36. The Centralizer Algebras of Mixed Tensor Representations of $\mathcal{U}_{q}\left(g l_{n}\right)$ and the HOMFLY Polynomial of Links ${ }^{\text {t }}$

By Masashi Kosuda*) and Jun Murakami**)
(Communicated by Shokichi Iyanaga, m. J. a., June 9, 1992)

Introduction. We construct an algebra $H_{N-1, M-1}(a, q)$ with complex parameters a and q. The centralizer algebra of a mixed tensor representation of $\bigcup_{q}\left(g l_{n}\right)$ is a quotient of it. The HOMFLY polynomial of links in S^{3} is equal to a trace of $H_{N-1, M-1}(a, q)$. Each irreducible character of it corresponds to an invariant of links in a solid torus. As an application, we get a formula for the HOMFLY polynomial of satellite links. The detail will be published elsewhere.

1. The centralizer algebra of mixed tensor representation. The quantum group $U_{q}\left(g l_{n}\right)$ is the q-analogue of the universal enveloping algebra $U\left(g l_{n}\right)$. The Lie algebra $g l_{n}$ acts on $V_{n}:=C^{n}$ naturally and it is called the vector representation. This representation can be deformed for the q-analogue $\bigcup_{q}\left(g l_{n}\right)$ and is also called the vector representation. Let V_{n}^{*} denote the dual representation of V_{n}. Since $U_{q}\left(g l_{n}\right)$ is a Hopf algebra, it acts on

$$
V_{n}^{(N, M)}:=\underbrace{V_{n} \otimes \cdots \otimes V_{n}}_{N \text { times }} \otimes \underbrace{V_{n}^{*} \otimes \cdots \otimes V_{n}^{*}}_{M \text { times }} .
$$

This representation is called the mixed tensor representation of $\mathcal{U}_{q}\left(g l_{n}\right)$. Let

$$
C_{n}^{(N, M)}:=\left\{x \in \operatorname{End}\left(V_{n}^{(N, M)}\right) \mid x a=a x \text { for any } a \in \bigcup_{q}\left(g l_{n}\right)\right\} .
$$

Then $C_{n}^{(N, M)}$ is an algebra and is called the centralizer algebra with respect to $V_{n}^{(N, m)}$. Jimbo shows in [2] that $C_{n}^{(N, 0)}$ is a quotient of the Iwahori-Hecke algebra $H_{N-1}(q)$. Let q and a be generic complex parameters. In other words, they are not equal to 0 nor any root of unity. Let $H_{N-1, M-1}(a, q)$ be the algebra defined by the following generators and relations.
$H_{N-1, M-1}(a, q)=\left\langle T_{1}^{+}, \cdots, T_{N-1}^{+}, T_{1}^{-}, \cdots, T_{\overline{M-1}}, E\right| T_{i}^{ \pm} T_{i+1}^{ \pm} T_{i}^{ \pm}=T_{i+1}^{ \pm} T_{i}^{ \pm} T_{i+1}^{ \pm}$,
$T_{i}^{ \pm} T_{j}^{ \pm}=T_{j}^{ \pm} T_{i}^{ \pm}(|i-j| \geq 2), \quad T_{i}^{ \pm} T_{j}^{\mp}=T_{j}^{\mp} T_{i}^{ \pm}, \quad E T_{i}^{ \pm}=T_{i}^{ \pm} E(i \geq 2)$,
$E\left(T_{1}^{+}\right)^{-1} T_{1}^{-} E T_{1}^{+}=E\left(T_{1}^{+}\right)^{-1} T_{1}^{-} E T_{1}^{-}, \quad E T_{1}^{ \pm} E=a^{-1} E, \quad E^{2}=-\frac{a-a^{-1}}{q-q^{-1}} E$,
$\left.T_{1}^{+} E\left(T_{1}^{+}\right)^{-1} T_{1}^{-} E=T_{1}^{-} E\left(T_{1}^{+}\right)^{-1} T_{1}^{-} E, \quad\left(T_{i}^{ \pm}-q\right)\left(T_{i}^{ \pm}+q^{-1}\right)=0\right\rangle$.
Theorem 1. (1) The algebra $H_{N-1, M-1}(a, q)$ is semisimple and its dimension is equal to the factorial $(N+M)$!.

[^0](2) The centralizer algebra $C_{n}^{(N, M)}$ is isomorphic to a quotient of $H_{N-1, M-1}\left(q^{-n}, q\right)$. If n is sufficiently large, then they are isomorphic.

