T_{i}^{\pm} T_{j}^{\pm} &= T_{j}^{\pm} T_{i}^{\pm} (\mid i - j \mid \geq 2), \quad T_{i}^{\pm} T_{j}^{\pm} = T_{j}^{\pm} T_{i}^{\pm}, \quad E T_{i}^{\pm} = T_{i}^{\pm} E (i \geq 2), \\ E(T_{1}^{+})^{-1} T_{1}^{-} E T_{1}^{+} &= E(T_{1}^{+})^{-1} T_{1}^{-} E T_{1}^{-}, \quad E T_{1}^{\pm} E = a^{-1} E, \quad E^{2} = -\frac{a - a^{-1}}{q - q^{-1}} E, \\ T_{1}^{+} E(T_{1}^{+})^{-1} T_{1}^{-} E = T_{1}^{-} E(T_{1}^{+})^{-1} T_{1}^{-} E, \quad (T_{i}^{\pm} - q)(T_{i}^{\pm} + q^{-1}) = 0 \rangle. \\ \text{Theorem 1.} (1) \quad The \ algebra \ H_{N^{-1},M^{-1}}(a,q) \ is \ semisimple \ and \ delta = 0 \end{split}$$

Theorem 1. (1) The algebra $H_{N-1,M-1}(a,q)$ is semisimple and its dimension is equal to the factorial (N+M)!.

¹⁾ This research was supported in part by NSF grant DMS-9100383 and Grant-in-Aid for Scientific Research, the Ministry of Education, Science and Culture of Japan.

^{*)} NTT Software Corporation.

^{**)} Institute for Advanced Study, on leave from Department of Mathematics, Osaka University.

(2) The centralizer algebra $C_n^{(N,M)}$ is isomorphic to a quotient of $H_{N-1,M-1}(q^{-n},q)$. If n is sufficiently large, then they are isomorphic.

In this correspondence, T_i^{\pm} is a scalar multiple of the image of the R-matrix, and E is a scalar multiple of the image of the $\mathcal{U}_q(gl_n)$ -module mapping corresponding to the natural pairing $V_n \otimes V_n^* \to C$.

Let Λ_r denote the set of partitions of r. As an abstract algebra, $H_{N-1,M-1}(q^{-n},q)$ is isomorphic to the centralizer algebra of the mixed tensor representation of gl_n if $n \gg 0$. Therefore, the irreducible representations of $H_{N-1,M-1}(a,q)$ are parametrized by the set $\Lambda_{N,M} = \{(\lambda,\mu) \mid \lambda \in \Lambda_{N-k}, \mu \in \Lambda_{M-k}, (k \ge 0)\}$ (see, for example, [5]). By using the Bratteli diagram of inclusions $C \subset H_0(q) \subset H_1(q) \subset \cdots \subset H_{N-1}(q) \subset H_{N-1,0}(a,q) \subset \cdots \subset H_{N-1,M-1}(a,q)$, we can actually construct all the irreducible representations of $H_{N-1,M-1}(a,q)$ by the method in [1]. These representations are given in [3] and are generalizations of those of the Iwahori-Hecke algebra in [7].

2. The HOMFLY polynomial. An oriented knit semigroup $B_{N,M}$ is generated by the following elements:

The product of these elements are defined like the braid group. Two elements of $B_{N,M}$ are regarded as the same element if their diagrams are isotopic. By closing an element $b \in B_{N,M}$, we get an oriented link diagram \hat{b} in S^3 . Note that this correspondence is well-defined by the definition of the knit semigroup. The HOMFLY polynomial P of links is defined uniquely by the following relation.

$$a^{-1}P_{(a,q)} = (q - q^{-1})P_{(a,q)}, P_{(a,q)} = 1.$$

The first relation is called the *skein* relation. Factoring the semigroup algebra $CB_{N,M}$ by the skein relation, we get $H_{N-1,M-1}(a,q)$. The projection map $\iota_{N,M}$ is defined by $\iota_{N,M}(\sigma_i^{\pm}) = aT_i^{\pm}$, $\iota_{N,M}(e^{\pm}) = E$, $\iota_{N,M}(\tau) = -a^{-1}(q-q^{-1})e + a^{-2}$. Let $\chi_{\lambda,\mu}^{(N,M)}$ be the irreducible character of $H_{N-1,M-1}(a,q)$ parametrized by $(\lambda,\mu) \in \Lambda_{N,M}$.

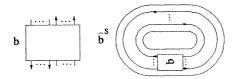
Theorem 2. For $b \in B_{N,M}$, there are $a_{\lambda,\mu}^{(N,M)} \in C$ such that $P(\hat{b}) = \sum_{(\lambda,\mu) \in A_{N,M}} a_{\lambda,\mu}^{(N,M)} \chi_{\lambda,\mu}^{(N,M)}(\iota_{N,M}(b)).$

The coefficient $a_{\lambda,\mu}^{(N,M)}$ is not depend on b and is given in [3].