In this correspondence, $T_{i}^{ \pm}$is a scalar multiple of the image of the R-matrix, and E is a scalar multiple of the image of the $U_{q}\left(g l_{n}\right)$-module mapping corresponding to the natural pairing $V_{n} \otimes V_{n}^{*} \rightarrow \boldsymbol{C}$.

Let Λ_{r} denote the set of partitions of r. As an abstract algebra, $H_{N-1, M-1}\left(q^{-n}, q\right)$ is isomorphic to the centralizer algebra of the mixed tensor representation of $g l_{n}$ if $n \gg 0$. Therefore, the irreducible representations of $H_{N-1, M-1}(a, q)$ are parametrized by the set $\Lambda_{N, M}=\left\{(\lambda, \mu) \mid \lambda \in \Lambda_{N-k}, \mu \in \Lambda_{M-k}\right.$ ($k \geq 0)$ \} (see, for example, [5]). By using the Bratteli diagram of inclusions $C \subset H_{0}(q) \subset H_{1}(q) \subset \cdots \subset H_{N-1}(q) \subset H_{N-1,0}(a, q) \subset \cdots \subset H_{N-1, M-1}(a, q)$, we can actually construct all the irreducible representations of $H_{N-1, M-1}(a, q)$ by the method in [1]. These representations are given in [3] and are generalizations of those of the Iwahori-Hecke algebra in [7].
2. The HOMFLY polynomial. An oriented knit semigroup $B_{N, M}$ is generated by the following elements:

The product of these elements are defined like the braid group. Two elements of $B_{N, M}$ are regarded as the same element if their diagrams are isotopic. By closing an element $\mathrm{b} \in B_{N, M}$, we get an oriented link diagram \hat{b} in S^{3}. Note that this correspondence is well-defined by the definition of the knit semigroup. The HOMFLY polynomial P of links is defined uniquely by the following relation.

$$
a^{-1} P_{\check{\prime}}(a, q)-a P_{\check{2}}(a, q)=\left(q-q^{-1}\right) P_{11}(a, q), \quad P_{\bigcirc}(a, q)=1 .
$$

The first relation is called the skein relation. Factoring the semigroup algebra $C B_{N, M}$ by the skein relation, we get $H_{N-1, M-1}(a, q)$. The projection map $\iota_{N, M}$ is defined by $\iota_{N, M}\left(\sigma_{i}^{ \pm}\right)=a T_{i}^{ \pm}, \iota_{N, M}\left(e^{ \pm}\right)=E, \iota_{N, M}(\tau)=-a^{-1}\left(q-q^{-1}\right) e+$ a^{-2}. Let $\chi_{\lambda, \mu}^{(N, M)}$ be the irreducible character of $H_{N-1, M-1}(a, q)$ parametrized by $(\lambda, \mu) \in \Lambda_{N, M}$.

Theorem 2. For $b \in B_{N, M}$, there are $a_{\hat{\lambda}, \mu}^{(N, M)} \in C$ such that $P(\hat{b})=$ $\sum_{(\lambda, \mu) \in \Lambda_{N, M}} a_{\lambda, \mu}^{(N, M)} \chi_{\lambda, \mu}^{(N, M)}\left(c_{N, M}(b)\right)$.

The coefficient $a_{\lambda, \mu}^{(N, M)}$ is not depend on b and is given in [3].
3. Invariants of links in a solid torus. Let b be an element of $B_{N, M}$ and let S be a solid torus. Put b in an anulus and close it along with the axis as in the figure, we get a diagram of a link in S, which is denoted by
\hat{b}^{s}. On the other hand, every link in S is realized as a closure of a certain element of $B_{N, M}$. Fix a pair of partitions (λ, μ). Let $\chi_{\lambda, \mu}^{(N, M)}(\alpha, q)$ be the irreducible character of $H_{N-1, M-1}$ parametrized by $(\lambda, \mu) \in \Lambda_{N, M}$, or 0 if there is no $k \geq 0$ such that $|\lambda|=N-k,|\mu|=M-k$.

Proposition 3. Let $b_{1} \in B_{N_{1}, M_{1}}$ and $b_{2} \in B_{N_{2}, M_{2}}$. If the closures \hat{b}_{1} and \hat{b}_{2} are the equivalent links, then we have $\chi_{\lambda_{2}, \mu}^{\left(N_{1}, M_{1}\right)}\left(\ell_{N_{1}, M_{1}}\left(b_{1}\right)\right)=\chi_{\lambda, \mu}^{\left(N_{2}, M_{2}\right)}\left(\iota_{N_{2}, M_{2}}\left(b_{2}\right)\right)$.