3. Invariants of links in a solid torus. Let b be an element of $B_{N,M}$ and let S be a solid torus. Put b in an anulus and close it along with the axis as in the figure, we get a diagram of a link in S, which is denoted by

No. 6]

 \hat{b}^s . On the other hand, every link in S is realized as a closure of a certain element of $B_{N,M}$. Fix a pair of partitions (λ, μ) . Let $\chi_{\lambda,\mu}^{(N,M)}(a,q)$ be the irreducible character of $H_{N-1,M-1}$ parametrized by $(\lambda, \mu) \in \Lambda_{N,M}$, or 0 if there is no $k \ge 0$ such that $|\lambda| = N - k$, $|\mu| = M - k$.



Proposition 3. Let $b_1 \in B_{N_1, M_1}$ and $b_2 \in B_{N_2, M_2}$. If the closures \hat{b}_1 and \hat{b}_2 are the equivalent links, then we have $\chi^{(N_1,M_1)}_{\lambda,\mu}(\iota_{N_1,M_1}(b_1)) = \chi^{(N_2,M_2)}_{\lambda,\mu}(\iota_{N_2,M_2}(b_2)).$

For a link L in the solid torus, let $Q_{\lambda,\mu}(L) = \chi_{\lambda,\mu}^{(N,M)}(\iota_{N,M}(b))$, where $b \in B_{N,M}$ such that \hat{b}^s is equivalent to L. Then the above proposition shows that $Q_{1,u}(L)$ is well-defined. In other words,

Corollary 4. The above formula implies that $Q_{\lambda,\mu}(L)$ is an ambient isotopy invariant of links in the solid torus.

The idea of the proof is to use the category of tangles in [6].

4. The HOMFLY polynomial of satellite links. A satellite link is a link in S^3 obtained from a knot in S^3 and a link in a solid torus. Let K be a knot in S^3 and let L be a link in a solid torus S. Let N(K) be the tublar neighborhood of K. Then N(K) is isomorphic to the solid torus. Let f be the faithful embedding from the solid torus to N(K). Then the image f(L) is a link in S³. This link is denoted by K_L and is called a satellite of K by L. Let $(\lambda, \mu) \in \Lambda_{N,M}$ and let $\alpha_{\lambda,\mu}$ be the central idempotent of $H_{N-1,M-1}(a,q)$ corresponding to the irreducible representation parametrized by (λ, μ) . Then there is $\beta_{\lambda,\mu} \in CB_{N,M}$ such that $\iota_{N,M}(\beta_{\lambda,\mu}) = \alpha_{\lambda,\mu}$, where $\iota_{N,M}$ is the projection from $CB_{N,M}$ to $H_{N,M}(a,q)$. Let $\beta_{\lambda,\mu} = \sum_i c_i \gamma_i$, $(c_i \in C, C_i)$ $\gamma_i \in B_{N,M}$), and put $P_{\lambda,\mu}^{(N,M)}(K) := \sum_i c_i P(K_{\hat{r}_i^S})$.

Proposition 5. For $(\lambda, \mu) \in \Lambda_{N,M}$,

(1) $P_{\lambda,\mu}^{(N,M)}$ is a knot invariant. (2) $P_{\lambda,\mu}^{(N,M)}(K) = P_{\lambda,\mu}^{(1\lambda|,|\mu|)}(K)$ for any knot K.

According to (2), we simply denote $P_{\lambda,\mu}^{(N,M)}$ by $P_{\lambda,\mu}$. By using the invariants $P_{\lambda,\mu}$ and $Q_{\lambda,\mu}$ in the last section, we get a formula for the HOMFLY polynomial of satellite links.

Theorem 6. For any knot K in S^3 and L in a solid torus, we have

$$P(K_L) = \sum_{(\lambda,\mu)} Q_{\lambda,\mu}(L) P_{\lambda,\mu}(K).$$

Remark. (1) $Q_{\lambda,\mu}(L) = 0$ except with finite number of pairs (λ, μ) of partitions.

(2) For the Jones polynomial and the Kauffman polynomial, such formula is already given in [4].

References

- Goodman, F. M., de la Harpe, P., and Jones, V. F. R.: Coxeter Graphs and Towers of Algebras. Springer-Verlag, New York (1989).
- [2] Jimbo, M.: A q-analogue of $U_q(gl(N+1))$, Hecke algebra and the Yang-Baxter equation. Lett. Math. Phys., 10, 63-69 (1985).
- [3] Kosuda, M. and Murakami, J.: Centralizer algebras of the mixed tensor representations of $U_q(gl_n)$ (in preparation).
- [4] Murakami, J.: The parallel version of polynomial invariants of links. Osaka J. Math., 26, 1-55 (1989).
- [5] Stembridge, J. R.: Rational tableaux and the tensor algebra of gln. J. Combinatorial Theory, A46, 79-120 (1937).
- [6] Turaev, V. G.: Operator invariants of tangles and *R*-matrices. Math. USSR Izvestiya, 35, 411-444 (1990).
- [7] Wenzl, H.: Hecke algebras of type A_n and subfactors. Invent. Math., 92, 349-383 (1938).