For a link L in the solid torus, let $Q_{\lambda, \mu}(L)=\chi_{\lambda, \mu}^{(N, M)}\left(\iota_{N, M}(b)\right)$, where $b \in B_{N, M}$ such that \hat{b}^{s} is equivalent to L. Then the above proposition shows that $Q_{\lambda, \mu}(L)$ is well-defined. In other words,

Corollary 4. The above formula implies that $Q_{\lambda, \mu}(L)$ is an ambient isotopy invariant of links in the solid torus.

The idea of the proof is to use the category of tangles in [6].
4. The HOMFLY polynomial of satellite links. A satellite link is a link in S^{3} obtained from a $k n o t$ in S^{3} and a link in a solid torus. Let K be a knot in S^{3} and let L be a link in a solid torus S. Let $N(K)$ be the tublar neighborhood of K. Then $N(K)$ is isomorphic to the solid torus. Let f be the faithful embedding from the solid torus to $N(K)$. Then the image $f(L)$ is a link in S^{3}. This link is denoted by K_{L} and is called a satellite of K by $L . \quad$ Let $(\lambda, \mu) \in \Lambda_{N, M}$ and let $\alpha_{\lambda, \mu}$ be the central idempotent of $H_{N-1, M-1}(\alpha, q)$ corresponding to the irreducible representation parametrized by (λ, μ). Then there is $\beta_{\lambda, \mu} \in C B_{N, M}$ such that $\iota_{N, M}\left(\beta_{\lambda, \mu}\right)=\alpha_{\lambda, \mu}$, where $\iota_{N, M}$ is the projection from $C B_{N, M}$ to $H_{N, M}(a, q)$. Let $\beta_{\lambda, \mu}=\sum_{i} c_{i \gamma_{i}},\left(c_{i} \in \boldsymbol{C}\right.$, $\left.\gamma_{i} \in B_{N, M}\right)$, and put $P_{i, \mu}^{(N, M)}(K):=\sum_{i} c_{i} P\left(K_{\hat{i} \hat{i}}\right)$.

Proposition 5. For $(\lambda, \mu) \in \Lambda_{N, M}$,
(1) $P_{\lambda, \mu}^{(N, M)}$ is a knot invariant.
(2) $P_{\lambda, \mu}^{(N, M)}(K)=P_{\lambda, \mu}^{(|\lambda|,|\mu|)}(K)$ for any knot K.

According to (2), we simply denote $P_{\lambda, \mu}^{(N, M)}$ by $P_{\lambda, \mu}$. By using the invariants $P_{\lambda, \mu}$ and $Q_{\lambda, \mu}$ in the last section, we get a formula for the HOMFLY polynomial of satellite links.

Theorem 6. For any knot K in S^{3} and L in a solid torus, we have $P\left(K_{L}\right)=\sum_{(\lambda, \mu)} Q_{\lambda, \mu}(L) P_{\lambda, \mu}(K)$.
Remark. (1) $Q_{\lambda, \mu}(L)=0$ except with finite number of pairs (λ, μ) of partitions.
(2) For the Jones polynomial and the Kauffman polynomial, such formula is already given in [4].

References

[1] Goodman, F. M., de la Harpe, P., and Jones, V. F. R.: Coxeter Graphs and Towers of Algebras. Springer-Verlag, New York (1989).
[2] Jimbo, M.: A q-analogue of $U_{q}(g l(N+1))$, Hecke algebra and the Yang-Baxter equation. Lett. Math. Phys., 10, 63-69 (1985).
[3] Kosuda, M. and Murakami, J.: Centralizer algebras of the mixed tensor representations of $U_{q}\left(g l_{n}\right)$ (in preparation).
[4] Murakami, J.: The parallel version of polynomial invariants of links. Osaka J. Math., 26, 1-55 (1989).
[5] Stembridge, J. R.: Rational tableaux and the tensor algebra of $g l_{n}$. J. Combinatorial Theory, A46, 79-120 (1987).
[6] Turaev, V. G.: Operator invariants of tangles and R-matrices. Math. USSR Izvestiya, 35, 411-444 (1990).
[7] Wenzl, H.: Hecke algebras of type A_{n} and subfactors. Invent. Math., 92, 349383 (1988).

[^0]: †) This research was supported in part by NSF grant DMS-9100383 and Grant-inAid for Scientific Research, the Ministry of Education, Science and Culture of Japan.
 *) NTT Software Corporation.
 **) Institute for Advanced Study, on leave from Department of Mathematics, Osaka University.

